1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (ubifs_crypt_is_encrypted(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct page *page) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn; 105 struct inode *inode = page->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, page->index, i_size, page->flags); 111 ubifs_assert(c, !PageChecked(page)); 112 ubifs_assert(c, !PagePrivate(page)); 113 114 addr = kmap(page); 115 116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 SetPageChecked(page); 121 memset(addr, 0, PAGE_SIZE); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto error; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= UBIFS_BLOCKS_PER_PAGE) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 } 158 if (err) { 159 struct ubifs_info *c = inode->i_sb->s_fs_info; 160 if (err == -ENOENT) { 161 /* Not found, so it must be a hole */ 162 SetPageChecked(page); 163 dbg_gen("hole"); 164 goto out_free; 165 } 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 167 page->index, inode->i_ino, err); 168 goto error; 169 } 170 171 out_free: 172 kfree(dn); 173 out: 174 SetPageUptodate(page); 175 ClearPageError(page); 176 flush_dcache_page(page); 177 kunmap(page); 178 return 0; 179 180 error: 181 kfree(dn); 182 ClearPageUptodate(page); 183 SetPageError(page); 184 flush_dcache_page(page); 185 kunmap(page); 186 return err; 187 } 188 189 /** 190 * release_new_page_budget - release budget of a new page. 191 * @c: UBIFS file-system description object 192 * 193 * This is a helper function which releases budget corresponding to the budget 194 * of one new page of data. 195 */ 196 static void release_new_page_budget(struct ubifs_info *c) 197 { 198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 199 200 ubifs_release_budget(c, &req); 201 } 202 203 /** 204 * release_existing_page_budget - release budget of an existing page. 205 * @c: UBIFS file-system description object 206 * 207 * This is a helper function which releases budget corresponding to the budget 208 * of changing one one page of data which already exists on the flash media. 209 */ 210 static void release_existing_page_budget(struct ubifs_info *c) 211 { 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 213 214 ubifs_release_budget(c, &req); 215 } 216 217 static int write_begin_slow(struct address_space *mapping, 218 loff_t pos, unsigned len, struct page **pagep, 219 unsigned flags) 220 { 221 struct inode *inode = mapping->host; 222 struct ubifs_info *c = inode->i_sb->s_fs_info; 223 pgoff_t index = pos >> PAGE_SHIFT; 224 struct ubifs_budget_req req = { .new_page = 1 }; 225 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 226 struct page *page; 227 228 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 229 inode->i_ino, pos, len, inode->i_size); 230 231 /* 232 * At the slow path we have to budget before locking the page, because 233 * budgeting may force write-back, which would wait on locked pages and 234 * deadlock if we had the page locked. At this point we do not know 235 * anything about the page, so assume that this is a new page which is 236 * written to a hole. This corresponds to largest budget. Later the 237 * budget will be amended if this is not true. 238 */ 239 if (appending) 240 /* We are appending data, budget for inode change */ 241 req.dirtied_ino = 1; 242 243 err = ubifs_budget_space(c, &req); 244 if (unlikely(err)) 245 return err; 246 247 page = grab_cache_page_write_begin(mapping, index, flags); 248 if (unlikely(!page)) { 249 ubifs_release_budget(c, &req); 250 return -ENOMEM; 251 } 252 253 if (!PageUptodate(page)) { 254 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 255 SetPageChecked(page); 256 else { 257 err = do_readpage(page); 258 if (err) { 259 unlock_page(page); 260 put_page(page); 261 ubifs_release_budget(c, &req); 262 return err; 263 } 264 } 265 266 SetPageUptodate(page); 267 ClearPageError(page); 268 } 269 270 if (PagePrivate(page)) 271 /* 272 * The page is dirty, which means it was budgeted twice: 273 * o first time the budget was allocated by the task which 274 * made the page dirty and set the PG_private flag; 275 * o and then we budgeted for it for the second time at the 276 * very beginning of this function. 277 * 278 * So what we have to do is to release the page budget we 279 * allocated. 280 */ 281 release_new_page_budget(c); 282 else if (!PageChecked(page)) 283 /* 284 * We are changing a page which already exists on the media. 285 * This means that changing the page does not make the amount 286 * of indexing information larger, and this part of the budget 287 * which we have already acquired may be released. 288 */ 289 ubifs_convert_page_budget(c); 290 291 if (appending) { 292 struct ubifs_inode *ui = ubifs_inode(inode); 293 294 /* 295 * 'ubifs_write_end()' is optimized from the fast-path part of 296 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 297 * if data is appended. 298 */ 299 mutex_lock(&ui->ui_mutex); 300 if (ui->dirty) 301 /* 302 * The inode is dirty already, so we may free the 303 * budget we allocated. 304 */ 305 ubifs_release_dirty_inode_budget(c, ui); 306 } 307 308 *pagep = page; 309 return 0; 310 } 311 312 /** 313 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 314 * @c: UBIFS file-system description object 315 * @page: page to allocate budget for 316 * @ui: UBIFS inode object the page belongs to 317 * @appending: non-zero if the page is appended 318 * 319 * This is a helper function for 'ubifs_write_begin()' which allocates budget 320 * for the operation. The budget is allocated differently depending on whether 321 * this is appending, whether the page is dirty or not, and so on. This 322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 323 * in case of success and %-ENOSPC in case of failure. 