1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations of regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the 28 * page is dirty and is used for budgeting purposes - dirty pages should not be 29 * budgeted. The PG_checked flag is set if full budgeting is required for the 30 * page e.g., when it corresponds to a file hole or it is just beyond the file 31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to 32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So 33 * the PG_private and PG_checked flags carry the information about how the page 34 * was budgeted, to make it possible to release the budget properly. 35 * 36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations 37 * we implement. However, this is not true for '->writepage()', which might be 38 * called with 'i_mutex' unlocked. For example, when pdflush is performing 39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the 40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is 41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim 42 * path'. So, in '->writepage()' we are only guaranteed that the page is 43 * locked. 44 * 45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g., 46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read 47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is 48 * not set as well. However, UBIFS disables readahead. 49 * 50 * This, for example means that there might be 2 concurrent '->writepage()' 51 * calls for the same inode, but different inode dirty pages. 52 */ 53 54 #include "ubifs.h" 55 #include <linux/mount.h> 56 #include <linux/namei.h> 57 58 static int read_block(struct inode *inode, void *addr, unsigned int block, 59 struct ubifs_data_node *dn) 60 { 61 struct ubifs_info *c = inode->i_sb->s_fs_info; 62 int err, len, out_len; 63 union ubifs_key key; 64 unsigned int dlen; 65 66 data_key_init(c, &key, inode->i_ino, block); 67 err = ubifs_tnc_lookup(c, &key, dn); 68 if (err) { 69 if (err == -ENOENT) 70 /* Not found, so it must be a hole */ 71 memset(addr, 0, UBIFS_BLOCK_SIZE); 72 return err; 73 } 74 75 ubifs_assert(dn->ch.sqnum > ubifs_inode(inode)->creat_sqnum); 76 77 len = le32_to_cpu(dn->size); 78 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 79 goto dump; 80 81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 82 out_len = UBIFS_BLOCK_SIZE; 83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 84 le16_to_cpu(dn->compr_type)); 85 if (err || len != out_len) 86 goto dump; 87 88 /* 89 * Data length can be less than a full block, even for blocks that are 90 * not the last in the file (e.g., as a result of making a hole and 91 * appending data). Ensure that the remainder is zeroed out. 92 */ 93 if (len < UBIFS_BLOCK_SIZE) 94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 95 96 return 0; 97 98 dump: 99 ubifs_err("bad data node (block %u, inode %lu)", 100 block, inode->i_ino); 101 dbg_dump_node(c, dn); 102 return -EINVAL; 103 } 104 105 static int do_readpage(struct page *page) 106 { 107 void *addr; 108 int err = 0, i; 109 unsigned int block, beyond; 110 struct ubifs_data_node *dn; 111 struct inode *inode = page->mapping->host; 112 loff_t i_size = i_size_read(inode); 113 114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 115 inode->i_ino, page->index, i_size, page->flags); 116 ubifs_assert(!PageChecked(page)); 117 ubifs_assert(!PagePrivate(page)); 118 119 addr = kmap(page); 120 121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 123 if (block >= beyond) { 124 /* Reading beyond inode */ 125 SetPageChecked(page); 126 memset(addr, 0, PAGE_CACHE_SIZE); 127 goto out; 128 } 129 130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 131 if (!dn) { 132 err = -ENOMEM; 133 goto error; 134 } 135 136 i = 0; 137 while (1) { 138 int ret; 139 140 if (block >= beyond) { 141 /* Reading beyond inode */ 142 err = -ENOENT; 143 memset(addr, 0, UBIFS_BLOCK_SIZE); 144 } else { 145 ret = read_block(inode, addr, block, dn); 146 if (ret) { 147 err = ret; 148 if (err != -ENOENT) 149 break; 150 } else if (block + 1 == beyond) { 151 int dlen = le32_to_cpu(dn->size); 152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 153 154 if (ilen && ilen < dlen) 155 