xref: /openbmc/linux/fs/ubifs/file.c (revision 9ac8d3fb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations of regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28  * page is dirty and is used for budgeting purposes - dirty pages should not be
29  * budgeted. The PG_checked flag is set if full budgeting is required for the
30  * page e.g., when it corresponds to a file hole or it is just beyond the file
31  * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32  * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33  * the PG_private and PG_checked flags carry the information about how the page
34  * was budgeted, to make it possible to release the budget properly.
35  *
36  * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37  * we implement. However, this is not true for '->writepage()', which might be
38  * called with 'i_mutex' unlocked. For example, when pdflush is performing
39  * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40  * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41  * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42  * path'. So, in '->writepage()' we are only guaranteed that the page is
43  * locked.
44  *
45  * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46  * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47  * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48  * not set as well. However, UBIFS disables readahead.
49  *
50  * This, for example means that there might be 2 concurrent '->writepage()'
51  * calls for the same inode, but different inode dirty pages.
52  */
53 
54 #include "ubifs.h"
55 #include <linux/mount.h>
56 #include <linux/namei.h>
57 
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 		      struct ubifs_data_node *dn)
60 {
61 	struct ubifs_info *c = inode->i_sb->s_fs_info;
62 	int err, len, out_len;
63 	union ubifs_key key;
64 	unsigned int dlen;
65 
66 	data_key_init(c, &key, inode->i_ino, block);
67 	err = ubifs_tnc_lookup(c, &key, dn);
68 	if (err) {
69 		if (err == -ENOENT)
70 			/* Not found, so it must be a hole */
71 			memset(addr, 0, UBIFS_BLOCK_SIZE);
72 		return err;
73 	}
74 
75 	ubifs_assert(dn->ch.sqnum > ubifs_inode(inode)->creat_sqnum);
76 
77 	len = le32_to_cpu(dn->size);
78 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 		goto dump;
80 
81 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 	out_len = UBIFS_BLOCK_SIZE;
83 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 			       le16_to_cpu(dn->compr_type));
85 	if (err || len != out_len)
86 		goto dump;
87 
88 	/*
89 	 * Data length can be less than a full block, even for blocks that are
90 	 * not the last in the file (e.g., as a result of making a hole and
91 	 * appending data). Ensure that the remainder is zeroed out.
92 	 */
93 	if (len < UBIFS_BLOCK_SIZE)
94 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95 
96 	return 0;
97 
98 dump:
99 	ubifs_err("bad data node (block %u, inode %lu)",
100 		  block, inode->i_ino);
101 	dbg_dump_node(c, dn);
102 	return -EINVAL;
103 }
104 
105 static int do_readpage(struct page *page)
106 {
107 	void *addr;
108 	int err = 0, i;
109 	unsigned int block, beyond;
110 	struct ubifs_data_node *dn;
111 	struct inode *inode = page->mapping->host;
112 	loff_t i_size = i_size_read(inode);
113 
114 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 		inode->i_ino, page->index, i_size, page->flags);
116 	ubifs_assert(!PageChecked(page));
117 	ubifs_assert(!PagePrivate(page));
118 
119 	addr = kmap(page);
120 
121 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 	if (block >= beyond) {
124 		/* Reading beyond inode */
125 		SetPageChecked(page);
126 		memset(addr, 0, PAGE_CACHE_SIZE);
127 		goto out;
128 	}
129 
130 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 	if (!dn) {
132 		err = -ENOMEM;
133 		goto error;
134 	}
135 
136 	i = 0;
137 	while (1) {
138 		int ret;
139 
140 		if (block >= beyond) {
141 			/* Reading beyond inode */
142 			err = -ENOENT;
143 			memset(addr, 0, UBIFS_BLOCK_SIZE);
144 		} else {
145 			ret = read_block(inode, addr, block, dn);
146 			if (ret) {
147 				err = ret;
148 				if (err != -ENOENT)
149 					break;
150 			} else if (block + 1 == beyond) {
151 				int dlen = le32_to_cpu(dn->size);
152 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153 
154 				if (ilen && ilen < dlen)
155 					memset(addr + ilen, 0, dlen - ilen);
156 			}
157 		}
158 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 			break;
160 		block += 1;
161 		addr += UBIFS_BLOCK_SIZE;
162 	}
163 	if (err) {
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err("cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep)
223 {
224 	struct inode *inode = mapping->host;
225 	struct ubifs_info *c = inode->i_sb->s_fs_info;
226 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 	struct ubifs_budget_req req = { .new_page = 1 };
228 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 	struct page *page;
230 
231 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 		inode->i_ino, pos, len, inode->i_size);
233 
234 	/*
235 	 * At the slow path we have to budget before locking the page, because
236 	 * budgeting may force write-back, which would wait on locked pages and
237 	 * deadlock if we had the page locked. At this point we do not know
238 	 * anything about the page, so assume that this is a new page which is
239 	 * written to a hole. This corresponds to largest budget. Later the
240 	 * budget will be amended if this is not true.
241 	 */
242 	if (appending)
243 		/* We are appending data, budget for inode change */
244 		req.dirtied_ino = 1;
245 
246 	err = ubifs_budget_space(c, &req);
247 	if (unlikely(err))
248 		return err;
249 
250 	page = __grab_cache_page(mapping, index);
251 	if (unlikely(!page)) {
252 		ubifs_release_budget(c, &req);
253 		return -ENOMEM;
254 	}
255 
256 	if (!PageUptodate(page)) {
257 		if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 			SetPageChecked(page);
259 		else {
260 			err = do_readpage(page);
261 			if (err) {
262 				unlock_page(page);
263 				page_cache_release(page);
264 				return err;
265 			}
266 		}
267 
268 		SetPageUptodate(page);
269 		ClearPageError(page);
270 	}
271 
272 	if (PagePrivate(page))
273 		/*
274 		 * The page is dirty, which means it was budgeted twice:
275 		 *   o first time the budget was allocated by the task which
276 		 *     made the page dirty and set the PG_private flag;
277 		 *   o and then we budgeted for it for the second time at the
278 		 *     very beginning of this function.