324 */ 325 static int allocate_budget(struct ubifs_info *c, struct page *page, 326 struct ubifs_inode *ui, int appending) 327 { 328 struct ubifs_budget_req req = { .fast = 1 }; 329 330 if (PagePrivate(page)) { 331 if (!appending) 332 /* 333 * The page is dirty and we are not appending, which 334 * means no budget is needed at all. 335 */ 336 return 0; 337 338 mutex_lock(&ui->ui_mutex); 339 if (ui->dirty) 340 /* 341 * The page is dirty and we are appending, so the inode 342 * has to be marked as dirty. However, it is already 343 * dirty, so we do not need any budget. We may return, 344 * but @ui->ui_mutex hast to be left locked because we 345 * should prevent write-back from flushing the inode 346 * and freeing the budget. The lock will be released in 347 * 'ubifs_write_end()'. 348 */ 349 return 0; 350 351 /* 352 * The page is dirty, we are appending, the inode is clean, so 353 * we need to budget the inode change. 354 */ 355 req.dirtied_ino = 1; 356 } else { 357 if (PageChecked(page)) 358 /* 359 * The page corresponds to a hole and does not 360 * exist on the media. So changing it makes 361 * make the amount of indexing information 362 * larger, and we have to budget for a new 363 * page. 364 */ 365 req.new_page = 1; 366 else 367 /* 368 * Not a hole, the change will not add any new 369 * indexing information, budget for page 370 * change. 371 */ 372 req.dirtied_page = 1; 373 374 if (appending) { 375 mutex_lock(&ui->ui_mutex); 376 if (!ui->dirty) 377 /* 378 * The inode is clean but we will have to mark 379 * it as dirty because we are appending. This 380 * needs a budget. 381 */ 382 req.dirtied_ino = 1; 383 } 384 } 385 386 return ubifs_budget_space(c, &req); 387 } 388 389 /* 390 * This function is called when a page of data is going to be written. Since 391 * the page of data will not necessarily go to the flash straight away, UBIFS 392 * has to reserve space on the media for it, which is done by means of 393 * budgeting. 394 * 395 * This is the hot-path of the file-system and we are trying to optimize it as 396 * much as possible. For this reasons it is split on 2 parts - slow and fast. 397 * 398 * There many budgeting cases: 399 * o a new page is appended - we have to budget for a new page and for 400 * changing the inode; however, if the inode is already dirty, there is 401 * no need to budget for it; 402 * o an existing clean page is changed - we have budget for it; if the page 403 * does not exist on the media (a hole), we have to budget for a new 404 * page; otherwise, we may budget for changing an existing page; the 405 * difference between these cases is that changing an existing page does 406 * not introduce anything new to the FS indexing information, so it does 407 * not grow, and smaller budget is acquired in this case; 408 * o an existing dirty page is changed - no need to budget at all, because 409 * the page budget has been acquired by earlier, when the page has been 410 * marked dirty. 411 * 412 * UBIFS budgeting sub-system may force write-back if it thinks there is no 413 * space to reserve. This imposes some locking restrictions and makes it 414 * impossible to take into account the above cases, and makes it impossible to 415 * optimize budgeting. 416 * 417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 418 * there is a plenty of flash space and the budget will be acquired quickly, 419 * without forcing write-back. The slow path does not make this assumption. 420 */ 421 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 422 loff_t pos, unsigned len, unsigned flags, 423 struct page **pagep, void **fsdata) 424 { 425 struct inode *inode = mapping->host; 426 struct ubifs_info *c = inode->i_sb->s_fs_info; 427 struct ubifs_inode *ui = ubifs_inode(inode); 428 pgoff_t index = pos >> PAGE_SHIFT; 429 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 430 int skipped_read = 0; 431 struct page *page; 432 433 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 434 ubifs_assert(c, !c->ro_media && !c->ro_mount); 435 436 if (unlikely(c->ro_error)) 437 return -EROFS; 438 439 /* Try out the fast-path part first */ 440 page = grab_cache_page_write_begin(mapping, index, flags); 441 if (unlikely(!page)) 442 return -ENOMEM; 443 444 if (!PageUptodate(page)) { 445 /* The page is not loaded from the flash */ 446 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 447 /* 448 * We change whole page so no need to load it. But we 449 * do not know whether this page exists on the media or 450 * not, so we assume the latter because it requires 451 * larger budget. The assumption is that it is better 452 * to budget a bit more than to read the page from the 453 * media. Thus, we are setting the @PG_checked flag 454 * here. 455 */ 456 SetPageChecked(page); 457 skipped_read = 1; 458 } else { 459 err = do_readpage(page); 460 if (err) { 461 unlock_page(page); 462 put_page(page); 463 return err; 464 } 465 } 466 467 SetPageUptodate(page); 468 ClearPageError(page); 469 } 470 471 err = allocate_budget(c, page, ui, appending); 472 if (unlikely(err)) { 473 ubifs_assert(c, err == -ENOSPC); 474 /* 475 * If we skipped reading the page because we were going to 476 * write all of it, then it is not up to date. 477 */ 478 if (skipped_read) { 479 ClearPageChecked(page); 480 ClearPageUptodate(page); 481 } 482 /* 483 * Budgeting failed which means it would have to force 484 * write-back but didn't, because we set the @fast flag in the 485 * request. Write-back cannot be done now, while we have the 486 * page locked, because it would deadlock. Unlock and free 487 * everything and fall-back to slow-path. 488 */ 489 if (appending) { 490 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 491 mutex_unlock(&ui->ui_mutex); 492 } 493 unlock_page(page); 494 put_page(page); 495 496 return write_begin_slow(mapping, pos, len, pagep, flags); 497 } 498 499 /* 500 * Whee, we acquired budgeting quickly - without involving 501 * garbage-collection, committing or forcing write-back. We return 502 * with @ui->ui_mutex locked if we are appending pages, and unlocked 503 * otherwise. This is an optimization (slightly hacky though). 