xref: /openbmc/linux/fs/ubifs/file.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
56 
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 
82 	if (ubifs_crypt_is_encrypted(inode)) {
83 		err = ubifs_decrypt(inode, dn, &dlen, block);
84 		if (err)
85 			goto dump;
86 	}
87 
88 	out_len = UBIFS_BLOCK_SIZE;
89 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 			       le16_to_cpu(dn->compr_type));
91 	if (err || len != out_len)
92 		goto dump;
93 
94 	/*
95 	 * Data length can be less than a full block, even for blocks that are
96 	 * not the last in the file (e.g., as a result of making a hole and
97 	 * appending data). Ensure that the remainder is zeroed out.
98 	 */
99 	if (len < UBIFS_BLOCK_SIZE)
100 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
101 
102 	return 0;
103 
104 dump:
105 	ubifs_err(c, "bad data node (block %u, inode %lu)",
106 		  block, inode->i_ino);
107 	ubifs_dump_node(c, dn);
108 	return -EINVAL;
109 }
110 
111 static int do_readpage(struct page *page)
112 {
113 	void *addr;
114 	int err = 0, i;
115 	unsigned int block, beyond;
116 	struct ubifs_data_node *dn;
117 	struct inode *inode = page->mapping->host;
118 	loff_t i_size = i_size_read(inode);
119 
120 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
121 		inode->i_ino, page->index, i_size, page->flags);
122 	ubifs_assert(!PageChecked(page));
123 	ubifs_assert(!PagePrivate(page));
124 
125 	addr = kmap(page);
126 
127 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
128 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
129 	if (block >= beyond) {
130 		/* Reading beyond inode */
131 		SetPageChecked(page);
132 		memset(addr, 0, PAGE_SIZE);
133 		goto out;
134 	}
135 
136 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
137 	if (!dn) {
138 		err = -ENOMEM;
139 		goto error;
140 	}
141 
142 	i = 0;
143 	while (1) {
144 		int ret;
145 
146 		if (block >= beyond) {
147 			/* Reading beyond inode */
148 			err = -ENOENT;
149 			memset(addr, 0, UBIFS_BLOCK_SIZE);
150 		} else {
151 			ret = read_block(inode, addr, block, dn);
152 			if (ret) {
153 				err = ret;
154 				if (err != -ENOENT)
155 					break;
156 			} else if (block + 1 == beyond) {
157 				int dlen = le32_to_cpu(dn->size);
158 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
159 
160 				if (ilen && ilen < dlen)
161 					memset(addr + ilen, 0, dlen - ilen);
162 			}
163 		}
164 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
165 			break;
166 		block += 1;
167 		addr += UBIFS_BLOCK_SIZE;
168 	}
169 	if (err) {
170 		struct ubifs_info *c = inode->i_sb->s_fs_info;
171 		if (err == -ENOENT) {
172 			/* Not found, so it must be a hole */
173 			SetPageChecked(page);
174 			dbg_gen("hole");
175 			goto out_free;
176 		}
177 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
178 			  page->index, inode->i_ino, err);
179 		goto error;
180 	}
181 
182 out_free:
183 	kfree(dn);
184 out:
185 	SetPageUptodate(page);
186 	ClearPageError(page);
187 	flush_dcache_page(page);
188 	kunmap(page);
189 	return 0;
190 
191 error:
192 	kfree(dn);
193 	ClearPageUptodate(page);
194 	SetPageError(page);
195 	flush_dcache_page(page);
196 	kunmap(page);
197 	return err;
198 }
199 
200 /**
201  * release_new_page_budget - release budget of a new page.
202  * @c: UBIFS file-system description object
203  *
204  * This is a helper function which releases budget corresponding to the budget
205  * of one new page of data.
206  */
207 static void release_new_page_budget(struct ubifs_info *c)
208 {
209 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
210 
211 	ubifs_release_budget(c, &req);
212 }
213 
214 /**
215  * release_existing_page_budget - release budget of an existing page.
216  * @c: UBIFS file-system description object
217  *
218  * This is a helper function which releases budget corresponding to the budget
219  * of changing one one page of data which already exists on the flash media.
220  */
221 static void release_existing_page_budget(struct ubifs_info *c)
222 {
223 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
224 
225 	ubifs_release_budget(c, &req);
226 }
227 
228 static int write_begin_slow(struct address_space *mapping,
229 			    loff_t pos, unsigned len, struct page **pagep,
230 			    unsigned flags)
231 {
232 	struct inode *inode = mapping->host;
233 	struct ubifs_info *c = inode->i_sb->s_fs_info;
234 	pgoff_t index = pos >> PAGE_SHIFT;
235 	struct ubifs_budget_req req = { .new_page = 1 };
236 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
237 	struct page *page;
238 
239 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
240 		inode->i_ino, pos, len, inode->i_size);
241 
242 	/*
243 	 * At the slow path we have to budget before locking the page, because
244 	 * budgeting may force write-back, which would wait on locked pages and
245 	 * deadlock if we had the page locked. At this point we do not know
246 	 * anything about the page, so assume that this is a new page which is
247 	 * written to a hole. This corresponds to largest budget. Later the
248 	 * budget will be amended if this is not true.
249 	 */
250 	if (appending)
251 		/* We are appending data, budget for inode change */
252 		req.dirtied_ino = 1;
253 
254 	err = ubifs_budget_space(c, &req);
255 	if (unlikely(err))
256 		return err;
257 
258 	page = grab_cache_page_write_begin(mapping, index, flags);
259 	if (unlikely(!page)) {
260 		ubifs_release_budget(c, &req);
261 		return -ENOMEM;
262 	}
263 
264 	if (!PageUptodate(page)) {
265 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
266 			SetPageChecked(page);
267 		else {
268 			err = do_readpage(page);
269 			if (err) {
270 				unlock_page(page);
271 				put_page(page);
272 				ubifs_release_budget(c, &req);
273 				return err;
274 			}
275 		}
276 
277 		SetPageUptodate(page);
278 		ClearPageError(page);
279 	}
280 
281 	if (PagePrivate(page))
282 		/*
283 		 * The page is dirty, which means it was budgeted twice:
284 		 *   o first time the budget was allocated by the task which
285 		 *     made the page dirty and set the PG_private flag;
286 		 *   o and then we budgeted for it for the second time at the
287 		 *     very beginning of this function.
288 		 *
289 		 * So what we have to do is to release the page budget we
290 		 * allocated.
291 		 */
292 		release_new_page_budget(c);
293 	else if (!PageChecked(page))
294 		/*
295 		 * We are changing a page which already exists on the media.
296 		 * This means that changing the page does not make the amount
297 		 * of indexing information larger, and this part of the budget
298 		 * which we have already acquired may be released.