279 		 *
280 		 * So what we have to do is to release the page budget we
281 		 * allocated.
282 		 */
283 		release_new_page_budget(c);
284 	else if (!PageChecked(page))
285 		/*
286 		 * We are changing a page which already exists on the media.
287 		 * This means that changing the page does not make the amount
288 		 * of indexing information larger, and this part of the budget
289 		 * which we have already acquired may be released.
290 		 */
291 		ubifs_convert_page_budget(c);
292 
293 	if (appending) {
294 		struct ubifs_inode *ui = ubifs_inode(inode);
295 
296 		/*
297 		 * 'ubifs_write_end()' is optimized from the fast-path part of
298 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 		 * if data is appended.
300 		 */
301 		mutex_lock(&ui->ui_mutex);
302 		if (ui->dirty)
303 			/*
304 			 * The inode is dirty already, so we may free the
305 			 * budget we allocated.
306 			 */
307 			ubifs_release_dirty_inode_budget(c, ui);
308 	}
309 
310 	*pagep = page;
311 	return 0;
312 }
313 
314 /**
315  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316  * @c: UBIFS file-system description object
317  * @page: page to allocate budget for
318  * @ui: UBIFS inode object the page belongs to
319  * @appending: non-zero if the page is appended
320  *
321  * This is a helper function for 'ubifs_write_begin()' which allocates budget
322  * for the operation. The budget is allocated differently depending on whether
323  * this is appending, whether the page is dirty or not, and so on. This
324  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325  * in case of success and %-ENOSPC in case of failure.
326  */
327 static int allocate_budget(struct ubifs_info *c, struct page *page,
328 			   struct ubifs_inode *ui, int appending)
329 {
330 	struct ubifs_budget_req req = { .fast = 1 };
331 
332 	if (PagePrivate(page)) {
333 		if (!appending)
334 			/*
335 			 * The page is dirty and we are not appending, which
336 			 * means no budget is needed at all.
337 			 */
338 			return 0;
339 
340 		mutex_lock(&ui->ui_mutex);
341 		if (ui->dirty)
342 			/*
343 			 * The page is dirty and we are appending, so the inode
344 			 * has to be marked as dirty. However, it is already
345 			 * dirty, so we do not need any budget. We may return,
346 			 * but @ui->ui_mutex hast to be left locked because we
347 			 * should prevent write-back from flushing the inode
348 			 * and freeing the budget. The lock will be released in
349 			 * 'ubifs_write_end()'.
350 			 */
351 			return 0;
352 
353 		/*
354 		 * The page is dirty, we are appending, the inode is clean, so
355 		 * we need to budget the inode change.
356 		 */
357 		req.dirtied_ino = 1;
358 	} else {
359 		if (PageChecked(page))
360 			/*
361 			 * The page corresponds to a hole and does not
362 			 * exist on the media. So changing it makes
363 			 * make the amount of indexing information
364 			 * larger, and we have to budget for a new
365 			 * page.
366 			 */
367 			req.new_page = 1;
368 		else
369 			/*
370 			 * Not a hole, the change will not add any new
371 			 * indexing information, budget for page
372 			 * change.
373 			 */
374 			req.dirtied_page = 1;
375 
376 		if (appending) {
377 			mutex_lock(&ui->ui_mutex);
378 			if (!ui->dirty)
379 				/*
380 				 * The inode is clean but we will have to mark
381 				 * it as dirty because we are appending. This
382 				 * needs a budget.
383 				 */
384 				req.dirtied_ino = 1;
385 		}
386 	}
387 
388 	return ubifs_budget_space(c, &req);
389 }
390 
391 /*
392  * This function is called when a page of data is going to be written. Since
393  * the page of data will not necessarily go to the flash straight away, UBIFS
394  * has to reserve space on the media for it, which is done by means of
395  * budgeting.
396  *
397  * This is the hot-path of the file-system and we are trying to optimize it as
398  * much as possible. For this reasons it is split on 2 parts - slow and fast.
399  *
400  * There many budgeting cases:
401  *     o a new page is appended - we have to budget for a new page and for
402  *       changing the inode; however, if the inode is already dirty, there is
403  *       no need to budget for it;
404  *     o an existing clean page is changed - we have budget for it; if the page
405  *       does not exist on the media (a hole), we have to budget for a new
406  *       page; otherwise, we may budget for changing an existing page; the
407  *       difference between these cases is that changing an existing page does
408  *       not introduce anything new to the FS indexing information, so it does
409  *       not grow, and smaller budget is acquired in this case;
410  *     o an existing dirty page is changed - no need to budget at all, because
411  *       the page budget has been acquired by earlier, when the page has been
412  *       marked dirty.
413  *
414  * UBIFS budgeting sub-system may force write-back if it thinks there is no
415  * space to reserve. This imposes some locking restrictions and makes it
416  * impossible to take into account the above cases, and makes it impossible to
417  * optimize budgeting.
418  *
419  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420  * there is a plenty of flash space and the budget will be acquired quickly,
421  * without forcing write-back. The slow path does not make this assumption.
422  */
423 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 			     loff_t pos, unsigned len, unsigned flags,
425 			     struct page **pagep, void **fsdata)
426 {
427 	struct inode *inode = mapping->host;
428 	struct ubifs_info *c = inode->i_sb->s_fs_info;
429 	struct ubifs_inode *ui = ubifs_inode(inode);
430 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 	struct page *page;
433 
434 
435 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436 
437 	if (unlikely(c->ro_media))
438 		return -EROFS;
439 
440 	/* Try out the fast-path part first */
441 	page = __grab_cache_page(mapping, index);
442 	if (unlikely(!page))
443 		return -ENOMEM;
444 
445 	if (!PageUptodate(page)) {
446 		/* The page is not loaded from the flash */
447 		if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
448 			/*
449 			 * We change whole page so no need to load it. But we
450 			 * have to set the @PG_checked flag to make the further
451 			 * code the page is new. This might be not true, but it
452 			 * is better to budget more that to read the page from
453 			 * the media.