504 */ 505 *pagep = page; 506 return 0; 507 508 } 509 510 /** 511 * cancel_budget - cancel budget. 512 * @c: UBIFS file-system description object 513 * @page: page to cancel budget for 514 * @ui: UBIFS inode object the page belongs to 515 * @appending: non-zero if the page is appended 516 * 517 * This is a helper function for a page write operation. It unlocks the 518 * @ui->ui_mutex in case of appending. 519 */ 520 static void cancel_budget(struct ubifs_info *c, struct page *page, 521 struct ubifs_inode *ui, int appending) 522 { 523 if (appending) { 524 if (!ui->dirty) 525 ubifs_release_dirty_inode_budget(c, ui); 526 mutex_unlock(&ui->ui_mutex); 527 } 528 if (!PagePrivate(page)) { 529 if (PageChecked(page)) 530 release_new_page_budget(c); 531 else 532 release_existing_page_budget(c); 533 } 534 } 535 536 static int ubifs_write_end(struct file *file, struct address_space *mapping, 537 loff_t pos, unsigned len, unsigned copied, 538 struct page *page, void *fsdata) 539 { 540 struct inode *inode = mapping->host; 541 struct ubifs_inode *ui = ubifs_inode(inode); 542 struct ubifs_info *c = inode->i_sb->s_fs_info; 543 loff_t end_pos = pos + len; 544 int appending = !!(end_pos > inode->i_size); 545 546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 547 inode->i_ino, pos, page->index, len, copied, inode->i_size); 548 549 if (unlikely(copied < len && len == PAGE_SIZE)) { 550 /* 551 * VFS copied less data to the page that it intended and 552 * declared in its '->write_begin()' call via the @len 553 * argument. If the page was not up-to-date, and @len was 554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 555 * not load it from the media (for optimization reasons). This 556 * means that part of the page contains garbage. So read the 557 * page now. 558 */ 559 dbg_gen("copied %d instead of %d, read page and repeat", 560 copied, len); 561 cancel_budget(c, page, ui, appending); 562 ClearPageChecked(page); 563 564 /* 565 * Return 0 to force VFS to repeat the whole operation, or the 566 * error code if 'do_readpage()' fails. 567 */ 568 copied = do_readpage(page); 569 goto out; 570 } 571 572 if (!PagePrivate(page)) { 573 SetPagePrivate(page); 574 atomic_long_inc(&c->dirty_pg_cnt); 575 __set_page_dirty_nobuffers(page); 576 } 577 578 if (appending) { 579 i_size_write(inode, end_pos); 580 ui->ui_size = end_pos; 581 /* 582 * Note, we do not set @I_DIRTY_PAGES (which means that the 583 * inode has dirty pages), this has been done in 584 * '__set_page_dirty_nobuffers()'. 585 */ 586 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 587 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 588 mutex_unlock(&ui->ui_mutex); 589 } 590 591 out: 592 unlock_page(page); 593 put_page(page); 594 return copied; 595 } 596 597 /** 598 * populate_page - copy data nodes into a page for bulk-read. 599 * @c: UBIFS file-system description object 600 * @page: page 601 * @bu: bulk-read information 602 * @n: next zbranch slot 603 * 604 * This function returns %0 on success and a negative error code on failure. 605 */ 606 static int populate_page(struct ubifs_info *c, struct page *page, 607 struct bu_info *bu, int *n) 608 { 609 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 610 struct inode *inode = page->mapping->host; 611 loff_t i_size = i_size_read(inode); 612 unsigned int page_block; 613 void *addr, *zaddr; 614 pgoff_t end_index; 615 616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 617 inode->i_ino, page->index, i_size, page->flags); 618 619 addr = zaddr = kmap(page); 620 621 end_index = (i_size - 1) >> PAGE_SHIFT; 622 if (!i_size || page->index > end_index) { 623 hole = 1; 624 memset(addr, 0, PAGE_SIZE); 625 goto out_hole; 626 } 627 628 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 629 while (1) { 630 int err, len, out_len, dlen; 631 632 if (nn >= bu->cnt) { 633 hole = 1; 634 memset(addr, 0, UBIFS_BLOCK_SIZE); 635 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 636 struct ubifs_data_node *dn; 637 638 dn = bu->buf + (bu->zbranch[nn].offs - offs); 639 640 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 641 ubifs_inode(inode)->creat_sqnum); 642 643 len = le32_to_cpu(dn->size); 644 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 645 goto out_err; 646 647 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 648 out_len = UBIFS_BLOCK_SIZE; 649 650 if (ubifs_crypt_is_encrypted(inode)) { 651 err = ubifs_decrypt(inode, dn, &dlen, page_block); 652 if (err) 653 goto out_err; 654 } 655 656 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 657 le16_to_cpu(dn->compr_type)); 658 if (err || len != out_len) 659 goto out_err; 660 661 if (len < UBIFS_BLOCK_SIZE) 662 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 663 664 nn += 1; 665 read = (i << UBIFS_BLOCK_SHIFT) + len; 666 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 667 nn += 1; 668 continue; 669 } else { 670 hole = 1; 671 memset(addr, 0, UBIFS_BLOCK_SIZE); 672 } 673 if (++i >= UBIFS_BLOCKS_PER_PAGE) 674 break; 675 addr += UBIFS_BLOCK_SIZE; 676 page_block += 1; 677 } 678 679 if (end_index == page->index) { 680 int len = i_size & (PAGE_SIZE - 1); 681 682 if (len && len < read) 683 memset(zaddr + len, 0, read - len); 684 } 685 686 out_hole: 687 if (hole) { 688 SetPageChecked(page); 689 dbg_gen("hole"); 690 } 691 692 SetPageUptodate(page); 693 ClearPageError(page); 694 flush_dcache_page(page); 695 kunmap(page); 696 *n = nn; 697 return 0; 698 699 out_err: 700 ClearPageUptodate(page); 701 SetPageError(page); 702 flush_dcache_page(page); 703 kunmap(page); 704 ubifs_err(c, "bad data node (block %u, inode %lu)", 705 page_block, inode->i_ino); 706 return -EINVAL; 707 } 708 709 /** 710 * ubifs_do_bulk_read - do bulk-read. 711 * @c: UBIFS file-system description object 712 * @bu: bulk-read information 713 * @page1: first page to read 714 * 715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 716 */ 717 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 718 struct page *page1) 719 { 720 pgoff_t offset = page1->index, end_index; 721 struct address_space *mapping = page1->mapping; 722 struct inode *inode = mapping->host; 723 struct ubifs_inode *ui = ubifs_inode(inode); 724 int err, page_idx, page_cnt, ret = 0, n = 0; 725 int allocate = bu->buf ? 