299 		 */
300 		ubifs_convert_page_budget(c);
301 
302 	if (appending) {
303 		struct ubifs_inode *ui = ubifs_inode(inode);
304 
305 		/*
306 		 * 'ubifs_write_end()' is optimized from the fast-path part of
307 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
308 		 * if data is appended.
309 		 */
310 		mutex_lock(&ui->ui_mutex);
311 		if (ui->dirty)
312 			/*
313 			 * The inode is dirty already, so we may free the
314 			 * budget we allocated.
315 			 */
316 			ubifs_release_dirty_inode_budget(c, ui);
317 	}
318 
319 	*pagep = page;
320 	return 0;
321 }
322 
323 /**
324  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
325  * @c: UBIFS file-system description object
326  * @page: page to allocate budget for
327  * @ui: UBIFS inode object the page belongs to
328  * @appending: non-zero if the page is appended
329  *
330  * This is a helper function for 'ubifs_write_begin()' which allocates budget
331  * for the operation. The budget is allocated differently depending on whether
332  * this is appending, whether the page is dirty or not, and so on. This
333  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
334  * in case of success and %-ENOSPC in case of failure.
335  */
336 static int allocate_budget(struct ubifs_info *c, struct page *page,
337 			   struct ubifs_inode *ui, int appending)
338 {
339 	struct ubifs_budget_req req = { .fast = 1 };
340 
341 	if (PagePrivate(page)) {
342 		if (!appending)
343 			/*
344 			 * The page is dirty and we are not appending, which
345 			 * means no budget is needed at all.
346 			 */
347 			return 0;
348 
349 		mutex_lock(&ui->ui_mutex);
350 		if (ui->dirty)
351 			/*
352 			 * The page is dirty and we are appending, so the inode
353 			 * has to be marked as dirty. However, it is already
354 			 * dirty, so we do not need any budget. We may return,
355 			 * but @ui->ui_mutex hast to be left locked because we
356 			 * should prevent write-back from flushing the inode
357 			 * and freeing the budget. The lock will be released in
358 			 * 'ubifs_write_end()'.
359 			 */
360 			return 0;
361 
362 		/*
363 		 * The page is dirty, we are appending, the inode is clean, so
364 		 * we need to budget the inode change.
365 		 */
366 		req.dirtied_ino = 1;
367 	} else {
368 		if (PageChecked(page))
369 			/*
370 			 * The page corresponds to a hole and does not
371 			 * exist on the media. So changing it makes
372 			 * make the amount of indexing information
373 			 * larger, and we have to budget for a new
374 			 * page.
375 			 */
376 			req.new_page = 1;
377 		else
378 			/*
379 			 * Not a hole, the change will not add any new
380 			 * indexing information, budget for page
381 			 * change.
382 			 */
383 			req.dirtied_page = 1;
384 
385 		if (appending) {
386 			mutex_lock(&ui->ui_mutex);
387 			if (!ui->dirty)
388 				/*
389 				 * The inode is clean but we will have to mark
390 				 * it as dirty because we are appending. This
391 				 * needs a budget.
392 				 */
393 				req.dirtied_ino = 1;
394 		}
395 	}
396 
397 	return ubifs_budget_space(c, &req);
398 }
399 
400 /*
401  * This function is called when a page of data is going to be written. Since
402  * the page of data will not necessarily go to the flash straight away, UBIFS
403  * has to reserve space on the media for it, which is done by means of
404  * budgeting.
405  *
406  * This is the hot-path of the file-system and we are trying to optimize it as
407  * much as possible. For this reasons it is split on 2 parts - slow and fast.
408  *
409  * There many budgeting cases:
410  *     o a new page is appended - we have to budget for a new page and for
411  *       changing the inode; however, if the inode is already dirty, there is
412  *       no need to budget for it;
413  *     o an existing clean page is changed - we have budget for it; if the page
414  *       does not exist on the media (a hole), we have to budget for a new
415  *       page; otherwise, we may budget for changing an existing page; the
416  *       difference between these cases is that changing an existing page does
417  *       not introduce anything new to the FS indexing information, so it does
418  *       not grow, and smaller budget is acquired in this case;
419  *     o an existing dirty page is changed - no need to budget at all, because
420  *       the page budget has been acquired by earlier, when the page has been
421  *       marked dirty.
422  *
423  * UBIFS budgeting sub-system may force write-back if it thinks there is no
424  * space to reserve. This imposes some locking restrictions and makes it
425  * impossible to take into account the above cases, and makes it impossible to
426  * optimize budgeting.
427  *
428  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
429  * there is a plenty of flash space and the budget will be acquired quickly,
430  * without forcing write-back. The slow path does not make this assumption.
431  */
432 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
433 			     loff_t pos, unsigned len, unsigned flags,
434 			     struct page **pagep, void **fsdata)
435 {
436 	struct inode *inode = mapping->host;
437 	struct ubifs_info *c = inode->i_sb->s_fs_info;
438 	struct ubifs_inode *ui = ubifs_inode(inode);
439 	pgoff_t index = pos >> PAGE_SHIFT;
440 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
441 	int skipped_read = 0;
442 	struct page *page;
443 
444 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
445 	ubifs_assert(!c->ro_media && !c->ro_mount);
446 
447 	if (unlikely(c->ro_error))
448 		return -EROFS;
449 
450 	/* Try out the fast-path part first */
451 	page = grab_cache_page_write_begin(mapping, index, flags);
452 	if (unlikely(!page))
453 		return -ENOMEM;
454 
455 	if (!PageUptodate(page)) {
456 		/* The page is not loaded from the flash */
457 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
458 			/*
459 			 * We change whole page so no need to load it. But we
460 			 * do not know whether this page exists on the media or
461 			 * not, so we assume the latter because it requires
462 			 * larger budget. The assumption is that it is better
463 			 * to budget a bit more than to read the page from the
464 			 * media. Thus, we are setting the @PG_checked flag
465 			 * here.
466 			 */
467 			SetPageChecked(page);
468 			skipped_read = 1;
469 		} else {
470 			err = do_readpage(page);
471 			if (err) {
472 				unlock_page(page);
473 				put_page(page);
474 				return err;
475 			}
476 		}
477 
478 		SetPageUptodate(page);
479 		ClearPageError(page);
480 	}
481 
482 	err = allocate_budget(c, page, ui, appending);
483 	if (unlikely(err)) {
484 		ubifs_assert(err == -ENOSPC);
485 		/*
486 		 * If we skipped reading the page because we were going to
487 		 * write all of it, then it is not up to date.
488 		 */
489 		if (skipped_read) {
490 			ClearPageChecked(page);
491 			ClearPageUptodate(page);
492 		}
493 		/*
494 		 * Budgeting failed which means it would have to force
495 		 * write-back but didn't, because we set the @fast flag in the
496 		 * request. Write-back cannot be done now, while we have the
497 		 * page locked, because it would deadlock. Unlock and free
498 		 * everything and fall-back to slow-path.