memset(addr + ilen, 0, dlen - ilen); 156 } 157 } 158 if (++i >= UBIFS_BLOCKS_PER_PAGE) 159 break; 160 block += 1; 161 addr += UBIFS_BLOCK_SIZE; 162 } 163 if (err) { 164 if (err == -ENOENT) { 165 /* Not found, so it must be a hole */ 166 SetPageChecked(page); 167 dbg_gen("hole"); 168 goto out_free; 169 } 170 ubifs_err("cannot read page %lu of inode %lu, error %d", 171 page->index, inode->i_ino, err); 172 goto error; 173 } 174 175 out_free: 176 kfree(dn); 177 out: 178 SetPageUptodate(page); 179 ClearPageError(page); 180 flush_dcache_page(page); 181 kunmap(page); 182 return 0; 183 184 error: 185 kfree(dn); 186 ClearPageUptodate(page); 187 SetPageError(page); 188 flush_dcache_page(page); 189 kunmap(page); 190 return err; 191 } 192 193 /** 194 * release_new_page_budget - release budget of a new page. 195 * @c: UBIFS file-system description object 196 * 197 * This is a helper function which releases budget corresponding to the budget 198 * of one new page of data. 199 */ 200 static void release_new_page_budget(struct ubifs_info *c) 201 { 202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 203 204 ubifs_release_budget(c, &req); 205 } 206 207 /** 208 * release_existing_page_budget - release budget of an existing page. 209 * @c: UBIFS file-system description object 210 * 211 * This is a helper function which releases budget corresponding to the budget 212 * of changing one one page of data which already exists on the flash media. 213 */ 214 static void release_existing_page_budget(struct ubifs_info *c) 215 { 216 struct ubifs_budget_req req = { .dd_growth = c->page_budget}; 217 218 ubifs_release_budget(c, &req); 219 } 220 221 static int write_begin_slow(struct address_space *mapping, 222 loff_t pos, unsigned len, struct page **pagep) 223 { 224 struct inode *inode = mapping->host; 225 struct ubifs_info *c = inode->i_sb->s_fs_info; 226 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 227 struct ubifs_budget_req req = { .new_page = 1 }; 228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 229 struct page *page; 230 231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 232 inode->i_ino, pos, len, inode->i_size); 233 234 /* 235 * At the slow path we have to budget before locking the page, because 236 * budgeting may force write-back, which would wait on locked pages and 237 * deadlock if we had the page locked. At this point we do not know 238 * anything about the page, so assume that this is a new page which is 239 * written to a hole. This corresponds to largest budget. Later the 240 * budget will be amended if this is not true. 241 */ 242 if (appending) 243 /* We are appending data, budget for inode change */ 244 req.dirtied_ino = 1; 245 246 err = ubifs_budget_space(c, &req); 247 if (unlikely(err)) 248 return err; 249 250 page = __grab_cache_page(mapping, index); 251 if (unlikely(!page)) { 252 ubifs_release_budget(c, &req); 253 return -ENOMEM; 254 } 255 256 if (!PageUptodate(page)) { 257 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 258 SetPageChecked(page); 259 else { 260 err = do_readpage(page); 261 if (err) { 262 unlock_page(page); 263 page_cache_release(page); 264 return err; 265 } 266 } 267 268 SetPageUptodate(page); 269 ClearPageError(page); 270 } 271 272 if (PagePrivate(page)) 273 /* 274 * The page is dirty, which means it was budgeted twice: 275 * o first time the budget was allocated by the task which 276 * made the page dirty and set the PG_private flag; 277 * o and then we budgeted for it for the second time at the 278 * very beginning of this function. 279 * 280 * So what we have to do is to release the page budget we 281 * allocated. 282 */ 283 release_new_page_budget(c); 284 else if (!PageChecked(page)) 285 /* 286 * We are changing a page which already exists on the media. 287 * This means that changing the page does not make the amount 288 * of indexing information larger, and this part of the budget 289 * which we have already acquired may be released. 290 */ 291 ubifs_convert_page_budget(c); 292 293 if (appending) { 294 struct ubifs_inode *ui = ubifs_inode(inode); 295 296 /* 297 * 'ubifs_write_end()' is optimized from the fast-path part of 298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 299 * if data is appended. 