0 : 1; 726 loff_t isize; 727 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 728 729 err = ubifs_tnc_get_bu_keys(c, bu); 730 if (err) 731 goto out_warn; 732 733 if (bu->eof) { 734 /* Turn off bulk-read at the end of the file */ 735 ui->read_in_a_row = 1; 736 ui->bulk_read = 0; 737 } 738 739 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 740 if (!page_cnt) { 741 /* 742 * This happens when there are multiple blocks per page and the 743 * blocks for the first page we are looking for, are not 744 * together. If all the pages were like this, bulk-read would 745 * reduce performance, so we turn it off for a while. 746 */ 747 goto out_bu_off; 748 } 749 750 if (bu->cnt) { 751 if (allocate) { 752 /* 753 * Allocate bulk-read buffer depending on how many data 754 * nodes we are going to read. 755 */ 756 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 757 bu->zbranch[bu->cnt - 1].len - 758 bu->zbranch[0].offs; 759 ubifs_assert(c, bu->buf_len > 0); 760 ubifs_assert(c, bu->buf_len <= c->leb_size); 761 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 762 if (!bu->buf) 763 goto out_bu_off; 764 } 765 766 err = ubifs_tnc_bulk_read(c, bu); 767 if (err) 768 goto out_warn; 769 } 770 771 err = populate_page(c, page1, bu, &n); 772 if (err) 773 goto out_warn; 774 775 unlock_page(page1); 776 ret = 1; 777 778 isize = i_size_read(inode); 779 if (isize == 0) 780 goto out_free; 781 end_index = ((isize - 1) >> PAGE_SHIFT); 782 783 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 784 pgoff_t page_offset = offset + page_idx; 785 struct page *page; 786 787 if (page_offset > end_index) 788 break; 789 page = find_or_create_page(mapping, page_offset, ra_gfp_mask); 790 if (!page) 791 break; 792 if (!PageUptodate(page)) 793 err = populate_page(c, page, bu, &n); 794 unlock_page(page); 795 put_page(page); 796 if (err) 797 break; 798 } 799 800 ui->last_page_read = offset + page_idx - 1; 801 802 out_free: 803 if (allocate) 804 kfree(bu->buf); 805 return ret; 806 807 out_warn: 808 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 809 goto out_free; 810 811 out_bu_off: 812 ui->read_in_a_row = ui->bulk_read = 0; 813 goto out_free; 814 } 815 816 /** 817 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 818 * @page: page from which to start bulk-read. 819 * 820 * Some flash media are capable of reading sequentially at faster rates. UBIFS 821 * bulk-read facility is designed to take advantage of that, by reading in one 822 * go consecutive data nodes that are also located consecutively in the same 823 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 824 */ 825 static int ubifs_bulk_read(struct page *page) 826 { 827 struct inode *inode = page->mapping->host; 828 struct ubifs_info *c = inode->i_sb->s_fs_info; 829 struct ubifs_inode *ui = ubifs_inode(inode); 830 pgoff_t index = page->index, last_page_read = ui->last_page_read; 831 struct bu_info *bu; 832 int err = 0, allocated = 0; 833 834 ui->last_page_read = index; 835 if (!c->bulk_read) 836 return 0; 837 838 /* 839 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 840 * so don't bother if we cannot lock the mutex. 841 */ 842 if (!mutex_trylock(&ui->ui_mutex)) 843 return 0; 844 845 if (index != last_page_read + 1) { 846 /* Turn off bulk-read if we stop reading sequentially */ 847 ui->read_in_a_row = 1; 848 if (ui->bulk_read) 849 ui->bulk_read = 0; 850 goto out_unlock; 851 } 852 853 if (!ui->bulk_read) { 854 ui->read_in_a_row += 1; 855 if (ui->read_in_a_row < 3) 856 goto out_unlock; 857 /* Three reads in a row, so switch on bulk-read */ 858 ui->bulk_read = 1; 859 } 860 861 /* 862 * If possible, try to use pre-allocated bulk-read information, which 863 * is protected by @c->bu_mutex. 864 */ 865 if (mutex_trylock(&c->bu_mutex)) 866 bu = &c->bu; 867 else { 868 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 869 if (!bu) 870 goto out_unlock; 871 872 bu->buf = NULL; 873 allocated = 1; 874 } 875 876 bu->buf_len = c->max_bu_buf_len; 877 data_key_init(c, &bu->key, inode->i_ino, 878 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 879 err = ubifs_do_bulk_read(c, bu, page); 880 881 if (!allocated) 882 mutex_unlock(&c->bu_mutex); 883 else 884 kfree(bu); 885 886 out_unlock: 887 mutex_unlock(&ui->ui_mutex); 888 return err; 889 } 890 891 static int ubifs_readpage(struct file *file, struct page *page) 892 { 893 if (ubifs_bulk_read(page)) 894 return 0; 895 do_readpage(page); 896 unlock_page(page); 897 return 0; 898 } 899 900 static int do_writepage(struct page *page, int len) 901 { 902 int err = 0, i, blen; 903 unsigned int block; 904 void *addr; 905 union ubifs_key key; 906 struct inode *inode = page->mapping->host; 907 struct ubifs_info *c = inode->i_sb->s_fs_info; 908 909 #ifdef UBIFS_DEBUG 910 struct ubifs_inode *ui = ubifs_inode(inode); 911 spin_lock(&ui->ui_lock); 912 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT); 913 spin_unlock(&ui->ui_lock); 914 #endif 915 916 /* Update radix tree tags */ 917 set_page_writeback(page); 918 919 addr = kmap(page); 920 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 921 i = 0; 922 while (len) { 923 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 924 data_key_init(c, &key, inode->i_ino, block); 925 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 926 if (err) 927 break; 928 if (++i >= UBIFS_BLOCKS_PER_PAGE) 929 break; 930 block += 1; 931 addr += blen; 932 len -= blen; 933 } 934 if (err) { 935 SetPageError(page); 936 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 937 page->index, inode->i_ino, err); 