499 		 */
500 		if (appending) {
501 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
502 			mutex_unlock(&ui->ui_mutex);
503 		}
504 		unlock_page(page);
505 		put_page(page);
506 
507 		return write_begin_slow(mapping, pos, len, pagep, flags);
508 	}
509 
510 	/*
511 	 * Whee, we acquired budgeting quickly - without involving
512 	 * garbage-collection, committing or forcing write-back. We return
513 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
514 	 * otherwise. This is an optimization (slightly hacky though).
515 	 */
516 	*pagep = page;
517 	return 0;
518 
519 }
520 
521 /**
522  * cancel_budget - cancel budget.
523  * @c: UBIFS file-system description object
524  * @page: page to cancel budget for
525  * @ui: UBIFS inode object the page belongs to
526  * @appending: non-zero if the page is appended
527  *
528  * This is a helper function for a page write operation. It unlocks the
529  * @ui->ui_mutex in case of appending.
530  */
531 static void cancel_budget(struct ubifs_info *c, struct page *page,
532 			  struct ubifs_inode *ui, int appending)
533 {
534 	if (appending) {
535 		if (!ui->dirty)
536 			ubifs_release_dirty_inode_budget(c, ui);
537 		mutex_unlock(&ui->ui_mutex);
538 	}
539 	if (!PagePrivate(page)) {
540 		if (PageChecked(page))
541 			release_new_page_budget(c);
542 		else
543 			release_existing_page_budget(c);
544 	}
545 }
546 
547 static int ubifs_write_end(struct file *file, struct address_space *mapping,
548 			   loff_t pos, unsigned len, unsigned copied,
549 			   struct page *page, void *fsdata)
550 {
551 	struct inode *inode = mapping->host;
552 	struct ubifs_inode *ui = ubifs_inode(inode);
553 	struct ubifs_info *c = inode->i_sb->s_fs_info;
554 	loff_t end_pos = pos + len;
555 	int appending = !!(end_pos > inode->i_size);
556 
557 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
558 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
559 
560 	if (unlikely(copied < len && len == PAGE_SIZE)) {
561 		/*
562 		 * VFS copied less data to the page that it intended and
563 		 * declared in its '->write_begin()' call via the @len
564 		 * argument. If the page was not up-to-date, and @len was
565 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
566 		 * not load it from the media (for optimization reasons). This
567 		 * means that part of the page contains garbage. So read the
568 		 * page now.
569 		 */
570 		dbg_gen("copied %d instead of %d, read page and repeat",
571 			copied, len);
572 		cancel_budget(c, page, ui, appending);
573 		ClearPageChecked(page);
574 
575 		/*
576 		 * Return 0 to force VFS to repeat the whole operation, or the
577 		 * error code if 'do_readpage()' fails.
578 		 */
579 		copied = do_readpage(page);
580 		goto out;
581 	}
582 
583 	if (!PagePrivate(page)) {
584 		SetPagePrivate(page);
585 		atomic_long_inc(&c->dirty_pg_cnt);
586 		__set_page_dirty_nobuffers(page);
587 	}
588 
589 	if (appending) {
590 		i_size_write(inode, end_pos);
591 		ui->ui_size = end_pos;
592 		/*
593 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
594 		 * inode has dirty pages), this has been done in
595 		 * '__set_page_dirty_nobuffers()'.
596 		 */
597 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
598 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
599 		mutex_unlock(&ui->ui_mutex);
600 	}
601 
602 out:
603 	unlock_page(page);
604 	put_page(page);
605 	return copied;
606 }
607 
608 /**
609  * populate_page - copy data nodes into a page for bulk-read.
610  * @c: UBIFS file-system description object
611  * @page: page
612  * @bu: bulk-read information
613  * @n: next zbranch slot
614  *
615  * This function returns %0 on success and a negative error code on failure.
616  */
617 static int populate_page(struct ubifs_info *c, struct page *page,
618 			 struct bu_info *bu, int *n)
619 {
620 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
621 	struct inode *inode = page->mapping->host;
622 	loff_t i_size = i_size_read(inode);
623 	unsigned int page_block;
624 	void *addr, *zaddr;
625 	pgoff_t end_index;
626 
627 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
628 		inode->i_ino, page->index, i_size, page->flags);
629 
630 	addr = zaddr = kmap(page);
631 
632 	end_index = (i_size - 1) >> PAGE_SHIFT;
633 	if (!i_size || page->index > end_index) {
634 		hole = 1;
635 		memset(addr, 0, PAGE_SIZE);
636 		goto out_hole;
637 	}
638 
639 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
640 	while (1) {
641 		int err, len, out_len, dlen;
642 
643 		if (nn >= bu->cnt) {
644 			hole = 1;
645 			memset(addr, 0, UBIFS_BLOCK_SIZE);
646 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
647 			struct ubifs_data_node *dn;
648 
649 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
650 
651 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
652 				     ubifs_inode(inode)->creat_sqnum);
653 
654 			len = le32_to_cpu(dn->size);
655 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
656 				goto out_err;
657 
658 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
659 			out_len = UBIFS_BLOCK_SIZE;
660 
661 			if (ubifs_crypt_is_encrypted(inode)) {
662 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
663 				if (err)
664 					goto out_err;
665 			}
666 
667 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
668 					       le16_to_cpu(dn->compr_type));
669 			if (err || len != out_len)
670 				goto out_err;
671 
672 			if (len < UBIFS_BLOCK_SIZE)
673 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
674 
675 			nn += 1;
676 			read = (i << UBIFS_BLOCK_SHIFT) + len;
677 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
678 			nn += 1;
679 			continue;
680 		} else {
681 			hole = 1;
682 			memset(addr, 0, UBIFS_BLOCK_SIZE);
683 		}
684 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
685 			break;
686 		addr += UBIFS_BLOCK_SIZE;
687 		page_block += 1;
688 	}
689 
690 	if (end_index == page->index) {
691 		int len = i_size & (PAGE_SIZE - 1);
692 
693 		if (len && len < read)
694 			memset(zaddr + len, 0, read - len);
695 	}
696 
697 out_hole:
698 	if (hole) {
699 		SetPageChecked(page);
700 		dbg_gen("hole");
701 	}
702 
703 	SetPageUptodate(page);
704 	ClearPageError(page);
705 	flush_dcache_page(page);
706 	kunmap(page);
707 	*n = nn;
708 	return 0;
709 
710 out_err:
711 	ClearPageUptodate(page);
712 	SetPageError(page);
713 	flush_dcache_page(page);
714 	kunmap(page);
715 	ubifs_err(c, "bad data node (block %u, inode %lu)",
716 		  page_block, inode->i_ino);
717 	return -EINVAL;
718 }
719 
720 /**
721  * ubifs_do_bulk_read - do bulk-read.