300 */ 301 mutex_lock(&ui->ui_mutex); 302 if (ui->dirty) 303 /* 304 * The inode is dirty already, so we may free the 305 * budget we allocated. 306 */ 307 ubifs_release_dirty_inode_budget(c, ui); 308 } 309 310 *pagep = page; 311 return 0; 312 } 313 314 /** 315 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 316 * @c: UBIFS file-system description object 317 * @page: page to allocate budget for 318 * @ui: UBIFS inode object the page belongs to 319 * @appending: non-zero if the page is appended 320 * 321 * This is a helper function for 'ubifs_write_begin()' which allocates budget 322 * for the operation. The budget is allocated differently depending on whether 323 * this is appending, whether the page is dirty or not, and so on. This 324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 325 * in case of success and %-ENOSPC in case of failure. 326 */ 327 static int allocate_budget(struct ubifs_info *c, struct page *page, 328 struct ubifs_inode *ui, int appending) 329 { 330 struct ubifs_budget_req req = { .fast = 1 }; 331 332 if (PagePrivate(page)) { 333 if (!appending) 334 /* 335 * The page is dirty and we are not appending, which 336 * means no budget is needed at all. 337 */ 338 return 0; 339 340 mutex_lock(&ui->ui_mutex); 341 if (ui->dirty) 342 /* 343 * The page is dirty and we are appending, so the inode 344 * has to be marked as dirty. However, it is already 345 * dirty, so we do not need any budget. We may return, 346 * but @ui->ui_mutex hast to be left locked because we 347 * should prevent write-back from flushing the inode 348 * and freeing the budget. The lock will be released in 349 * 'ubifs_write_end()'. 350 */ 351 return 0; 352 353 /* 354 * The page is dirty, we are appending, the inode is clean, so 355 * we need to budget the inode change. 356 */ 357 req.dirtied_ino = 1; 358 } else { 359 if (PageChecked(page)) 360 /* 361 * The page corresponds to a hole and does not 362 * exist on the media. So changing it makes 363 * make the amount of indexing information 364 * larger, and we have to budget for a new 365 * page. 366 */ 367 req.new_page = 1; 368 else 369 /* 370 * Not a hole, the change will not add any new 371 * indexing information, budget for page 372 * change. 373 */ 374 req.dirtied_page = 1; 375 376 if (appending) { 377 mutex_lock(&ui->ui_mutex); 378 if (!ui->dirty) 379 /* 380 * The inode is clean but we will have to mark 381 * it as dirty because we are appending. This 382 * needs a budget. 383 */ 384 req.dirtied_ino = 1; 385 } 386 } 387 388 return ubifs_budget_space(c, &req); 389 } 390 391 /* 392 * This function is called when a page of data is going to be written. Since 393 * the page of data will not necessarily go to the flash straight away, UBIFS 394 * has to reserve space on the media for it, which is done by means of 395 * budgeting. 396 * 397 * This is the hot-path of the file-system and we are trying to optimize it as 398 * much as possible. For this reasons it is split on 2 parts - slow and fast. 399 * 400 * There many budgeting cases: 401 * o a new page is appended - we have to budget for a new page and for 402 * changing the inode; however, if the inode is already dirty, there is 403 * no need to budget for it; 404 * o an existing clean page is changed - we have budget for it; if the page 405 * does not exist on the media (a hole), we have to budget for a new 406 * page; otherwise, we may budget for changing an existing page; the 407 * difference between these cases is that changing an existing page does 408 * not introduce anything new to the FS indexing information, so it does 409 * not grow, and smaller budget is acquired in this case; 410 * o an existing dirty page is changed - no need to budget at all, because 411 * the page budget has been acquired by earlier, when the page has been 412 * marked dirty. 413 * 414 * UBIFS budgeting sub-system may force write-back if it thinks there is no 415 * space to reserve. This imposes some locking restrictions and makes it 416 * impossible to take into account the above cases, and makes it impossible to 417 * optimize budgeting. 