938 ubifs_ro_mode(c, err); 939 } 940 941 ubifs_assert(c, PagePrivate(page)); 942 if (PageChecked(page)) 943 release_new_page_budget(c); 944 else 945 release_existing_page_budget(c); 946 947 atomic_long_dec(&c->dirty_pg_cnt); 948 ClearPagePrivate(page); 949 ClearPageChecked(page); 950 951 kunmap(page); 952 unlock_page(page); 953 end_page_writeback(page); 954 return err; 955 } 956 957 /* 958 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 959 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 960 * situation when a we have an inode with size 0, then a megabyte of data is 961 * appended to the inode, then write-back starts and flushes some amount of the 962 * dirty pages, the journal becomes full, commit happens and finishes, and then 963 * an unclean reboot happens. When the file system is mounted next time, the 964 * inode size would still be 0, but there would be many pages which are beyond 965 * the inode size, they would be indexed and consume flash space. Because the 966 * journal has been committed, the replay would not be able to detect this 967 * situation and correct the inode size. This means UBIFS would have to scan 968 * whole index and correct all inode sizes, which is long an unacceptable. 969 * 970 * To prevent situations like this, UBIFS writes pages back only if they are 971 * within the last synchronized inode size, i.e. the size which has been 972 * written to the flash media last time. Otherwise, UBIFS forces inode 973 * write-back, thus making sure the on-flash inode contains current inode size, 974 * and then keeps writing pages back. 975 * 976 * Some locking issues explanation. 'ubifs_writepage()' first is called with 977 * the page locked, and it locks @ui_mutex. However, write-back does take inode 978 * @i_mutex, which means other VFS operations may be run on this inode at the 979 * same time. And the problematic one is truncation to smaller size, from where 980 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 981 * then drops the truncated pages. And while dropping the pages, it takes the 982 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 983 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 984 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 985 * 986 * XXX(truncate): with the new truncate sequence this is not true anymore, 987 * and the calls to truncate_setsize can be move around freely. They should 988 * be moved to the very end of the truncate sequence. 989 * 990 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 991 * inode size. How do we do this if @inode->i_size may became smaller while we 992 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 993 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 994 * internally and updates it under @ui_mutex. 995 * 996 * Q: why we do not worry that if we race with truncation, we may end up with a 997 * situation when the inode is truncated while we are in the middle of 998 * 'do_writepage()', so we do write beyond inode size? 999 * A: If we are in the middle of 'do_writepage()', truncation would be locked 1000 * on the page lock and it would not write the truncated inode node to the 1001 * journal before we have finished. 1002 */ 1003 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1004 { 1005 struct inode *inode = page->mapping->host; 1006 struct ubifs_info *c = inode->i_sb->s_fs_info; 1007 struct ubifs_inode *ui = ubifs_inode(inode); 1008 loff_t i_size = i_size_read(inode), synced_i_size; 1009 pgoff_t end_index = i_size >> PAGE_SHIFT; 1010 int err, len = i_size & (PAGE_SIZE - 1); 1011 void *kaddr; 1012 1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1014 inode->i_ino, page->index, page->flags); 1015 ubifs_assert(c, PagePrivate(page)); 1016 1017 /* Is the page fully outside @i_size? (truncate in progress) */ 1018 if (page->index > end_index || (page->index == end_index && !len)) { 1019 err = 0; 1020 goto out_unlock; 1021 } 1022 1023 spin_lock(&ui->ui_lock); 1024 synced_i_size = ui->synced_i_size; 1025 spin_unlock(&ui->ui_lock); 1026 1027 /* Is the page fully inside @i_size? */ 1028 if (page->index < end_index) { 1029 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1030 err = inode->i_sb->s_op->write_inode(inode, NULL); 1031 if (err) 1032 goto out_unlock; 1033 /* 1034 * The inode has been written, but the write-buffer has 1035 * not been synchronized, so in case of an unclean 1036 * reboot we may end up with some pages beyond inode 1037 * size, but they would be in the journal (because 1038 * commit flushes write buffers) and recovery would deal 1039 * with this. 1040 */ 1041 } 1042 return do_writepage(page, PAGE_SIZE); 1043 } 1044 1045 /* 1046 * The page straddles @i_size. It must be zeroed out on each and every 1047 * writepage invocation because it may be mmapped. "A file is mapped 1048 * in multiples of the page size. For a file that is not a multiple of 1049 * the page size, the remaining memory is zeroed when mapped, and 1050 * writes to that region are not written out to the file." 1051 */ 1052 kaddr = kmap_atomic(page); 1053 memset(kaddr + len, 0, PAGE_SIZE - len); 1054 flush_dcache_page(page); 1055 kunmap_atomic(kaddr); 1056 1057 if (i_size > synced_i_size) { 1058 err = inode->i_sb->s_op->write_inode(inode, NULL); 1059 if (err) 1060 goto out_unlock; 1061 } 1062 1063 return do_writepage(page, len); 1064 1065 out_unlock: 1066 unlock_page(page); 1067 return err; 1068 } 1069 1070 /** 1071 * do_attr_changes - change inode attributes. 