722  * @c: UBIFS file-system description object
723  * @bu: bulk-read information
724  * @page1: first page to read
725  *
726  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
727  */
728 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
729 			      struct page *page1)
730 {
731 	pgoff_t offset = page1->index, end_index;
732 	struct address_space *mapping = page1->mapping;
733 	struct inode *inode = mapping->host;
734 	struct ubifs_inode *ui = ubifs_inode(inode);
735 	int err, page_idx, page_cnt, ret = 0, n = 0;
736 	int allocate = bu->buf ? 0 : 1;
737 	loff_t isize;
738 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
739 
740 	err = ubifs_tnc_get_bu_keys(c, bu);
741 	if (err)
742 		goto out_warn;
743 
744 	if (bu->eof) {
745 		/* Turn off bulk-read at the end of the file */
746 		ui->read_in_a_row = 1;
747 		ui->bulk_read = 0;
748 	}
749 
750 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
751 	if (!page_cnt) {
752 		/*
753 		 * This happens when there are multiple blocks per page and the
754 		 * blocks for the first page we are looking for, are not
755 		 * together. If all the pages were like this, bulk-read would
756 		 * reduce performance, so we turn it off for a while.
757 		 */
758 		goto out_bu_off;
759 	}
760 
761 	if (bu->cnt) {
762 		if (allocate) {
763 			/*
764 			 * Allocate bulk-read buffer depending on how many data
765 			 * nodes we are going to read.
766 			 */
767 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
768 				      bu->zbranch[bu->cnt - 1].len -
769 				      bu->zbranch[0].offs;
770 			ubifs_assert(bu->buf_len > 0);
771 			ubifs_assert(bu->buf_len <= c->leb_size);
772 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
773 			if (!bu->buf)
774 				goto out_bu_off;
775 		}
776 
777 		err = ubifs_tnc_bulk_read(c, bu);
778 		if (err)
779 			goto out_warn;
780 	}
781 
782 	err = populate_page(c, page1, bu, &n);
783 	if (err)
784 		goto out_warn;
785 
786 	unlock_page(page1);
787 	ret = 1;
788 
789 	isize = i_size_read(inode);
790 	if (isize == 0)
791 		goto out_free;
792 	end_index = ((isize - 1) >> PAGE_SHIFT);
793 
794 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
795 		pgoff_t page_offset = offset + page_idx;
796 		struct page *page;
797 
798 		if (page_offset > end_index)
799 			break;
800 		page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
801 		if (!page)
802 			break;
803 		if (!PageUptodate(page))
804 			err = populate_page(c, page, bu, &n);
805 		unlock_page(page);
806 		put_page(page);
807 		if (err)
808 			break;
809 	}
810 
811 	ui->last_page_read = offset + page_idx - 1;
812 
813 out_free:
814 	if (allocate)
815 		kfree(bu->buf);
816 	return ret;
817 
818 out_warn:
819 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
820 	goto out_free;
821 
822 out_bu_off:
823 	ui->read_in_a_row = ui->bulk_read = 0;
824 	goto out_free;
825 }
826 
827 /**
828  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
829  * @page: page from which to start bulk-read.
830  *
831  * Some flash media are capable of reading sequentially at faster rates. UBIFS
832  * bulk-read facility is designed to take advantage of that, by reading in one
833  * go consecutive data nodes that are also located consecutively in the same
834  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
835  */
836 static int ubifs_bulk_read(struct page *page)
837 {
838 	struct inode *inode = page->mapping->host;
839 	struct ubifs_info *c = inode->i_sb->s_fs_info;
840 	struct ubifs_inode *ui = ubifs_inode(inode);
841 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
842 	struct bu_info *bu;
843 	int err = 0, allocated = 0;
844 
845 	ui->last_page_read = index;
846 	if (!c->bulk_read)
847 		return 0;
848 
849 	/*
850 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
851 	 * so don't bother if we cannot lock the mutex.
852 	 */
853 	if (!mutex_trylock(&ui->ui_mutex))
854 		return 0;
855 
856 	if (index != last_page_read + 1) {
857 		/* Turn off bulk-read if we stop reading sequentially */
858 		ui->read_in_a_row = 1;
859 		if (ui->bulk_read)
860 			ui->bulk_read = 0;
861 		goto out_unlock;
862 	}
863 
864 	if (!ui->bulk_read) {
865 		ui->read_in_a_row += 1;
866 		if (ui->read_in_a_row < 3)
867 			goto out_unlock;
868 		/* Three reads in a row, so switch on bulk-read */
869 		ui->bulk_read = 1;
870 	}
871 
872 	/*
873 	 * If possible, try to use pre-allocated bulk-read information, which
874 	 * is protected by @c->bu_mutex.
875 	 */
876 	if (mutex_trylock(&c->bu_mutex))
877 		bu = &c->bu;
878 	else {
879 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
880 		if (!bu)
881 			goto out_unlock;
882 
883 		bu->buf = NULL;
884 		allocated = 1;
885 	}
886 
887 	bu->buf_len = c->max_bu_buf_len;
888 	data_key_init(c, &bu->key, inode->i_ino,
889 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
890 	err = ubifs_do_bulk_read(c, bu, page);
891 
892 	if (!allocated)
893 		mutex_unlock(&c->bu_mutex);
894 	else
895 		kfree(bu);
896 
897 out_unlock:
898 	mutex_unlock(&ui->ui_mutex);
899 	return err;
900 }
901 
902 static int ubifs_readpage(struct file *file, struct page *page)
903 {
904 	if (ubifs_bulk_read(page))
905 		return 0;
906 	do_readpage(page);
907 	unlock_page(page);
908 	return 0;
909 }
910 
911 static int do_writepage(struct page *page, int len)
912 {
913 	int err = 0, i, blen;
914 	unsigned int block;
915 	void *addr;
916 	union ubifs_key key;
917 	struct inode *inode = page->mapping->host;
918 	struct ubifs_info *c = inode->i_sb->s_fs_info;
919 
920 #ifdef UBIFS_DEBUG
921 	struct ubifs_inode *ui = ubifs_inode(inode);
922 	spin_lock(&ui->ui_lock);
923 	ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
924 	spin_unlock(&ui->ui_lock);
925 #endif
926 
927 	/* Update radix tree tags */
928 	set_page_writeback(page);
929 
930 	addr = kmap(page);
931 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
932 	i = 0;
933 	while (len) {
934 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
935 		data_key_init(c, &key, inode->i_ino, block);
936 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
937 		if (err)
938 			break;
939 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
940 			break;
941 		block += 1;
942 		addr += blen;
943 		len -= blen;
944 	}
945 	if (err) {
946 		SetPageError(page);
947 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
948 			  page->index, inode->i_ino, err);
949 		ubifs_ro_mode(c, err);
950 	}
951 
952 	ubifs_assert(PagePrivate(page));
953 	if (PageChecked(page))
954 		release_new_page_budget(c);
955 	else
956 		release_existing_page_budget(c);
957 
958 	atomic_long_dec(&c->dirty_pg_cnt);
959 	ClearPagePrivate(page);
960 	ClearPageChecked(page);
961 
962 	kunmap(page);
963 	unlock_page(page);
964 	end_page_writeback(page);
965 	return err;
966 }
967 
968 /*
969  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
970  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
971  * situation when a we have an inode with size 0, then a megabyte of data is
972  * appended to the inode, then write-back starts and flushes some amount of the
973  * dirty pages, the journal becomes full, commit happens and finishes, and then
974  * an unclean reboot happens. When the file system is mounted next time, the
975  * inode size would still be 0, but there would be many pages which are beyond
976  * the inode size, they would be indexed and consume flash space. Because the
977  * journal has been committed, the replay would not be able to detect this
978  * situation and correct the inode size. This means UBIFS would have to scan
979  * whole index and correct all inode sizes, which is long an unacceptable.