418 * 419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 420 * there is a plenty of flash space and the budget will be acquired quickly, 421 * without forcing write-back. The slow path does not make this assumption. 422 */ 423 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 424 loff_t pos, unsigned len, unsigned flags, 425 struct page **pagep, void **fsdata) 426 { 427 struct inode *inode = mapping->host; 428 struct ubifs_info *c = inode->i_sb->s_fs_info; 429 struct ubifs_inode *ui = ubifs_inode(inode); 430 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 432 struct page *page; 433 434 435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 436 437 if (unlikely(c->ro_media)) 438 return -EROFS; 439 440 /* Try out the fast-path part first */ 441 page = __grab_cache_page(mapping, index); 442 if (unlikely(!page)) 443 return -ENOMEM; 444 445 if (!PageUptodate(page)) { 446 /* The page is not loaded from the flash */ 447 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 448 /* 449 * We change whole page so no need to load it. But we 450 * have to set the @PG_checked flag to make the further 451 * code the page is new. This might be not true, but it 452 * is better to budget more that to read the page from 453 * the media. 454 */ 455 SetPageChecked(page); 456 else { 457 err = do_readpage(page); 458 if (err) { 459 unlock_page(page); 460 page_cache_release(page); 461 return err; 462 } 463 } 464 465 SetPageUptodate(page); 466 ClearPageError(page); 467 } 468 469 err = allocate_budget(c, page, ui, appending); 470 if (unlikely(err)) { 471 ubifs_assert(err == -ENOSPC); 472 /* 473 * Budgeting failed which means it would have to force 474 * write-back but didn't, because we set the @fast flag in the 475 * request. Write-back cannot be done now, while we have the 476 * page locked, because it would deadlock. Unlock and free 477 * everything and fall-back to slow-path. 478 */ 479 if (appending) { 480 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 481 mutex_unlock(&ui->ui_mutex); 482 } 483 unlock_page(page); 484 page_cache_release(page); 485 486 return write_begin_slow(mapping, pos, len, pagep); 487 } 488 489 /* 490 * Whee, we aquired budgeting quickly - without involving 491 * garbage-collection, committing or forceing write-back. We return 492 * with @ui->ui_mutex locked if we are appending pages, and unlocked 493 * otherwise. This is an optimization (slightly hacky though). 494 */ 495 *pagep = page; 496 return 0; 497 498 } 499 500 /** 501 * cancel_budget - cancel budget. 502 * @c: UBIFS file-system description object 503 * @page: page to cancel budget for 504 * @ui: UBIFS inode object the page belongs to 505 * @appending: non-zero if the page is appended 506 * 507 * This is a helper function for a page write operation. It unlocks the 508 * @ui->ui_mutex in case of appending. 509 */ 510 static void cancel_budget(struct ubifs_info *c, struct page *page, 511 struct ubifs_inode *ui, int appending) 512 { 513 if (appending) { 514 if (!ui->dirty) 515 ubifs_release_dirty_inode_budget(c, ui); 516 mutex_unlock(&ui->ui_mutex); 517 } 518 if (!PagePrivate(page)) { 519 if (PageChecked(page)) 520 release_new_page_budget(c); 521 else 522 release_existing_page_budget(c); 523 } 524 } 525 526 static int ubifs_write_end(struct file *file, struct address_space *mapping, 527 loff_t pos, unsigned len, unsigned copied, 528 struct page *page, void *fsdata) 529 { 530 struct inode *inode = mapping->host; 531 struct ubifs_inode *ui = ubifs_inode(inode); 532 struct ubifs_info *c = inode->i_sb->s_fs_info; 533 loff_t end_pos = pos + len; 534 int appending = !!(end_pos > inode->i_size); 535 536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 537 inode->i_ino, pos, page->index, len, copied, inode->i_size); 538 539 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) { 540 /* 541 * VFS copied less data to the page that it intended and 542 * declared in its '->write_begin()' call via the @len 543 * argument. If the page was not up-to-date, and @len was 544 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did 545 * not load it from the media (for optimization reasons). This 546 * means that part of the page contains garbage. So read the 547 * page now. 548 */ 549 dbg_gen("copied %d instead of %d, read page and repeat", 550 copied, len); 551 cancel_budget(c, page, ui, appending); 552 553 /* 554 * Return 0 to force VFS to repeat the whole operation, or the 555 * error code if 'do_readpage()' failes. 