1072 * @inode: inode to change attributes for 1073 * @attr: describes attributes to change 1074 */ 1075 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1076 { 1077 if (attr->ia_valid & ATTR_UID) 1078 inode->i_uid = attr->ia_uid; 1079 if (attr->ia_valid & ATTR_GID) 1080 inode->i_gid = attr->ia_gid; 1081 if (attr->ia_valid & ATTR_ATIME) { 1082 inode->i_atime = timestamp_truncate(attr->ia_atime, 1083 inode); 1084 } 1085 if (attr->ia_valid & ATTR_MTIME) { 1086 inode->i_mtime = timestamp_truncate(attr->ia_mtime, 1087 inode); 1088 } 1089 if (attr->ia_valid & ATTR_CTIME) { 1090 inode->i_ctime = timestamp_truncate(attr->ia_ctime, 1091 inode); 1092 } 1093 if (attr->ia_valid & ATTR_MODE) { 1094 umode_t mode = attr->ia_mode; 1095 1096 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1097 mode &= ~S_ISGID; 1098 inode->i_mode = mode; 1099 } 1100 } 1101 1102 /** 1103 * do_truncation - truncate an inode. 1104 * @c: UBIFS file-system description object 1105 * @inode: inode to truncate 1106 * @attr: inode attribute changes description 1107 * 1108 * This function implements VFS '->setattr()' call when the inode is truncated 1109 * to a smaller size. Returns zero in case of success and a negative error code 1110 * in case of failure. 1111 */ 1112 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1113 const struct iattr *attr) 1114 { 1115 int err; 1116 struct ubifs_budget_req req; 1117 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1118 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1119 struct ubifs_inode *ui = ubifs_inode(inode); 1120 1121 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1122 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1123 1124 /* 1125 * If this is truncation to a smaller size, and we do not truncate on a 1126 * block boundary, budget for changing one data block, because the last 1127 * block will be re-written. 1128 */ 1129 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1130 req.dirtied_page = 1; 1131 1132 req.dirtied_ino = 1; 1133 /* A funny way to budget for truncation node */ 1134 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1135 err = ubifs_budget_space(c, &req); 1136 if (err) { 1137 /* 1138 * Treat truncations to zero as deletion and always allow them, 1139 * just like we do for '->unlink()'. 1140 */ 1141 if (new_size || err != -ENOSPC) 1142 return err; 1143 budgeted = 0; 1144 } 1145 1146 truncate_setsize(inode, new_size); 1147 1148 if (offset) { 1149 pgoff_t index = new_size >> PAGE_SHIFT; 1150 struct page *page; 1151 1152 page = find_lock_page(inode->i_mapping, index); 1153 if (page) { 1154 if (PageDirty(page)) { 1155 /* 1156 * 'ubifs_jnl_truncate()' will try to truncate 1157 * the last data node, but it contains 1158 * out-of-date data because the page is dirty. 1159 * Write the page now, so that 1160 * 'ubifs_jnl_truncate()' will see an already 1161 * truncated (and up to date) data node. 1162 */ 1163 ubifs_assert(c, PagePrivate(page)); 1164 1165 clear_page_dirty_for_io(page); 1166 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1167 offset = new_size & 1168 (PAGE_SIZE - 1); 1169 err = do_writepage(page, offset); 1170 put_page(page); 1171 if (err) 1172 goto out_budg; 1173 /* 1174 * We could now tell 'ubifs_jnl_truncate()' not 1175 * to read the last block. 1176 */ 1177 } else { 1178 /* 1179 * We could 'kmap()' the page and pass the data 1180 * to 'ubifs_jnl_truncate()' to save it from 1181 * having to read it. 1182 */ 1183 unlock_page(page); 1184 put_page(page); 1185 } 1186 } 1187 } 1188 1189 mutex_lock(&ui->ui_mutex); 1190 ui->ui_size = inode->i_size; 1191 /* Truncation changes inode [mc]time */ 1192 inode->i_mtime = inode->i_ctime = current_time(inode); 1193 /* Other attributes may be changed at the same time as well */ 1194 do_attr_changes(inode, attr); 1195 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1196 mutex_unlock(&ui->ui_mutex); 1197 1198 out_budg: 1199 if (budgeted) 1200 ubifs_release_budget(c, &req); 1201 else { 1202 c->bi.nospace = c->bi.nospace_rp = 0; 1203 smp_wmb(); 1204 } 1205 return err; 1206 } 1207 1208 /** 1209 * do_setattr - change inode attributes. 1210 * @c: UBIFS file-system description object 1211 * @inode: inode to change attributes for 1212 * @attr: inode attribute changes description 1213 * 1214 * This function implements VFS '->setattr()' call for all cases except 1215 * truncations to smaller size. Returns zero in case of success and a negative 1216 * error code in case of failure. 1217 */ 1218 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1219 const struct iattr *attr) 1220 { 1221 int err, release; 1222 loff_t new_size = attr->ia_size; 1223 struct ubifs_inode *ui = ubifs_inode(inode); 1224 struct ubifs_budget_req req = { .dirtied_ino = 1, 1225 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1226 1227 err = ubifs_budget_space(c, &req); 1228 if (err) 1229 return err; 1230 1231 if (attr->ia_valid & ATTR_SIZE) { 1232 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1233 truncate_setsize(inode, new_size); 1234 } 1235 1236 mutex_lock(&ui->ui_mutex); 1237 if (attr->ia_valid & ATTR_SIZE) { 1238 /* Truncation changes inode [mc]time */ 1239 inode->i_mtime = inode->i_ctime = current_time(inode); 1240 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1241 ui->ui_size = inode->i_size; 1242 } 1243 1244 do_attr_changes(inode, attr); 1245 1246 release = ui->dirty; 1247 if (attr->ia_valid & ATTR_SIZE) 1248 /* 1249 * Inode length changed, so we have to make sure 1250 * @I_DIRTY_DATASYNC is set. 1251 */ 1252 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1253 else 1254 mark_inode_dirty_sync(inode); 1255 mutex_unlock(&ui->ui_mutex); 1256 1257 if (release) 1258 ubifs_release_budget(c, &req); 1259 if (IS_SYNC(inode)) 1260 err = inode->i_sb->s_op->write_inode(inode, NULL); 1261 return err; 1262 } 1263 1264 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1265 { 1266 int err; 1267 struct inode *inode = d_inode(dentry); 1268 struct ubifs_info *c = inode->i_sb->s_fs_info; 1269 1270 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1271 inode->i_ino, inode->i_mode, attr->ia_valid); 1272 err = setattr_prepare(dentry, attr); 1273 if (err) 1274 return err; 1275 1276 err = dbg_check_synced_i_size(c, inode); 1277 if (err) 1278 return err; 1279 1280 err = fscrypt_prepare_setattr(dentry, attr); 1281 if (err) 1282 return err; 1283 1284 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1285 /* Truncation to a smaller size */ 1286 err = do_truncation(c, inode, attr); 1287 else 1288 err = do_setattr(c, inode, attr); 1289 1290 return err; 1291 } 1292 1293 static void ubifs_invalidatepage(struct page *page, unsigned int offset, 1294 unsigned int length) 1295 { 1296 struct inode *inode = page->mapping->host; 1297 struct ubifs_info *c = inode->i_sb->s_fs_info; 1298 1299 ubifs_assert(c, PagePrivate(page)); 1300 if (offset || length < PAGE_SIZE) 1301 /* Partial page remains dirty */ 1302 return; 1303 1304 if (PageChecked(page)) 1305 release_new_page_budget(c); 1306 else 1307 release_existing_page_budget(c); 1308 1309 atomic_long_dec(&c->dirty_pg_cnt); 1310 ClearPagePrivate(page); 1311 ClearPageChecked(page); 1312 } 1313 1314 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1315 { 1316 struct inode *inode = file->f_mapping->host; 1317 struct ubifs_info *c = inode->i_sb->s_fs_info; 1318 int err; 1319 1320 dbg_gen("syncing inode %lu", inode->i_ino); 1321 1322 if (c->ro_mount) 1323 /* 1324 * For some really strange reasons VFS does not filter out 1325 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1326 */ 1327 return 0; 1328 1329 err = file_write_and_wait_range(file, start, end); 1330 if (err) 1331 return err; 1332 inode_lock(inode); 1333 1334 /* Synchronize the inode unless this is a 'datasync()' call. */ 1335 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1336 err = inode->i_sb->s_op->write_inode(inode, NULL); 1337 if (err) 1338 goto out; 1339 } 1340 1341 /* 1342 * Nodes related to this inode may still sit in a write-buffer. Flush 1343 * them. 1344 */ 1345 err = ubifs_sync_wbufs_by_inode(c, inode); 1346 out: 1347 inode_unlock(inode); 1348 return err; 1349 } 1350 1351 /** 1352 * mctime_update_needed - check if mtime or ctime update is needed. 1353 * @inode: the inode to do the check for 1354 * @now: current time 1355 * 1356 * This helper function checks if the inode mtime/ctime should be updated or 1357 * not. If current values of the time-stamps are within the UBIFS inode time 1358 * granularity, they are not updated. This is an optimization. 1359 */ 1360 static inline int mctime_update_needed(const struct inode *inode, 1361 const struct timespec64 *now) 1362 { 1363 if (!timespec64_equal(&inode->i_mtime, now) || 1364 !timespec64_equal(&inode->i_ctime, now)) 1365 return 1; 1366 return 0; 1367 } 1368 1369 /** 1370 * ubifs_update_time - update time of inode. 1371 * @inode: inode to update 1372 * 1373 * This function updates time of the inode. 1374 */ 1375 int ubifs_update_time(struct inode *inode, struct timespec64 *time, 1376 int flags) 1377 { 1378 struct ubifs_inode *ui = ubifs_inode(inode); 1379 struct ubifs_info *c = inode->i_sb->s_fs_info; 1380 struct ubifs_budget_req req = { .dirtied_ino = 1, 1381 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1382 int iflags = I_DIRTY_TIME; 1383 int err, release; 1384 1385 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1386 return generic_update_time(inode, time, flags); 1387 1388 err = ubifs_budget_space(c, &req); 1389 if (err) 1390 return err; 1391 1392 mutex_lock(&ui->ui_mutex); 1393 if (flags & S_ATIME) 1394 inode->i_atime = *time; 1395 if (flags & S_CTIME) 1396 inode->i_ctime = *time; 1397 if (flags & S_MTIME) 1398 inode->i_mtime = *time; 1399 1400 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 1401 iflags |= I_DIRTY_SYNC; 1402 1403 release = ui->dirty; 1404 __mark_inode_dirty(inode, iflags); 1405 mutex_unlock(&ui->ui_mutex); 1406 if (release) 1407 ubifs_release_budget(c, &req); 1408 return 0; 1409 } 1410 1411 /** 1412 * update_mctime - update mtime and ctime of an inode. 1413 * @inode: inode to update 1414 * 1415 * This function updates mtime and ctime of the inode if it is not equivalent to 1416 * current time. Returns zero in case of success and a negative error code in 1417 * case of failure. 1418 */ 1419 static int update_mctime(struct inode *inode) 1420 { 1421 struct timespec64 now = current_time(inode); 1422 struct ubifs_inode *ui = ubifs_inode(inode); 1423 struct ubifs_info *c = inode->i_sb->s_fs_info; 1424 1425 if (mctime_update_needed(inode, &now)) { 1426 int err, release; 1427 struct ubifs_budget_req req = { .dirtied_ino = 1, 1428 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1429 1430 err = ubifs_budget_space(c, &req); 1431 if (err) 1432 return err; 1433 1434 mutex_lock(&ui->ui_mutex); 1435 inode->i_mtime = inode->i_ctime = current_time(inode); 1436 release = ui->dirty; 1437 mark_inode_dirty_sync(inode); 1438 mutex_unlock(&ui->ui_mutex); 1439 if (release) 1440 ubifs_release_budget(c, &req); 1441 } 1442 1443 return 0; 1444 } 1445 1446 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1447 { 1448 int err = update_mctime(file_inode(iocb->ki_filp)); 1449 if (err) 1450 return err; 1451 1452 return generic_file_write_iter(iocb, from); 1453 } 1454 1455 static int ubifs_set_page_dirty(struct page *page) 1456 { 1457 int ret; 1458 struct inode *inode = page->mapping->host; 1459 struct ubifs_info *c = inode->i_sb->s_fs_info; 1460 1461 ret = __set_page_dirty_nobuffers(page); 1462 /* 1463 * An attempt to dirty a page without budgeting for it - should not 1464 * happen. 1465 */ 1466 ubifs_assert(c, ret == 0); 1467 return ret; 1468 } 1469 1470 #ifdef CONFIG_MIGRATION 1471 static int ubifs_migrate_page(struct address_space *mapping, 1472 struct page *newpage, struct page *page, enum migrate_mode mode) 1473 { 1474 int rc; 1475 1476 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 1477 if (rc != MIGRATEPAGE_SUCCESS) 1478 return rc; 1479 1480 if (PagePrivate(page)) { 1481 ClearPagePrivate(page); 1482 SetPagePrivate(newpage); 1483 } 1484 1485 if (mode != MIGRATE_SYNC_NO_COPY) 1486 migrate_page_copy(newpage, page); 1487 else 1488 migrate_page_states(newpage, page); 1489 return MIGRATEPAGE_SUCCESS; 1490 } 1491 #endif 1492 1493 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1494 { 1495 struct inode *inode = page->mapping->host; 1496 struct ubifs_info *c = inode->i_sb->s_fs_info; 1497 1498 /* 1499 * An attempt to release a dirty page without budgeting for it - should 1500 * not happen. 