980  *
981  * To prevent situations like this, UBIFS writes pages back only if they are
982  * within the last synchronized inode size, i.e. the size which has been
983  * written to the flash media last time. Otherwise, UBIFS forces inode
984  * write-back, thus making sure the on-flash inode contains current inode size,
985  * and then keeps writing pages back.
986  *
987  * Some locking issues explanation. 'ubifs_writepage()' first is called with
988  * the page locked, and it locks @ui_mutex. However, write-back does take inode
989  * @i_mutex, which means other VFS operations may be run on this inode at the
990  * same time. And the problematic one is truncation to smaller size, from where
991  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
992  * then drops the truncated pages. And while dropping the pages, it takes the
993  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
994  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
995  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
996  *
997  * XXX(truncate): with the new truncate sequence this is not true anymore,
998  * and the calls to truncate_setsize can be move around freely.  They should
999  * be moved to the very end of the truncate sequence.
1000  *
1001  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002  * inode size. How do we do this if @inode->i_size may became smaller while we
1003  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005  * internally and updates it under @ui_mutex.
1006  *
1007  * Q: why we do not worry that if we race with truncation, we may end up with a
1008  * situation when the inode is truncated while we are in the middle of
1009  * 'do_writepage()', so we do write beyond inode size?
1010  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011  * on the page lock and it would not write the truncated inode node to the
1012  * journal before we have finished.
1013  */
1014 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1015 {
1016 	struct inode *inode = page->mapping->host;
1017 	struct ubifs_inode *ui = ubifs_inode(inode);
1018 	loff_t i_size =  i_size_read(inode), synced_i_size;
1019 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1020 	int err, len = i_size & (PAGE_SIZE - 1);
1021 	void *kaddr;
1022 
1023 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024 		inode->i_ino, page->index, page->flags);
1025 	ubifs_assert(PagePrivate(page));
1026 
1027 	/* Is the page fully outside @i_size? (truncate in progress) */
1028 	if (page->index > end_index || (page->index == end_index && !len)) {
1029 		err = 0;
1030 		goto out_unlock;
1031 	}
1032 
1033 	spin_lock(&ui->ui_lock);
1034 	synced_i_size = ui->synced_i_size;
1035 	spin_unlock(&ui->ui_lock);
1036 
1037 	/* Is the page fully inside @i_size? */
1038 	if (page->index < end_index) {
1039 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1040 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1041 			if (err)
1042 				goto out_unlock;
1043 			/*
1044 			 * The inode has been written, but the write-buffer has
1045 			 * not been synchronized, so in case of an unclean
1046 			 * reboot we may end up with some pages beyond inode
1047 			 * size, but they would be in the journal (because
1048 			 * commit flushes write buffers) and recovery would deal
1049 			 * with this.
1050 			 */
1051 		}
1052 		return do_writepage(page, PAGE_SIZE);
1053 	}
1054 
1055 	/*
1056 	 * The page straddles @i_size. It must be zeroed out on each and every
1057 	 * writepage invocation because it may be mmapped. "A file is mapped
1058 	 * in multiples of the page size. For a file that is not a multiple of
1059 	 * the page size, the remaining memory is zeroed when mapped, and
1060 	 * writes to that region are not written out to the file."
1061 	 */
1062 	kaddr = kmap_atomic(page);
1063 	memset(kaddr + len, 0, PAGE_SIZE - len);
1064 	flush_dcache_page(page);
1065 	kunmap_atomic(kaddr);
1066 
1067 	if (i_size > synced_i_size) {
1068 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1069 		if (err)
1070 			goto out_unlock;
1071 	}
1072 
1073 	return do_writepage(page, len);
1074 
1075 out_unlock:
1076 	unlock_page(page);
1077 	return err;
1078 }
1079 
1080 /**
1081  * do_attr_changes - change inode attributes.
1082  * @inode: inode to change attributes for
1083  * @attr: describes attributes to change
1084  */
1085 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1086 {
1087 	if (attr->ia_valid & ATTR_UID)
1088 		inode->i_uid = attr->ia_uid;
1089 	if (attr->ia_valid & ATTR_GID)
1090 		inode->i_gid = attr->ia_gid;
1091 	if (attr->ia_valid & ATTR_ATIME)
1092 		inode->i_atime = timespec_trunc(attr->ia_atime,
1093 						inode->i_sb->s_time_gran);
1094 	if (attr->ia_valid & ATTR_MTIME)
1095 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1096 						inode->i_sb->s_time_gran);
1097 	if (attr->ia_valid & ATTR_CTIME)
1098 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1099 						inode->i_sb->s_time_gran);
1100 	if (attr->ia_valid & ATTR_MODE) {
1101 		umode_t mode = attr->ia_mode;
1102 
1103 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104 			mode &= ~S_ISGID;
1105 		inode->i_mode = mode;
1106 	}
1107 }
1108 
1109 /**
1110  * do_truncation - truncate an inode.
1111  * @c: UBIFS file-system description object
1112  * @inode: inode to truncate
1113  * @attr: inode attribute changes description
1114  *
1115  * This function implements VFS '->setattr()' call when the inode is truncated
1116  * to a smaller size. Returns zero in case of success and a negative error code
1117  * in case of failure.
1118  */
1119 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120 			 const struct iattr *attr)
1121 {
1122 	int err;
1123 	struct ubifs_budget_req req;
1124 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126 	struct ubifs_inode *ui = ubifs_inode(inode);
1127 
1128 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1130 
1131 	/*
1132 	 * If this is truncation to a smaller size, and we do not truncate on a
1133 	 * block boundary, budget for changing one data block, because the last
1134 	 * block will be re-written.
1135 	 */
1136 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137 		req.dirtied_page = 1;
1138 
1139 	req.dirtied_ino = 1;
1140 	/* A funny way to budget for truncation node */
1141 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142 	err = ubifs_budget_space(c, &req);
1143 	if (err) {
1144 		/*
1145 		 * Treat truncations to zero as deletion and always allow them,
1146 		 * just like we do for '->unlink()'.