556 */ 557 copied = do_readpage(page); 558 goto out; 559 } 560 561 if (!PagePrivate(page)) { 562 SetPagePrivate(page); 563 atomic_long_inc(&c->dirty_pg_cnt); 564 __set_page_dirty_nobuffers(page); 565 } 566 567 if (appending) { 568 i_size_write(inode, end_pos); 569 ui->ui_size = end_pos; 570 /* 571 * Note, we do not set @I_DIRTY_PAGES (which means that the 572 * inode has dirty pages), this has been done in 573 * '__set_page_dirty_nobuffers()'. 574 */ 575 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 576 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 577 mutex_unlock(&ui->ui_mutex); 578 } 579 580 out: 581 unlock_page(page); 582 page_cache_release(page); 583 return copied; 584 } 585 586 /** 587 * populate_page - copy data nodes into a page for bulk-read. 588 * @c: UBIFS file-system description object 589 * @page: page 590 * @bu: bulk-read information 591 * @n: next zbranch slot 592 * 593 * This function returns %0 on success and a negative error code on failure. 594 */ 595 static int populate_page(struct ubifs_info *c, struct page *page, 596 struct bu_info *bu, int *n) 597 { 598 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 599 struct inode *inode = page->mapping->host; 600 loff_t i_size = i_size_read(inode); 601 unsigned int page_block; 602 void *addr, *zaddr; 603 pgoff_t end_index; 604 605 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 606 inode->i_ino, page->index, i_size, page->flags); 607 608 addr = zaddr = kmap(page); 609 610 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 611 if (!i_size || page->index > end_index) { 612 hole = 1; 613 memset(addr, 0, PAGE_CACHE_SIZE); 614 goto out_hole; 615 } 616 617 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 618 while (1) { 619 int err, len, out_len, dlen; 620 621 if (nn >= bu->cnt) { 622 hole = 1; 623 memset(addr, 0, UBIFS_BLOCK_SIZE); 624 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 625 struct ubifs_data_node *dn; 626 627 dn = bu->buf + (bu->zbranch[nn].offs - offs); 628 629 ubifs_assert(dn->ch.sqnum > 630 ubifs_inode(inode)->creat_sqnum); 631 632 len = le32_to_cpu(dn->size); 633 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 634 goto out_err; 635 636 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 637 out_len = UBIFS_BLOCK_SIZE; 638 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 639 le16_to_cpu(dn->compr_type)); 640 if (err || len != out_len) 641 goto out_err; 642 643 if (len < UBIFS_BLOCK_SIZE) 644 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 645 646 nn += 1; 647 read = (i << UBIFS_BLOCK_SHIFT) + len; 648 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 649 nn += 1; 650 continue; 651 } else { 652 hole = 1; 653 memset(addr, 0, UBIFS_BLOCK_SIZE); 654 } 655 if (++i >= UBIFS_BLOCKS_PER_PAGE) 656 break; 657 addr += UBIFS_BLOCK_SIZE; 658 page_block += 1; 659 } 660 661 if (end_index == page->index) { 662 int len = i_size & (PAGE_CACHE_SIZE - 1); 663 664 if (len && len < read) 665 memset(zaddr + len, 0, read - len); 666 } 667 668 out_hole: 669 if (hole) { 670 SetPageChecked(page); 671 dbg_gen("hole"); 672 } 673 674 SetPageUptodate(page); 675 ClearPageError(page); 676 flush_dcache_page(page); 677 kunmap(page); 678 *n = nn; 679 return 0; 680 681 out_err: 682 ClearPageUptodate(page); 683 SetPageError(page); 684 flush_dcache_page(page); 685 kunmap(page); 686 ubifs_err("bad data node (block %u, inode %lu)", 687 page_block, inode->i_ino); 688 return -EINVAL; 689 } 690 691 /** 692 * ubifs_do_bulk_read - do bulk-read. 693 * @c: UBIFS file-system description object 694 * @page1: first page 695 * 696 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 697 */ 698 static int ubifs_do_bulk_read(struct ubifs_info *c, struct page *page1) 699 { 700 pgoff_t offset = page1->index, end_index; 701 struct address_space *mapping = page1->mapping; 702 struct inode *inode = mapping->host; 703 struct ubifs_inode *ui = ubifs_inode(inode); 704 struct bu_info *bu; 705 int err, page_idx, page_cnt, ret = 0, n = 0; 706 loff_t isize; 707 708 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS); 709 if (!bu) 710 return 0; 711 712 bu->buf_len = c->bulk_read_buf_size; 713 bu->buf = kmalloc(bu->buf_len, GFP_NOFS); 714 if (!bu->buf) 715 goto out_free; 716 717 data_key_init(c, &bu->key, inode->i_ino, 718 offset << UBIFS_BLOCKS_PER_PAGE_SHIFT); 719 720 err = ubifs_tnc_get_bu_keys(c, bu); 721 if (err) 722 goto out_warn; 723 724 if (bu->eof) { 725 /* Turn off bulk-read at the end of the file */ 726 ui->read_in_a_row = 1; 727 ui->bulk_read = 0; 728 } 729 730 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 731 if (!page_cnt) { 732 /* 733 * This happens when there are multiple blocks per page and the 734 * blocks for the first page we are looking for, are not 735 * together. If all the pages were like this, bulk-read would 736 * reduce performance, so we turn it off for a while. 737 */ 738 ui->read_in_a_row = 0; 739 ui->bulk_read = 0; 740 goto out_free; 741 } 742 743 if (bu->cnt) { 744 err = ubifs_tnc_bulk_read(c, bu); 745 if (err) 746 goto out_warn; 747 } 748 749 err = populate_page(c, page1, bu, &n); 750 if (err) 751 goto out_warn; 752 753 unlock_page(page1); 754 ret = 1; 755 756 isize = i_size_read(inode); 757 if (isize == 0) 758 goto out_free; 759 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 760 761 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 762 pgoff_t page_offset = offset + page_idx; 763 struct page *page; 764 765 if (page_offset > end_index) 766 break; 767 page = find_or_create_page(mapping, page_offset, 768 GFP_NOFS | __GFP_COLD); 769 if (!page) 770 break; 771 if (!PageUptodate(page)) 772 err = populate_page(c, page, bu, &n); 773 unlock_page(page); 774 page_cache_release(page); 775 if (err) 776 break; 777 } 778 779 ui->last_page_read = offset + page_idx - 1; 780 781 out_free: 782 kfree(bu->buf); 783 kfree(bu); 784 return ret; 785 786 out_warn: 787 ubifs_warn("ignoring error %d and skipping bulk-read", err); 788 goto out_free; 789 } 790 791 /** 792 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 793 * @page: page from which to start bulk-read. 794 * 795 * Some flash media are capable of reading sequentially at faster rates. UBIFS 796 * bulk-read facility is designed to take advantage of that, by reading in one 797 * go consecutive data nodes that are also located consecutively in the same 798 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 799 */ 800 static int ubifs_bulk_read(struct page *page) 801 { 802 struct inode *inode = page->mapping->host; 803 struct ubifs_info *c = inode->i_sb->s_fs_info; 804 struct ubifs_inode *ui = ubifs_inode(inode); 805 pgoff_t index = page->index, last_page_read = ui->last_page_read; 806 int ret = 0; 807 808 ui->last_page_read = index; 809 810 if (!c->bulk_read) 811 return 0; 812 /* 813 * Bulk-read is protected by ui_mutex, but it is an optimization, so 814 * don't bother if we cannot lock the mutex. 815 */ 816 if (!mutex_trylock(&ui->ui_mutex)) 817 return 0; 818 if (index != last_page_read + 1) { 819 /* Turn off bulk-read if we stop reading sequentially */ 820 ui->read_in_a_row = 1; 821 if (ui->bulk_read) 822 ui->bulk_read = 0; 823 goto out_unlock; 824 } 825 if (!ui->bulk_read) { 826 ui->read_in_a_row += 1; 827 if (ui->read_in_a_row < 3) 828 goto out_unlock; 829 /* Three reads in a row, so switch on bulk-read */ 830 ui->bulk_read = 1; 831 } 832 ret = ubifs_do_bulk_read(c, page); 833 out_unlock: 834 mutex_unlock(&ui->ui_mutex); 835 return ret; 836 } 837 838 static int ubifs_readpage(struct file *file, struct page *page) 839 { 840 if (ubifs_bulk_read(page)) 841 return 0; 842 do_readpage(page); 843 unlock_page(page); 844 return 0; 845 } 846 847 static int do_writepage(struct page *page, int len) 848 { 849 int err = 0, i, blen; 850 unsigned int block; 851 void *addr; 852 union ubifs_key key; 853 struct inode *inode = page->mapping->host; 854 struct ubifs_info *c = inode->i_sb->s_fs_info; 855 856 #ifdef UBIFS_DEBUG 857 spin_lock(&ui->ui_lock); 858 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE); 859 spin_unlock(&ui->ui_lock); 860 #endif 