1501 */ 1502 if (PageWriteback(page)) 1503 return 0; 1504 ubifs_assert(c, PagePrivate(page)); 1505 ubifs_assert(c, 0); 1506 ClearPagePrivate(page); 1507 ClearPageChecked(page); 1508 return 1; 1509 } 1510 1511 /* 1512 * mmap()d file has taken write protection fault and is being made writable. 1513 * UBIFS must ensure page is budgeted for. 1514 */ 1515 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1516 { 1517 struct page *page = vmf->page; 1518 struct inode *inode = file_inode(vmf->vma->vm_file); 1519 struct ubifs_info *c = inode->i_sb->s_fs_info; 1520 struct timespec64 now = current_time(inode); 1521 struct ubifs_budget_req req = { .new_page = 1 }; 1522 int err, update_time; 1523 1524 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1525 i_size_read(inode)); 1526 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1527 1528 if (unlikely(c->ro_error)) 1529 return VM_FAULT_SIGBUS; /* -EROFS */ 1530 1531 /* 1532 * We have not locked @page so far so we may budget for changing the 1533 * page. Note, we cannot do this after we locked the page, because 1534 * budgeting may cause write-back which would cause deadlock. 1535 * 1536 * At the moment we do not know whether the page is dirty or not, so we 1537 * assume that it is not and budget for a new page. We could look at 1538 * the @PG_private flag and figure this out, but we may race with write 1539 * back and the page state may change by the time we lock it, so this 1540 * would need additional care. We do not bother with this at the 1541 * moment, although it might be good idea to do. Instead, we allocate 1542 * budget for a new page and amend it later on if the page was in fact 1543 * dirty. 1544 * 1545 * The budgeting-related logic of this function is similar to what we 1546 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1547 * for more comments. 1548 */ 1549 update_time = mctime_update_needed(inode, &now); 1550 if (update_time) 1551 /* 1552 * We have to change inode time stamp which requires extra 1553 * budgeting. 1554 */ 1555 req.dirtied_ino = 1; 1556 1557 err = ubifs_budget_space(c, &req); 1558 if (unlikely(err)) { 1559 if (err == -ENOSPC) 1560 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1561 inode->i_ino); 1562 return VM_FAULT_SIGBUS; 1563 } 1564 1565 lock_page(page); 1566 if (unlikely(page->mapping != inode->i_mapping || 1567 page_offset(page) > i_size_read(inode))) { 1568 /* Page got truncated out from underneath us */ 1569 goto sigbus; 1570 } 1571 1572 if (PagePrivate(page)) 1573 release_new_page_budget(c); 1574 else { 1575 if (!PageChecked(page)) 1576 ubifs_convert_page_budget(c); 1577 SetPagePrivate(page); 1578 atomic_long_inc(&c->dirty_pg_cnt); 1579 __set_page_dirty_nobuffers(page); 1580 } 1581 1582 if (update_time) { 1583 int release; 1584 struct ubifs_inode *ui = ubifs_inode(inode); 1585 1586 mutex_lock(&ui->ui_mutex); 1587 inode->i_mtime = inode->i_ctime = current_time(inode); 1588 release = ui->dirty; 1589 mark_inode_dirty_sync(inode); 1590 mutex_unlock(&ui->ui_mutex); 1591 if (release) 1592 ubifs_release_dirty_inode_budget(c, ui); 1593 } 1594 1595 wait_for_stable_page(page); 1596 return VM_FAULT_LOCKED; 1597 1598 sigbus: 1599 unlock_page(page); 1600 ubifs_release_budget(c, &req); 1601 return VM_FAULT_SIGBUS; 1602 } 1603 1604 static const struct vm_operations_struct ubifs_file_vm_ops = { 1605 .fault = filemap_fault, 1606 .map_pages = filemap_map_pages, 1607 .page_mkwrite = ubifs_vm_page_mkwrite, 1608 }; 1609 1610 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1611 { 1612 int err; 1613 1614 err = generic_file_mmap(file, vma); 1615 if (err) 1616 return err; 1617 vma->vm_ops = &ubifs_file_vm_ops; 1618 1619 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1620 file_accessed(file); 1621 1622 return 0; 1623 } 1624 1625 static const char *ubifs_get_link(struct dentry *dentry, 1626 struct inode *inode, 1627 struct delayed_call *done) 1628 { 1629 struct ubifs_inode *ui = ubifs_inode(inode); 1630 1631 if (!IS_ENCRYPTED(inode)) 1632 return ui->data; 1633 1634 if (!dentry) 1635 return ERR_PTR(-ECHILD); 1636 1637 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1638 } 1639 1640 const struct address_space_operations ubifs_file_address_operations = { 1641 .readpage = ubifs_readpage, 1642 .writepage = ubifs_writepage, 1643 .write_begin = ubifs_write_begin, 1644 .write_end = ubifs_write_end, 1645 .invalidatepage = ubifs_invalidatepage, 1646 .set_page_dirty = ubifs_set_page_dirty, 1647 #ifdef CONFIG_MIGRATION 1648 .migratepage = ubifs_migrate_page, 1649 #endif 1650 .releasepage = ubifs_releasepage, 1651 }; 1652 1653 const struct inode_operations ubifs_file_inode_operations = { 1654 .setattr = ubifs_setattr, 1655 .getattr = ubifs_getattr, 1656 #ifdef CONFIG_UBIFS_FS_XATTR 1657 .listxattr = ubifs_listxattr, 1658 #endif 1659 .update_time = ubifs_update_time, 1660 }; 1661 1662 const struct inode_operations ubifs_symlink_inode_operations = { 1663 .get_link = ubifs_get_link, 1664 .setattr = ubifs_setattr, 1665 .getattr = ubifs_getattr, 1666 #ifdef CONFIG_UBIFS_FS_XATTR 1667 .listxattr = ubifs_listxattr, 1668 #endif 1669 .update_time = ubifs_update_time, 1670 }; 1671 1672 const struct file_operations ubifs_file_operations = { 1673 .llseek = generic_file_llseek, 1674 .read_iter = generic_file_read_iter, 1675 .write_iter = ubifs_write_iter, 1676 .mmap = ubifs_file_mmap, 1677 .fsync = ubifs_fsync, 1678 .unlocked_ioctl = ubifs_ioctl, 1679 .splice_read = generic_file_splice_read, 1680 .splice_write = iter_file_splice_write, 1681 .open = fscrypt_file_open, 1682 #ifdef CONFIG_COMPAT 1683 .compat_ioctl = ubifs_compat_ioctl, 1684 #endif 1685 }; 1686