1147 		 */
1148 		if (new_size || err != -ENOSPC)
1149 			return err;
1150 		budgeted = 0;
1151 	}
1152 
1153 	truncate_setsize(inode, new_size);
1154 
1155 	if (offset) {
1156 		pgoff_t index = new_size >> PAGE_SHIFT;
1157 		struct page *page;
1158 
1159 		page = find_lock_page(inode->i_mapping, index);
1160 		if (page) {
1161 			if (PageDirty(page)) {
1162 				/*
1163 				 * 'ubifs_jnl_truncate()' will try to truncate
1164 				 * the last data node, but it contains
1165 				 * out-of-date data because the page is dirty.
1166 				 * Write the page now, so that
1167 				 * 'ubifs_jnl_truncate()' will see an already
1168 				 * truncated (and up to date) data node.
1169 				 */
1170 				ubifs_assert(PagePrivate(page));
1171 
1172 				clear_page_dirty_for_io(page);
1173 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174 					offset = new_size &
1175 						 (PAGE_SIZE - 1);
1176 				err = do_writepage(page, offset);
1177 				put_page(page);
1178 				if (err)
1179 					goto out_budg;
1180 				/*
1181 				 * We could now tell 'ubifs_jnl_truncate()' not
1182 				 * to read the last block.
1183 				 */
1184 			} else {
1185 				/*
1186 				 * We could 'kmap()' the page and pass the data
1187 				 * to 'ubifs_jnl_truncate()' to save it from
1188 				 * having to read it.
1189 				 */
1190 				unlock_page(page);
1191 				put_page(page);
1192 			}
1193 		}
1194 	}
1195 
1196 	mutex_lock(&ui->ui_mutex);
1197 	ui->ui_size = inode->i_size;
1198 	/* Truncation changes inode [mc]time */
1199 	inode->i_mtime = inode->i_ctime = current_time(inode);
1200 	/* Other attributes may be changed at the same time as well */
1201 	do_attr_changes(inode, attr);
1202 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203 	mutex_unlock(&ui->ui_mutex);
1204 
1205 out_budg:
1206 	if (budgeted)
1207 		ubifs_release_budget(c, &req);
1208 	else {
1209 		c->bi.nospace = c->bi.nospace_rp = 0;
1210 		smp_wmb();
1211 	}
1212 	return err;
1213 }
1214 
1215 /**
1216  * do_setattr - change inode attributes.
1217  * @c: UBIFS file-system description object
1218  * @inode: inode to change attributes for
1219  * @attr: inode attribute changes description
1220  *
1221  * This function implements VFS '->setattr()' call for all cases except
1222  * truncations to smaller size. Returns zero in case of success and a negative
1223  * error code in case of failure.
1224  */
1225 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1226 		      const struct iattr *attr)
1227 {
1228 	int err, release;
1229 	loff_t new_size = attr->ia_size;
1230 	struct ubifs_inode *ui = ubifs_inode(inode);
1231 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1232 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1233 
1234 	err = ubifs_budget_space(c, &req);
1235 	if (err)
1236 		return err;
1237 
1238 	if (attr->ia_valid & ATTR_SIZE) {
1239 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1240 		truncate_setsize(inode, new_size);
1241 	}
1242 
1243 	mutex_lock(&ui->ui_mutex);
1244 	if (attr->ia_valid & ATTR_SIZE) {
1245 		/* Truncation changes inode [mc]time */
1246 		inode->i_mtime = inode->i_ctime = current_time(inode);
1247 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1248 		ui->ui_size = inode->i_size;
1249 	}
1250 
1251 	do_attr_changes(inode, attr);
1252 
1253 	release = ui->dirty;
1254 	if (attr->ia_valid & ATTR_SIZE)
1255 		/*
1256 		 * Inode length changed, so we have to make sure
1257 		 * @I_DIRTY_DATASYNC is set.
1258 		 */
1259 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1260 	else
1261 		mark_inode_dirty_sync(inode);
1262 	mutex_unlock(&ui->ui_mutex);
1263 
1264 	if (release)
1265 		ubifs_release_budget(c, &req);
1266 	if (IS_SYNC(inode))
1267 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1268 	return err;
1269 }
1270 
1271 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1272 {
1273 	int err;
1274 	struct inode *inode = d_inode(dentry);
1275 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1276 
1277 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278 		inode->i_ino, inode->i_mode, attr->ia_valid);
1279 	err = setattr_prepare(dentry, attr);
1280 	if (err)
1281 		return err;
1282 
1283 	err = dbg_check_synced_i_size(c, inode);
1284 	if (err)
1285 		return err;
1286 
1287 	if (ubifs_crypt_is_encrypted(inode) && (attr->ia_valid & ATTR_SIZE)) {
1288 		err = fscrypt_get_encryption_info(inode);
1289 		if (err)
1290 			return err;
1291 		if (!fscrypt_has_encryption_key(inode))
1292 			return -ENOKEY;
1293 	}
1294 
1295 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1296 		/* Truncation to a smaller size */
1297 		err = do_truncation(c, inode, attr);
1298 	else
1299 		err = do_setattr(c, inode, attr);
1300 
1301 	return err;
1302 }
1303 
1304 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1305 				 unsigned int length)
1306 {
1307 	struct inode *inode = page->mapping->host;
1308 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1309 
1310 	ubifs_assert(PagePrivate(page));
1311 	if (offset || length < PAGE_SIZE)
1312 		/* Partial page remains dirty */
1313 		return;
1314 
1315 	if (PageChecked(page))
1316 		release_new_page_budget(c);
1317 	else
1318 		release_existing_page_budget(c);
1319 
1320 	atomic_long_dec(&c->dirty_pg_cnt);
1321 	ClearPagePrivate(page);
1322 	ClearPageChecked(page);
1323 }
1324 
1325 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1326 {
1327 	struct inode *inode = file->f_mapping->host;
1328 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1329 	int err;
1330 
1331 	dbg_gen("syncing inode %lu", inode->i_ino);
1332 
1333 	if (c->ro_mount)
1334 		/*
1335 		 * For some really strange reasons VFS does not filter out
1336 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1337 		 */
1338 		return 0;
1339 
1340 	err = file_write_and_wait_range(file, start, end);
1341 	if (err)
1342 		return err;
1343 	inode_lock(inode);
1344 
1345 	/* Synchronize the inode unless this is a 'datasync()' call. */
1346 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1347 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1348 		if (err)
1349 			goto out;
1350 	}
1351 
1352 	/*
1353 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1354 	 * them.
1355 	 */
1356 	err = ubifs_sync_wbufs_by_inode(c, inode);
1357 out:
1358 	inode_unlock(inode);
1359 	return err;
1360 }
1361 
1362 /**
1363  * mctime_update_needed - check if mtime or ctime update is needed.