861 862 /* Update radix tree tags */ 863 set_page_writeback(page); 864 865 addr = kmap(page); 866 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 867 i = 0; 868 while (len) { 869 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 870 data_key_init(c, &key, inode->i_ino, block); 871 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 872 if (err) 873 break; 874 if (++i >= UBIFS_BLOCKS_PER_PAGE) 875 break; 876 block += 1; 877 addr += blen; 878 len -= blen; 879 } 880 if (err) { 881 SetPageError(page); 882 ubifs_err("cannot write page %lu of inode %lu, error %d", 883 page->index, inode->i_ino, err); 884 ubifs_ro_mode(c, err); 885 } 886 887 ubifs_assert(PagePrivate(page)); 888 if (PageChecked(page)) 889 release_new_page_budget(c); 890 else 891 release_existing_page_budget(c); 892 893 atomic_long_dec(&c->dirty_pg_cnt); 894 ClearPagePrivate(page); 895 ClearPageChecked(page); 896 897 kunmap(page); 898 unlock_page(page); 899 end_page_writeback(page); 900 return err; 901 } 902 903 /* 904 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 905 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 906 * situation when a we have an inode with size 0, then a megabyte of data is 907 * appended to the inode, then write-back starts and flushes some amount of the 908 * dirty pages, the journal becomes full, commit happens and finishes, and then 909 * an unclean reboot happens. When the file system is mounted next time, the 910 * inode size would still be 0, but there would be many pages which are beyond 911 * the inode size, they would be indexed and consume flash space. Because the 912 * journal has been committed, the replay would not be able to detect this 913 * situation and correct the inode size. This means UBIFS would have to scan 914 * whole index and correct all inode sizes, which is long an unacceptable. 915 * 916 * To prevent situations like this, UBIFS writes pages back only if they are 917 * within last synchronized inode size, i.e. the the size which has been 918 * written to the flash media last time. Otherwise, UBIFS forces inode 919 * write-back, thus making sure the on-flash inode contains current inode size, 920 * and then keeps writing pages back. 921 * 922 * Some locking issues explanation. 'ubifs_writepage()' first is called with 923 * the page locked, and it locks @ui_mutex. However, write-back does take inode 924 * @i_mutex, which means other VFS operations may be run on this inode at the 925 * same time. And the problematic one is truncation to smaller size, from where 926 * we have to call 'vmtruncate()', which first changes @inode->i_size, then 927 * drops the truncated pages. And while dropping the pages, it takes the page 928 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with 929 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This 930 * means that @inode->i_size is changed while @ui_mutex is unlocked. 931 * 932 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 933 * inode size. How do we do this if @inode->i_size may became smaller while we 934 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 935 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 936 * internally and updates it under @ui_mutex. 937 * 938 * Q: why we do not worry that if we race with truncation, we may end up with a 939 * situation when the inode is truncated while we are in the middle of 940 * 'do_writepage()', so we do write beyond inode size? 941 * A: If we are in the middle of 'do_writepage()', truncation would be locked 942 * on the page lock and it would not write the truncated inode node to the 943 * journal before we have finished. 