454 			 */
455 			SetPageChecked(page);
456 		else {
457 			err = do_readpage(page);
458 			if (err) {
459 				unlock_page(page);
460 				page_cache_release(page);
461 				return err;
462 			}
463 		}
464 
465 		SetPageUptodate(page);
466 		ClearPageError(page);
467 	}
468 
469 	err = allocate_budget(c, page, ui, appending);
470 	if (unlikely(err)) {
471 		ubifs_assert(err == -ENOSPC);
472 		/*
473 		 * Budgeting failed which means it would have to force
474 		 * write-back but didn't, because we set the @fast flag in the
475 		 * request. Write-back cannot be done now, while we have the
476 		 * page locked, because it would deadlock. Unlock and free
477 		 * everything and fall-back to slow-path.
478 		 */
479 		if (appending) {
480 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 			mutex_unlock(&ui->ui_mutex);
482 		}
483 		unlock_page(page);
484 		page_cache_release(page);
485 
486 		return write_begin_slow(mapping, pos, len, pagep);
487 	}
488 
489 	/*
490 	 * Whee, we aquired budgeting quickly - without involving
491 	 * garbage-collection, committing or forceing write-back. We return
492 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 	 * otherwise. This is an optimization (slightly hacky though).
494 	 */
495 	*pagep = page;
496 	return 0;
497 
498 }
499 
500 /**
501  * cancel_budget - cancel budget.
502  * @c: UBIFS file-system description object
503  * @page: page to cancel budget for
504  * @ui: UBIFS inode object the page belongs to
505  * @appending: non-zero if the page is appended
506  *
507  * This is a helper function for a page write operation. It unlocks the
508  * @ui->ui_mutex in case of appending.
509  */
510 static void cancel_budget(struct ubifs_info *c, struct page *page,
511 			  struct ubifs_inode *ui, int appending)
512 {
513 	if (appending) {
514 		if (!ui->dirty)
515 			ubifs_release_dirty_inode_budget(c, ui);
516 		mutex_unlock(&ui->ui_mutex);
517 	}
518 	if (!PagePrivate(page)) {
519 		if (PageChecked(page))
520 			release_new_page_budget(c);
521 		else
522 			release_existing_page_budget(c);
523 	}
524 }
525 
526 static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 			   loff_t pos, unsigned len, unsigned copied,
528 			   struct page *page, void *fsdata)
529 {
530 	struct inode *inode = mapping->host;
531 	struct ubifs_inode *ui = ubifs_inode(inode);
532 	struct ubifs_info *c = inode->i_sb->s_fs_info;
533 	loff_t end_pos = pos + len;
534 	int appending = !!(end_pos > inode->i_size);
535 
536 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
538 
539 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
540 		/*
541 		 * VFS copied less data to the page that it intended and
542 		 * declared in its '->write_begin()' call via the @len
543 		 * argument. If the page was not up-to-date, and @len was
544 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 		 * not load it from the media (for optimization reasons). This
546 		 * means that part of the page contains garbage. So read the
547 		 * page now.
548 		 */
549 		dbg_gen("copied %d instead of %d, read page and repeat",
550 			copied, len);
551 		cancel_budget(c, page, ui, appending);
552 
553 		/*
554 		 * Return 0 to force VFS to repeat the whole operation, or the
555 		 * error code if 'do_readpage()' failes.
556 		 */
557 		copied = do_readpage(page);
558 		goto out;
559 	}
560 
561 	if (!PagePrivate(page)) {
562 		SetPagePrivate(page);
563 		atomic_long_inc(&c->dirty_pg_cnt);
564 		__set_page_dirty_nobuffers(page);
565 	}
566 
567 	if (appending) {
568 		i_size_write(inode, end_pos);
569 		ui->ui_size = end_pos;
570 		/*
571 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 		 * inode has dirty pages), this has been done in
573 		 * '__set_page_dirty_nobuffers()'.
574 		 */
575 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 		mutex_unlock(&ui->ui_mutex);
578 	}
579 
580 out:
581 	unlock_page(page);
582 	page_cache_release(page);
583 	return copied;
584 }
585 
586 /**
587  * populate_page - copy data nodes into a page for bulk-read.
588  * @c: UBIFS file-system description object
589  * @page: page
590  * @bu: bulk-read information
591  * @n: next zbranch slot
592  *
593  * This function returns %0 on success and a negative error code on failure.