1364  * @inode: the inode to do the check for
1365  * @now: current time
1366  *
1367  * This helper function checks if the inode mtime/ctime should be updated or
1368  * not. If current values of the time-stamps are within the UBIFS inode time
1369  * granularity, they are not updated. This is an optimization.
1370  */
1371 static inline int mctime_update_needed(const struct inode *inode,
1372 				       const struct timespec *now)
1373 {
1374 	if (!timespec_equal(&inode->i_mtime, now) ||
1375 	    !timespec_equal(&inode->i_ctime, now))
1376 		return 1;
1377 	return 0;
1378 }
1379 
1380 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1381 /**
1382  * ubifs_update_time - update time of inode.
1383  * @inode: inode to update
1384  *
1385  * This function updates time of the inode.
1386  */
1387 int ubifs_update_time(struct inode *inode, struct timespec *time,
1388 			     int flags)
1389 {
1390 	struct ubifs_inode *ui = ubifs_inode(inode);
1391 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1392 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1393 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1394 	int iflags = I_DIRTY_TIME;
1395 	int err, release;
1396 
1397 	err = ubifs_budget_space(c, &req);
1398 	if (err)
1399 		return err;
1400 
1401 	mutex_lock(&ui->ui_mutex);
1402 	if (flags & S_ATIME)
1403 		inode->i_atime = *time;
1404 	if (flags & S_CTIME)
1405 		inode->i_ctime = *time;
1406 	if (flags & S_MTIME)
1407 		inode->i_mtime = *time;
1408 
1409 	if (!(inode->i_sb->s_flags & MS_LAZYTIME))
1410 		iflags |= I_DIRTY_SYNC;
1411 
1412 	release = ui->dirty;
1413 	__mark_inode_dirty(inode, iflags);
1414 	mutex_unlock(&ui->ui_mutex);
1415 	if (release)
1416 		ubifs_release_budget(c, &req);
1417 	return 0;
1418 }
1419 #endif
1420 
1421 /**
1422  * update_mctime - update mtime and ctime of an inode.
1423  * @inode: inode to update
1424  *
1425  * This function updates mtime and ctime of the inode if it is not equivalent to
1426  * current time. Returns zero in case of success and a negative error code in
1427  * case of failure.
1428  */
1429 static int update_mctime(struct inode *inode)
1430 {
1431 	struct timespec now = current_time(inode);
1432 	struct ubifs_inode *ui = ubifs_inode(inode);
1433 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1434 
1435 	if (mctime_update_needed(inode, &now)) {
1436 		int err, release;
1437 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1438 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1439 
1440 		err = ubifs_budget_space(c, &req);
1441 		if (err)
1442 			return err;
1443 
1444 		mutex_lock(&ui->ui_mutex);
1445 		inode->i_mtime = inode->i_ctime = current_time(inode);
1446 		release = ui->dirty;
1447 		mark_inode_dirty_sync(inode);
1448 		mutex_unlock(&ui->ui_mutex);
1449 		if (release)
1450 			ubifs_release_budget(c, &req);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1457 {
1458 	int err = update_mctime(file_inode(iocb->ki_filp));
1459 	if (err)
1460 		return err;
1461 
1462 	return generic_file_write_iter(iocb, from);
1463 }
1464 
1465 static int ubifs_set_page_dirty(struct page *page)
1466 {
1467 	int ret;
1468 
1469 	ret = __set_page_dirty_nobuffers(page);
1470 	/*
1471 	 * An attempt to dirty a page without budgeting for it - should not
1472 	 * happen.
1473 	 */
1474 	ubifs_assert(ret == 0);
1475 	return ret;
1476 }
1477 
1478 #ifdef CONFIG_MIGRATION
1479 static int ubifs_migrate_page(struct address_space *mapping,
1480 		struct page *newpage, struct page *page, enum migrate_mode mode)
1481 {
1482 	int rc;
1483 
1484 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1485 	if (rc != MIGRATEPAGE_SUCCESS)
1486 		return rc;
1487 
1488 	if (PagePrivate(page)) {
1489 		ClearPagePrivate(page);
1490 		SetPagePrivate(newpage);
1491 	}
1492 
1493 	if (mode != MIGRATE_SYNC_NO_COPY)
1494 		migrate_page_copy(newpage, page);
1495 	else
1496 		migrate_page_states(newpage, page);
1497 	return MIGRATEPAGE_SUCCESS;
1498 }
1499 #endif
1500 
1501 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1502 {
1503 	/*
1504 	 * An attempt to release a dirty page without budgeting for it - should
1505 	 * not happen.
1506 	 */
1507 	if (PageWriteback(page))
1508 		return 0;
1509 	ubifs_assert(PagePrivate(page));
1510 	ubifs_assert(0);
1511 	ClearPagePrivate(page);
1512 	ClearPageChecked(page);
1513 	return 1;
1514 }
1515 
1516 /*
1517  * mmap()d file has taken write protection fault and is being made writable.
1518  * UBIFS must ensure page is budgeted for.
1519  */
1520 static int ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1521 {
1522 	struct page *page = vmf->page;
1523 	struct inode *inode = file_inode(vmf->vma->vm_file);
1524 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1525 	struct timespec now = current_time(inode);
1526 	struct ubifs_budget_req req = { .new_page = 1 };
1527 	int err, update_time;
1528 
1529 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1530 		i_size_read(inode));
1531 	ubifs_assert(!c->ro_media && !c->ro_mount);
1532 
1533 	if (unlikely(c->ro_error))
1534 		return VM_FAULT_SIGBUS; /* -EROFS */
1535 
1536 	/*
1537 	 * We have not locked @page so far so we may budget for changing the
1538 	 * page. Note, we cannot do this after we locked the page, because
1539 	 * budgeting may cause write-back which would cause deadlock.
1540 	 *
1541 	 * At the moment we do not know whether the page is dirty or not, so we
1542 	 * assume that it is not and budget for a new page. We could look at
1543 	 * the @PG_private flag and figure this out, but we may race with write
1544 	 * back and the page state may change by the time we lock it, so this
1545 	 * would need additional care. We do not bother with this at the
1546 	 * moment, although it might be good idea to do. Instead, we allocate
1547 	 * budget for a new page and amend it later on if the page was in fact
1548 	 * dirty.
1549 	 *
1550 	 * The budgeting-related logic of this function is similar to what we
1551 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1552 	 * for more comments.
1553 	 */
1554 	update_time = mctime_update_needed(inode, &now);
1555 	if (update_time)
1556 		/*
1557 		 * We have to change inode time stamp which requires extra
1558 		 * budgeting.