594  */
595 static int populate_page(struct ubifs_info *c, struct page *page,
596 			 struct bu_info *bu, int *n)
597 {
598 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
599 	struct inode *inode = page->mapping->host;
600 	loff_t i_size = i_size_read(inode);
601 	unsigned int page_block;
602 	void *addr, *zaddr;
603 	pgoff_t end_index;
604 
605 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 		inode->i_ino, page->index, i_size, page->flags);
607 
608 	addr = zaddr = kmap(page);
609 
610 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
611 	if (!i_size || page->index > end_index) {
612 		hole = 1;
613 		memset(addr, 0, PAGE_CACHE_SIZE);
614 		goto out_hole;
615 	}
616 
617 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
618 	while (1) {
619 		int err, len, out_len, dlen;
620 
621 		if (nn >= bu->cnt) {
622 			hole = 1;
623 			memset(addr, 0, UBIFS_BLOCK_SIZE);
624 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
625 			struct ubifs_data_node *dn;
626 
627 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
628 
629 			ubifs_assert(dn->ch.sqnum >
630 				     ubifs_inode(inode)->creat_sqnum);
631 
632 			len = le32_to_cpu(dn->size);
633 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
634 				goto out_err;
635 
636 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
637 			out_len = UBIFS_BLOCK_SIZE;
638 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
639 					       le16_to_cpu(dn->compr_type));
640 			if (err || len != out_len)
641 				goto out_err;
642 
643 			if (len < UBIFS_BLOCK_SIZE)
644 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
645 
646 			nn += 1;
647 			read = (i << UBIFS_BLOCK_SHIFT) + len;
648 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
649 			nn += 1;
650 			continue;
651 		} else {
652 			hole = 1;
653 			memset(addr, 0, UBIFS_BLOCK_SIZE);
654 		}
655 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
656 			break;
657 		addr += UBIFS_BLOCK_SIZE;
658 		page_block += 1;
659 	}
660 
661 	if (end_index == page->index) {
662 		int len = i_size & (PAGE_CACHE_SIZE - 1);
663 
664 		if (len && len < read)
665 			memset(zaddr + len, 0, read - len);
666 	}
667 
668 out_hole:
669 	if (hole) {
670 		SetPageChecked(page);
671 		dbg_gen("hole");
672 	}
673 
674 	SetPageUptodate(page);
675 	ClearPageError(page);
676 	flush_dcache_page(page);
677 	kunmap(page);
678 	*n = nn;
679 	return 0;
680 
681 out_err:
682 	ClearPageUptodate(page);
683 	SetPageError(page);
684 	flush_dcache_page(page);
685 	kunmap(page);
686 	ubifs_err("bad data node (block %u, inode %lu)",
687 		  page_block, inode->i_ino);
688 	return -EINVAL;
689 }
690 
691 /**
692  * ubifs_do_bulk_read - do bulk-read.
693  * @c: UBIFS file-system description object
694  * @page1: first page
695  *
696  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
697  */
698 static int ubifs_do_bulk_read(struct ubifs_info *c, struct page *page1)
699 {
700 	pgoff_t offset = page1->index, end_index;
701 	struct address_space *mapping = page1->mapping;
702 	struct inode *inode = mapping->host;
703 	struct ubifs_inode *ui = ubifs_inode(inode);
704 	struct bu_info *bu;
705 	int err, page_idx, page_cnt, ret = 0, n = 0;
706 	loff_t isize;
707 
708 	bu = kmalloc(sizeof(struct bu_info), GFP_NOFS);
709 	if (!bu)
710 		return 0;
711 
712 	bu->buf_len = c->bulk_read_buf_size;
713 	bu->buf = kmalloc(bu->buf_len, GFP_NOFS);
714 	if (!bu->buf)
715 		goto out_free;
716 
717 	data_key_init(c, &bu->key, inode->i_ino,
718 		      offset << UBIFS_BLOCKS_PER_PAGE_SHIFT);
719 
720 	err = ubifs_tnc_get_bu_keys(c, bu);
721 	if (err)
722 		goto out_warn;
723 
724 	if (bu->eof) {
725 		/* Turn off bulk-read at the end of the file */
726 		ui->read_in_a_row = 1;
727 		ui->bulk_read = 0;
728 	}
729 
730 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
731 	if (!page_cnt) {
732 		/*
733 		 * This happens when there are multiple blocks per page and the
734 		 * blocks for the first page we are looking for, are not
735 		 * together. If all the pages were like this, bulk-read would
736 		 * reduce performance, so we turn it off for a while.
737 		 */
738 		ui->read_in_a_row = 0;
739 		ui->bulk_read = 0;
740 		goto out_free;
741 	}
742 
743 	if (bu->cnt) {
744 		err = ubifs_tnc_bulk_read(c, bu);
745 		if (err)
746 			goto out_warn;
747 	}
748 
749 	err = populate_page(c, page1, bu, &n);
750 	if (err)
751 		goto out_warn;
752 
753 	unlock_page(page1);
754 	ret = 1;
755 
756 	isize = i_size_read(inode);
757 	if (isize == 0)
758 		goto out_free;
759 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
760 
761 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
762 		pgoff_t page_offset = offset + page_idx;
763 		struct page *page;
764 
765 		if (page_offset > end_index)
766 			break;
767 		page = find_or_create_page(mapping, page_offset,
768 					   GFP_NOFS | __GFP_COLD);
769 		if (!page)
770 			break;
771 		if (!PageUptodate(page))
772 			err = populate_page(c, page, bu, &n);
773 		unlock_page(page);
774 		page_cache_release(page);
775 		if (err)
776 			break;
777 	}
778 
779 	ui->last_page_read = offset + page_idx - 1;
780 
781 out_free:
782 	kfree(bu->buf);
783 	kfree(bu);
784 	return ret;
785 
786 out_warn:
787 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
788 	goto out_free;
789 }
790 
791 /**
792  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
793  * @page: page from which to start bulk-read.
794  *
795  * Some flash media are capable of reading sequentially at faster rates. UBIFS
796  * bulk-read facility is designed to take advantage of that, by reading in one
797  * go consecutive data nodes that are also located consecutively in the same
798  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
799  */
800 static int ubifs_bulk_read(struct page *page)
801 {
802 	struct inode *inode = page->mapping->host;
803 	struct ubifs_info *c = inode->i_sb->s_fs_info;
804 	struct ubifs_inode *ui = ubifs_inode(inode);
805 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
806 	int ret = 0;
807 
808 	ui->last_page_read = index;
809 
810 	if (!c->bulk_read)
811 		return 0;
812 	/*
813 	 * Bulk-read is protected by ui_mutex, but it is an optimization, so
814 	 * don't bother if we cannot lock the mutex.