1559 		 */
1560 		req.dirtied_ino = 1;
1561 
1562 	err = ubifs_budget_space(c, &req);
1563 	if (unlikely(err)) {
1564 		if (err == -ENOSPC)
1565 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1566 				   inode->i_ino);
1567 		return VM_FAULT_SIGBUS;
1568 	}
1569 
1570 	lock_page(page);
1571 	if (unlikely(page->mapping != inode->i_mapping ||
1572 		     page_offset(page) > i_size_read(inode))) {
1573 		/* Page got truncated out from underneath us */
1574 		err = -EINVAL;
1575 		goto out_unlock;
1576 	}
1577 
1578 	if (PagePrivate(page))
1579 		release_new_page_budget(c);
1580 	else {
1581 		if (!PageChecked(page))
1582 			ubifs_convert_page_budget(c);
1583 		SetPagePrivate(page);
1584 		atomic_long_inc(&c->dirty_pg_cnt);
1585 		__set_page_dirty_nobuffers(page);
1586 	}
1587 
1588 	if (update_time) {
1589 		int release;
1590 		struct ubifs_inode *ui = ubifs_inode(inode);
1591 
1592 		mutex_lock(&ui->ui_mutex);
1593 		inode->i_mtime = inode->i_ctime = current_time(inode);
1594 		release = ui->dirty;
1595 		mark_inode_dirty_sync(inode);
1596 		mutex_unlock(&ui->ui_mutex);
1597 		if (release)
1598 			ubifs_release_dirty_inode_budget(c, ui);
1599 	}
1600 
1601 	wait_for_stable_page(page);
1602 	return VM_FAULT_LOCKED;
1603 
1604 out_unlock:
1605 	unlock_page(page);
1606 	ubifs_release_budget(c, &req);
1607 	if (err)
1608 		err = VM_FAULT_SIGBUS;
1609 	return err;
1610 }
1611 
1612 static const struct vm_operations_struct ubifs_file_vm_ops = {
1613 	.fault        = filemap_fault,
1614 	.map_pages = filemap_map_pages,
1615 	.page_mkwrite = ubifs_vm_page_mkwrite,
1616 };
1617 
1618 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1619 {
1620 	int err;
1621 
1622 	err = generic_file_mmap(file, vma);
1623 	if (err)
1624 		return err;
1625 	vma->vm_ops = &ubifs_file_vm_ops;
1626 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1627 	file_accessed(file);
1628 #endif
1629 	return 0;
1630 }
1631 
1632 static int ubifs_file_open(struct inode *inode, struct file *filp)
1633 {
1634 	int ret;
1635 	struct dentry *dir;
1636 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1637 
1638 	if (ubifs_crypt_is_encrypted(inode)) {
1639 		ret = fscrypt_get_encryption_info(inode);
1640 		if (ret)
1641 			return -EACCES;
1642 		if (!fscrypt_has_encryption_key(inode))
1643 			return -ENOKEY;
1644 	}
1645 
1646 	dir = dget_parent(file_dentry(filp));
1647 	if (ubifs_crypt_is_encrypted(d_inode(dir)) &&
1648 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
1649 		ubifs_err(c, "Inconsistent encryption contexts: %lu/%lu",
1650 			  (unsigned long) d_inode(dir)->i_ino,
1651 			  (unsigned long) inode->i_ino);
1652 		dput(dir);
1653 		ubifs_ro_mode(c, -EPERM);
1654 		return -EPERM;
1655 	}
1656 	dput(dir);
1657 
1658 	return 0;
1659 }
1660 
1661 static const char *ubifs_get_link(struct dentry *dentry,
1662 					    struct inode *inode,
1663 					    struct delayed_call *done)
1664 {
1665 	int err;
1666 	struct fscrypt_symlink_data *sd;
1667 	struct ubifs_inode *ui = ubifs_inode(inode);
1668 	struct fscrypt_str cstr;
1669 	struct fscrypt_str pstr;
1670 
1671 	if (!ubifs_crypt_is_encrypted(inode))
1672 		return ui->data;
1673 
1674 	if (!dentry)
1675 		return ERR_PTR(-ECHILD);
1676 
1677 	err = fscrypt_get_encryption_info(inode);
1678 	if (err)
1679 		return ERR_PTR(err);
1680 
1681 	sd = (struct fscrypt_symlink_data *)ui->data;
1682 	cstr.name = sd->encrypted_path;
1683 	cstr.len = le16_to_cpu(sd->len);
1684 
1685 	if (cstr.len == 0)
1686 		return ERR_PTR(-ENOENT);
1687 
1688 	if ((cstr.len + sizeof(struct fscrypt_symlink_data) - 1) > ui->data_len)
1689 		return ERR_PTR(-EIO);
1690 
1691 	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
1692 	if (err)
1693 		return ERR_PTR(err);
1694 
1695 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
1696 	if (err) {
1697 		fscrypt_fname_free_buffer(&pstr);
1698 		return ERR_PTR(err);
1699 	}
1700 
1701 	pstr.name[pstr.len] = '\0';
1702 
1703 	set_delayed_call(done, kfree_link, pstr.name);
1704 	return pstr.name;
1705 }
1706 
1707 
1708 const struct address_space_operations ubifs_file_address_operations = {
1709 	.readpage       = ubifs_readpage,
1710 	.writepage      = ubifs_writepage,
1711 	.write_begin    = ubifs_write_begin,
1712 	.write_end      = ubifs_write_end,
1713 	.invalidatepage = ubifs_invalidatepage,
1714 	.set_page_dirty = ubifs_set_page_dirty,
1715 #ifdef CONFIG_MIGRATION
1716 	.migratepage	= ubifs_migrate_page,
1717 #endif
1718 	.releasepage    = ubifs_releasepage,
1719 };
1720 
1721 const struct inode_operations ubifs_file_inode_operations = {
1722 	.setattr     = ubifs_setattr,
1723 	.getattr     = ubifs_getattr,
1724 	.listxattr   = ubifs_listxattr,
1725 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1726 	.update_time = ubifs_update_time,
1727 #endif
1728 };
1729 
1730 const struct inode_operations ubifs_symlink_inode_operations = {
1731 	.get_link    = ubifs_get_link,
1732 	.setattr     = ubifs_setattr,
1733 	.getattr     = ubifs_getattr,
1734 	.listxattr   = ubifs_listxattr,
1735 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1736 	.update_time = ubifs_update_time,
1737 #endif
1738 };
1739 
1740 const struct file_operations ubifs_file_operations = {
1741 	.llseek         = generic_file_llseek,
1742 	.read_iter      = generic_file_read_iter,
1743 	.write_iter     = ubifs_write_iter,
1744 	.mmap           = ubifs_file_mmap,
1745 	.fsync          = ubifs_fsync,
1746 	.unlocked_ioctl = ubifs_ioctl,
1747 	.splice_read	= generic_file_splice_read,
1748 	.splice_write	= iter_file_splice_write,
1749 	.open		= ubifs_file_open,
1750 #ifdef CONFIG_COMPAT
1751 	.compat_ioctl   = ubifs_compat_ioctl,
1752 #endif
1753 };
1754