815 	 */
816 	if (!mutex_trylock(&ui->ui_mutex))
817 		return 0;
818 	if (index != last_page_read + 1) {
819 		/* Turn off bulk-read if we stop reading sequentially */
820 		ui->read_in_a_row = 1;
821 		if (ui->bulk_read)
822 			ui->bulk_read = 0;
823 		goto out_unlock;
824 	}
825 	if (!ui->bulk_read) {
826 		ui->read_in_a_row += 1;
827 		if (ui->read_in_a_row < 3)
828 			goto out_unlock;
829 		/* Three reads in a row, so switch on bulk-read */
830 		ui->bulk_read = 1;
831 	}
832 	ret = ubifs_do_bulk_read(c, page);
833 out_unlock:
834 	mutex_unlock(&ui->ui_mutex);
835 	return ret;
836 }
837 
838 static int ubifs_readpage(struct file *file, struct page *page)
839 {
840 	if (ubifs_bulk_read(page))
841 		return 0;
842 	do_readpage(page);
843 	unlock_page(page);
844 	return 0;
845 }
846 
847 static int do_writepage(struct page *page, int len)
848 {
849 	int err = 0, i, blen;
850 	unsigned int block;
851 	void *addr;
852 	union ubifs_key key;
853 	struct inode *inode = page->mapping->host;
854 	struct ubifs_info *c = inode->i_sb->s_fs_info;
855 
856 #ifdef UBIFS_DEBUG
857 	spin_lock(&ui->ui_lock);
858 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
859 	spin_unlock(&ui->ui_lock);
860 #endif
861 
862 	/* Update radix tree tags */
863 	set_page_writeback(page);
864 
865 	addr = kmap(page);
866 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
867 	i = 0;
868 	while (len) {
869 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
870 		data_key_init(c, &key, inode->i_ino, block);
871 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
872 		if (err)
873 			break;
874 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
875 			break;
876 		block += 1;
877 		addr += blen;
878 		len -= blen;
879 	}
880 	if (err) {
881 		SetPageError(page);
882 		ubifs_err("cannot write page %lu of inode %lu, error %d",
883 			  page->index, inode->i_ino, err);
884 		ubifs_ro_mode(c, err);
885 	}
886 
887 	ubifs_assert(PagePrivate(page));
888 	if (PageChecked(page))
889 		release_new_page_budget(c);
890 	else
891 		release_existing_page_budget(c);
892 
893 	atomic_long_dec(&c->dirty_pg_cnt);
894 	ClearPagePrivate(page);
895 	ClearPageChecked(page);
896 
897 	kunmap(page);
898 	unlock_page(page);
899 	end_page_writeback(page);
900 	return err;
901 }
902 
903 /*
904  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
905  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
906  * situation when a we have an inode with size 0, then a megabyte of data is
907  * appended to the inode, then write-back starts and flushes some amount of the
908  * dirty pages, the journal becomes full, commit happens and finishes, and then
909  * an unclean reboot happens. When the file system is mounted next time, the
910  * inode size would still be 0, but there would be many pages which are beyond
911  * the inode size, they would be indexed and consume flash space. Because the
912  * journal has been committed, the replay would not be able to detect this
913  * situation and correct the inode size. This means UBIFS would have to scan
914  * whole index and correct all inode sizes, which is long an unacceptable.
915  *
916  * To prevent situations like this, UBIFS writes pages back only if they are
917  * within last synchronized inode size, i.e. the the size which has been
918  * written to the flash media last time. Otherwise, UBIFS forces inode
919  * write-back, thus making sure the on-flash inode contains current inode size,
920  * and then keeps writing pages back.
921  *
922  * Some locking issues explanation. 'ubifs_writepage()' first is called with
923  * the page locked, and it locks @ui_mutex. However, write-back does take inode
924  * @i_mutex, which means other VFS operations may be run on this inode at the
925  * same time. And the problematic one is truncation to smaller size, from where
926  * we have to call 'vmtruncate()', which first changes @inode->i_size, then
927  * drops the truncated pages. And while dropping the pages, it takes the page
928  * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
929  * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
930  * means that @inode->i_size is changed while @ui_mutex is unlocked.
931  *
932  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
933  * inode size. How do we do this if @inode->i_size may became smaller while we
934  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
935  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
936  * internally and updates it under @ui_mutex.
937  *
938  * Q: why we do not worry that if we race with truncation, we may end up with a
939  * situation when the inode is truncated while we are in the middle of
940  * 'do_writepage()', so we do write beyond inode size?
941  * A: If we are in the middle of 'do_writepage()', truncation would be locked
942  * on the page lock and it would not write the truncated inode node to the
943  * journal before we have finished.
944  */
945 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
946 {
947 	struct inode *inode = page->mapping->host;
948 	struct ubifs_inode *ui = ubifs_inode(inode);
949 	loff_t i_size =  i_size_read(inode), synced_i_size;
950 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
951 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
952 	void *kaddr;
953 
954 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
955 		inode->i_ino, page->index, page->flags);
956 	ubifs_assert(PagePrivate(page));
957 
958 	/* Is the page fully outside @i_size? (truncate in progress) */
959 	if (page->index > end_index || (page->index == end_index && !len)) {
960 		err = 0;
961 		goto out_unlock;
962 	}
963 
964 	spin_lock(&ui->ui_lock);
965 	synced_i_size = ui->synced_i_size;
966 	spin_unlock(&ui->ui_lock);
967 
968 	/* Is the page fully inside @i_size? */
969 	if (page->index < end_index) {
970 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
971 			err = inode->i_sb->s_op->write_inode(inode, 1);
972 			if (err)
973 				goto out_unlock;
974 			/*
975 			 * The inode has been written, but the write-buffer has
976 			 * not been synchronized, so in case of an unclean
977 			 * reboot we may end up with some pages beyond inode
978 			 * size, but they would be in the journal (because
979 			 * commit flushes write buffers) and recovery would deal
980 			 * with this.
981 			 */
982 		}
983 		return do_writepage(page, PAGE_CACHE_SIZE);
984 	}
985 
986 	/*
987 	 * The page straddles @i_size. It must be zeroed out on each and every
988 	 * writepage invocation because it may be mmapped. "A file is mapped
989 	 * in multiples of the page size. For a file that is not a multiple of
990 	 * the page size, the remaining memory is zeroed when mapped, and
991 	 * writes to that region are not written out to the file."
992 	 */
993 	kaddr = kmap_atomic(page, KM_USER0);
994 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
995 	flush_dcache_page(page);
996 	kunmap_atomic(kaddr, KM_USER0);
997 
998 	if (i_size > synced_i_size) {
999 		err = inode->i_sb->s_op->write_inode(inode, 1);
1000 		if (err)
1001 			goto out_unlock;
1002 	}
1003 
1004 	return do_writepage(page, len);
1005 
1006 out_unlock:
1007 	unlock_page(page);
1008 	return err;
1009 }
1010 
1011 /**
1012  * do_attr_changes - change inode attributes.
1013  * @inode: inode to change attributes for
1014  * @attr: describes attributes to change
1015  */
1016 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1017 {
1018 	if (attr->ia_valid & ATTR_UID)
1019 		inode->i_uid = attr->ia_uid;
1020 	if (attr->ia_valid & ATTR_GID)
1021 		inode->i_gid = attr->ia_gid;
1022 	if (attr->ia_valid & ATTR_ATIME)
1023 		inode->i_atime = timespec_trunc(attr->ia_atime,
1024 						inode->i_sb->s_time_gran);
1025 	if (attr->ia_valid & ATTR_MTIME)
1026 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1027 						inode->i_sb->s_time_gran);
1028 	if (attr->ia_valid & ATTR_CTIME)
1029 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1030 						inode->i_sb->s_time_gran);
1031 	if (attr->ia_valid & ATTR_MODE) {
1032 		umode_t mode = attr->ia_mode;
1033 
1034 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1035 			mode &= ~S_ISGID;
1036 		inode->i_mode = mode;
1037 	}
1038 }
1039 
1040 /**
1041  * do_truncation - truncate an inode.
1042  * @c: UBIFS file-system description object
1043  * @inode: inode to truncate
1044  * @attr: inode attribute changes description
1045  *
1046  * This function implements VFS '->setattr()' call when the inode is truncated
1047  * to a smaller size. Returns zero in case of success and a negative error code
1048  * in case of failure.
1049  */
1050 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1051 			 const struct iattr *attr)
1052 {
1053 	int err;
1054 	struct ubifs_budget_req req;
1055 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1056 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1057 	struct ubifs_inode *ui = ubifs_inode(inode);
1058 
1059 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1060 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1061 
1062 	/*
1063 	 * If this is truncation to a smaller size, and we do not truncate on a
1064 	 * block boundary, budget for changing one data block, because the last
1065 	 * block will be re-written.
1066 	 */
1067 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1068 		req.dirtied_page = 1;
1069 
1070 	req.dirtied_ino = 1;
1071 	/* A funny way to budget for truncation node */
1072 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1073 	err = ubifs_budget_space(c, &req);
1074 	if (err) {
1075 		/*
1076 		 * Treat truncations to zero as deletion and always allow them,
1077 		 * just like we do for '->unlink()'.
1078 		 */
1079 		if (new_size || err != -ENOSPC)
1080 			return err;
1081 		budgeted = 0;
1082 	}
1083 
1084 	err = vmtruncate(inode, new_size);
1085 	if (err)
1086 		goto out_budg;
1087 
1088 	if (offset) {
1089 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1090 		struct page *page;
1091 
1092 		page = find_lock_page(inode->i_mapping, index);
1093 		if (page) {
1094 			if (PageDirty(page)) {
1095 				/*
1096 				 * 'ubifs_jnl_truncate()' will try to truncate
1097 				 * the last data node, but it contains
1098 				 * out-of-date data because the page is dirty.
1099 				 * Write the page now, so that
1100 				 * 'ubifs_jnl_truncate()' will see an already
1101 				 * truncated (and up to date) data node.
1102 				 */
1103 				ubifs_assert(PagePrivate(page));
1104 
1105 				clear_page_dirty_for_io(page);
1106 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1107 					offset = new_size &
1108 						 (PAGE_CACHE_SIZE - 1);
1109 				err = do_writepage(page, offset);
1110 				page_cache_release(page);
1111 				if (err)
1112 					goto out_budg;
1113 				/*
1114 				 * We could now tell 'ubifs_jnl_truncate()' not
1115 				 * to read the last block.
1116 				 */
1117 			} else {
1118 				/*
1119 				 * We could 'kmap()' the page and pass the data
1120 				 * to 'ubifs_jnl_truncate()' to save it from
1121 				 * having to read it.
1122 				 */
1123 				unlock_page(page);
1124 				page_cache_release(page);
1125 			}
1126 		}
1127 	}
1128 
1129 	mutex_lock(&ui->ui_mutex);
1130 	ui->ui_size = inode->i_size;
1131 	/* Truncation changes inode [mc]time */
1132 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1133 	/* The other attributes may be changed at the same time as well */
1134 	do_attr_changes(inode, attr);
1135 
1136 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1137 	mutex_unlock(&ui->ui_mutex);
1138 out_budg:
1139 	if (budgeted)
1140 		ubifs_release_budget(c, &req);
1141 	else {
1142 		c->nospace = c->nospace_rp = 0;
1143 		smp_wmb();
1144 	}
1145 	return err;
1146 }
1147 
1148 /**
1149  * do_setattr - change inode attributes.
1150  * @c: UBIFS file-system description object
1151  * @inode: inode to change attributes for
1152  * @attr: inode attribute changes description
1153  *
1154  * This function implements VFS '->setattr()' call for all cases except
1155  * truncations to smaller size. Returns zero in case of success and a negative
1156  * error code in case of failure.
1157  */
1158 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1159 		      const struct iattr *attr)
1160 {
1161 	int err, release;
1162 	loff_t new_size = attr->ia_size;
1163 	struct ubifs_inode *ui = ubifs_inode(inode);
1164 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1165 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1166 
1167 	err = ubifs_budget_space(c, &req);
1168 	if (err)
1169 		return err;
1170 
1171 	if (attr->ia_valid & ATTR_SIZE) {
1172 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1173 		err = vmtruncate(inode, new_size);
1174 		if (err)
1175 			goto out;
1176 	}
1177 
1178 	mutex_lock(&ui->ui_mutex);
1179 	if (attr->ia_valid & ATTR_SIZE) {
1180 		/* Truncation changes inode [mc]time */
1181 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1182 		/* 'vmtruncate()' changed @i_size, update @ui_size */
1183 		ui->ui_size = inode->i_size;
1184 	}
1185 
1186 	do_attr_changes(inode, attr);
1187 
1188 	release = ui->dirty;
1189 	if (attr->ia_valid & ATTR_SIZE)
1190 		/*
1191 		 * Inode length changed, so we have to make sure
1192 		 * @I_DIRTY_DATASYNC is set.
1193 		 */
1194 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1195 	else
1196 		mark_inode_dirty_sync(inode);
1197 	mutex_unlock(&ui->ui_mutex);
1198 
1199 	if (release)
1200 		ubifs_release_budget(c, &req);
1201 	if (IS_SYNC(inode))
1202 		err = inode->i_sb->s_op->write_inode(inode, 1);
1203 	return err;
1204 
1205 out:
1206 	ubifs_release_budget(c, &req);
1207 	return err;
1208 }
1209 
1210 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1211 {
1212 	int err;
1213 	struct inode *inode = dentry->d_inode;
1214 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1215 
1216 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1217 		inode->i_ino, inode->i_mode, attr->ia_valid);
1218 	err = inode_change_ok(inode, attr);
1219 	if (err)
1220 		return err;
1221 
1222 	err = dbg_check_synced_i_size(inode);
1223 	if (err)
1224 		return err;
1225 
1226 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1227 		/* Truncation to a smaller size */
1228 		err = do_truncation(c, inode, attr);
1229 	else
1230 		err = do_setattr(c, inode, attr);
1231 
1232 	return err;
1233 }
1234 
1235 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1236 {
1237 	struct inode *inode = page->mapping->host;
1238 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1239 
1240 	ubifs_assert(PagePrivate(page));
1241 	if (offset)
1242 		/* Partial page remains dirty */
1243 		return;
1244 
1245 	if (PageChecked(page))
1246 		release_new_page_budget(c);
1247 	else
1248 		release_existing_page_budget(c);
1249 
1250 	atomic_long_dec(&c->dirty_pg_cnt);
1251 	ClearPagePrivate(page);
1252 	ClearPageChecked(page);
1253 }
1254 
1255 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1256 {
1257 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1258 
1259 	nd_set_link(nd, ui->data);
1260 	return NULL;
1261 }
1262 
1263 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1264 {
1265 	struct inode *inode = dentry->d_inode;
1266 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1267 	int err;
1268 
1269 	dbg_gen("syncing inode %lu", inode->i_ino);
1270 
1271 	/*
1272 	 * VFS has already synchronized dirty pages for this inode. Synchronize
1273 	 * the inode unless this is a 'datasync()' call.
1274 	 */
1275 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1276 		err = inode->i_sb->s_op->write_inode(inode, 1);
1277 		if (err)
1278 			return err;
1279 	}
1280 
1281 	/*
1282 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1283 	 * them.
1284 	 */
1285 	err = ubifs_sync_wbufs_by_inode(c, inode);
1286 	if (err)
1287 		return err;
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * mctime_update_needed - check if mtime or ctime update is needed.
1294  * @inode: the inode to do the check for
1295  * @now: current time
1296  *
1297  * This helper function checks if the inode mtime/ctime should be updated or
1298  * not. If current values of the time-stamps are within the UBIFS inode time
1299  * granularity, they are not updated. This is an optimization.
1300  */
1301 static inline int mctime_update_needed(const struct inode *inode,
1302 				       const struct timespec *now)
1303 {
1304 	if (!timespec_equal(&inode->i_mtime, now) ||
1305 	    !timespec_equal(&inode->i_ctime, now))
1306 		return 1;
1307 	return 0;
1308 }
1309 
1310 /**
1311  * update_ctime - update mtime and ctime of an inode.
1312  * @c: UBIFS file-system description object
1313  * @inode: inode to update
1314  *
1315  * This function updates mtime and ctime of the inode if it is not equivalent to
1316  * current time. Returns zero in case of success and a negative error code in
1317  * case of failure.
1318  */
1319 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1320 {
1321 	struct timespec now = ubifs_current_time(inode);
1322 	struct ubifs_inode *ui = ubifs_inode(inode);
1323 
1324 	if (mctime_update_needed(inode, &now)) {
1325 		int err, release;
1326 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1327 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1328 
1329 		err = ubifs_budget_space(c, &req);
1330 		if (err)
1331 			return err;
1332 
1333 		mutex_lock(&ui->ui_mutex);
1334 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1335 		release = ui->dirty;
1336 		mark_inode_dirty_sync(inode);
1337 		mutex_unlock(&ui->ui_mutex);
1338 		if (release)
1339 			ubifs_release_budget(c, &req);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1346 			       unsigned long nr_segs, loff_t pos)
1347 {
1348 	int err;
1349 	ssize_t ret;
1350 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1351 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1352 
1353 	err = update_mctime(c, inode);
1354 	if (err)
1355 		return err;
1356 
1357 	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1358 	if (ret < 0)
1359 		return ret;
1360 
1361 	if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1362 		err = ubifs_sync_wbufs_by_inode(c, inode);
1363 		if (err)
1364 			return err;
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 static int ubifs_set_page_dirty(struct page *page)
1371 {
1372 	int ret;
1373 
1374 	ret = __set_page_dirty_nobuffers(page);
1375 	/*
1376 	 * An attempt to dirty a page without budgeting for it - should not
1377 	 * happen.
1378 	 */
1379 	ubifs_assert(ret == 0);
1380 	return ret;
1381 }
1382 
1383 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1384 {
1385 	/*
1386 	 * An attempt to release a dirty page without budgeting for it - should
1387 	 * not happen.
1388 	 */
1389 	if (PageWriteback(page))
1390 		return 0;
1391 	ubifs_assert(PagePrivate(page));
1392 	ubifs_assert(0);
1393 	ClearPagePrivate(page);
1394 	ClearPageChecked(page);
1395 	return 1;
1396 }
1397 
1398 /*
1399  * mmap()d file has taken write protection fault and is being made
1400  * writable. UBIFS must ensure page is budgeted for.
1401  */
1402 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1403 {
1404 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1405 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1406 	struct timespec now = ubifs_current_time(inode);
1407 	struct ubifs_budget_req req = { .new_page = 1 };
1408 	int err, update_time;
1409 
1410 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1411 		i_size_read(inode));
1412 	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1413 
1414 	if (unlikely(c->ro_media))
1415 		return -EROFS;
1416 
1417 	/*
1418 	 * We have not locked @page so far so we may budget for changing the
1419 	 * page. Note, we cannot do this after we locked the page, because
1420 	 * budgeting may cause write-back which would cause deadlock.
1421 	 *
1422 	 * At the moment we do not know whether the page is dirty or not, so we
1423 	 * assume that it is not and budget for a new page. We could look at
1424 	 * the @PG_private flag and figure this out, but we may race with write
1425 	 * back and the page state may change by the time we lock it, so this
1426 	 * would need additional care. We do not bother with this at the
1427 	 * moment, although it might be good idea to do. Instead, we allocate
1428 	 * budget for a new page and amend it later on if the page was in fact
1429 	 * dirty.
1430 	 *
1431 	 * The budgeting-related logic of this function is similar to what we
1432 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1433 	 * for more comments.
1434 	 */
1435 	update_time = mctime_update_needed(inode, &now);
1436 	if (update_time)
1437 		/*
1438 		 * We have to change inode time stamp which requires extra
1439 		 * budgeting.
1440 		 */
1441 		req.dirtied_ino = 1;
1442 
1443 	err = ubifs_budget_space(c, &req);
1444 	if (unlikely(err)) {
1445 		if (err == -ENOSPC)
1446 			ubifs_warn("out of space for mmapped file "
1447 				   "(inode number %lu)", inode->i_ino);
1448 		return err;
1449 	}
1450 
1451 	lock_page(page);
1452 	if (unlikely(page->mapping != inode->i_mapping ||
1453 		     page_offset(page) > i_size_read(inode))) {
1454 		/* Page got truncated out from underneath us */
1455 		err = -EINVAL;
1456 		goto out_unlock;
1457 	}
1458 
1459 	if (PagePrivate(page))
1460 		release_new_page_budget(c);
1461 	else {
1462 		if (!PageChecked(page))
1463 			ubifs_convert_page_budget(c);
1464 		SetPagePrivate(page);
1465 		atomic_long_inc(&c->dirty_pg_cnt);
1466 		__set_page_dirty_nobuffers(page);
1467 	}
1468 
1469 	if (update_time) {
1470 		int release;
1471 		struct ubifs_inode *ui = ubifs_inode(inode);
1472 
1473 		mutex_lock(&ui->ui_mutex);
1474 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1475 		release = ui->dirty;
1476 		mark_inode_dirty_sync(inode);
1477 		mutex_unlock(&ui->ui_mutex);
1478 		if (release)
1479 			ubifs_release_dirty_inode_budget(c, ui);
1480 	}
1481 
1482 	unlock_page(page);
1483 	return 0;
1484 
1485 out_unlock:
1486 	unlock_page(page);
1487 	ubifs_release_budget(c, &req);
1488 	return err;
1489 }
1490 
1491 static struct vm_operations_struct ubifs_file_vm_ops = {
1492 	.fault        = filemap_fault,
1493 	.page_mkwrite = ubifs_vm_page_mkwrite,
1494 };
1495 
1496 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498 	int err;
1499 
1500 	/* 'generic_file_mmap()' takes care of NOMMU case */
1501 	err = generic_file_mmap(file, vma);
1502 	if (err)
1503 		return err;
1504 	vma->vm_ops = &ubifs_file_vm_ops;
1505 	return 0;
1506 }
1507 
1508 struct address_space_operations ubifs_file_address_operations = {
1509 	.readpage       = ubifs_readpage,
1510 	.writepage      = ubifs_writepage,
1511 	.write_begin    = ubifs_write_begin,
1512 	.write_end      = ubifs_write_end,
1513 	.invalidatepage = ubifs_invalidatepage,
1514 	.set_page_dirty = ubifs_set_page_dirty,
1515 	.releasepage    = ubifs_releasepage,
1516 };
1517 
1518 struct inode_operations ubifs_file_inode_operations = {
1519 	.setattr     = ubifs_setattr,
1520 	.getattr     = ubifs_getattr,
1521 #ifdef CONFIG_UBIFS_FS_XATTR
1522 	.setxattr    = ubifs_setxattr,
1523 	.getxattr    = ubifs_getxattr,
1524 	.listxattr   = ubifs_listxattr,
1525 	.removexattr = ubifs_removexattr,
1526 #endif
1527 };
1528 
1529 struct inode_operations ubifs_symlink_inode_operations = {
1530 	.readlink    = generic_readlink,
1531 	.follow_link = ubifs_follow_link,
1532 	.setattr     = ubifs_setattr,
1533 	.getattr     = ubifs_getattr,
1534 };
1535 
1536 struct file_operations ubifs_file_operations = {
1537 	.llseek         = generic_file_llseek,
1538 	.read           = do_sync_read,
1539 	.write          = do_sync_write,
1540 	.aio_read       = generic_file_aio_read,
1541 	.aio_write      = ubifs_aio_write,
1542 	.mmap           = ubifs_file_mmap,
1543 	.fsync          = ubifs_fsync,
1544 	.unlocked_ioctl = ubifs_ioctl,
1545 	.splice_read	= generic_file_splice_read,
1546 	.splice_write	= generic_file_splice_write,
1547 #ifdef CONFIG_COMPAT
1548 	.compat_ioctl   = ubifs_compat_ioctl,
1549 #endif
1550 };
1551