944 */ 945 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 946 { 947 struct inode *inode = page->mapping->host; 948 struct ubifs_inode *ui = ubifs_inode(inode); 949 loff_t i_size = i_size_read(inode), synced_i_size; 950 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 951 int err, len = i_size & (PAGE_CACHE_SIZE - 1); 952 void *kaddr; 953 954 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 955 inode->i_ino, page->index, page->flags); 956 ubifs_assert(PagePrivate(page)); 957 958 /* Is the page fully outside @i_size? (truncate in progress) */ 959 if (page->index > end_index || (page->index == end_index && !len)) { 960 err = 0; 961 goto out_unlock; 962 } 963 964 spin_lock(&ui->ui_lock); 965 synced_i_size = ui->synced_i_size; 966 spin_unlock(&ui->ui_lock); 967 968 /* Is the page fully inside @i_size? */ 969 if (page->index < end_index) { 970 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) { 971 err = inode->i_sb->s_op->write_inode(inode, 1); 972 if (err) 973 goto out_unlock; 974 /* 975 * The inode has been written, but the write-buffer has 976 * not been synchronized, so in case of an unclean 977 * reboot we may end up with some pages beyond inode 978 * size, but they would be in the journal (because 979 * commit flushes write buffers) and recovery would deal 980 * with this. 981 */ 982 } 983 return do_writepage(page, PAGE_CACHE_SIZE); 984 } 985 986 /* 987 * The page straddles @i_size. It must be zeroed out on each and every 988 * writepage invocation because it may be mmapped. "A file is mapped 989 * in multiples of the page size. For a file that is not a multiple of 990 * the page size, the remaining memory is zeroed when mapped, and 991 * writes to that region are not written out to the file." 992 */ 993 kaddr = kmap_atomic(page, KM_USER0); 994 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len); 995 flush_dcache_page(page); 996 kunmap_atomic(kaddr, KM_USER0); 997 998 if (i_size > synced_i_size) { 999 err = inode->i_sb->s_op->write_inode(inode, 1); 1000 if (err) 1001 goto out_unlock; 1002 } 1003 1004 return do_writepage(page, len); 1005 1006 out_unlock: 1007 unlock_page(page); 1008 return err; 1009 } 1010 1011 /** 1012 * do_attr_changes - change inode attributes. 1013 * @inode: inode to change attributes for 1014 * @attr: describes attributes to change 1015 */ 1016 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1017 { 1018 if (attr->ia_valid & ATTR_UID) 1019 inode->i_uid = attr->ia_uid; 1020 if (attr->ia_valid & ATTR_GID) 1021 inode->i_gid = attr->ia_gid; 1022 if (attr->ia_valid & ATTR_ATIME) 1023 inode->i_atime = timespec_trunc(attr->ia_atime, 1024 inode->i_sb->s_time_gran); 1025 if (attr->ia_valid & ATTR_MTIME) 1026 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1027 inode->i_sb->s_time_gran); 1028 if (attr->ia_valid & ATTR_CTIME) 1029 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1030 inode->i_sb->s_time_gran); 1031 if (attr->ia_valid & ATTR_MODE) { 1032 umode_t mode = attr->ia_mode; 1033 1034 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1035 mode &= ~S_ISGID; 1036 inode->i_mode = mode; 1037 } 1038 } 1039 1040 /** 1041 * do_truncation - truncate an inode. 1042 * @c: UBIFS file-system description object 1043 * @inode: inode to truncate 1044 * @attr: inode attribute changes description 1045 * 1046 * This function implements VFS '->setattr()' call when the inode is truncated 1047 * to a smaller size. Returns zero in case of success and a negative error code 1048 * in case of failure. 1049 */ 1050 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1051 const struct iattr *attr) 1052 { 1053 int err; 1054 struct ubifs_budget_req req; 1055 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1056 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1057 struct ubifs_inode *ui = ubifs_inode(inode); 1058 1059 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1060 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1061 1062 /* 1063 * If this is truncation to a smaller size, and we do not truncate on a 1064 * block boundary, budget for changing one data block, because the last 1065 * block will be re-written. 1066 */ 1067 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1068 req.dirtied_page = 1; 1069 1070 req.dirtied_ino = 1; 1071 /* A funny way to budget for truncation node */ 1072 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1073 err = ubifs_budget_space(c, &req); 1074 if (err) { 1075 /* 1076 * Treat truncations to zero as deletion and always allow them, 1077 * just like we do for '->unlink()'. 1078 */ 1079 if (new_size || err != -ENOSPC) 1080 return err; 1081 budgeted = 0; 1082 } 1083 1084 err = vmtruncate(inode, new_size); 1085 if (err) 1086 goto out_budg; 1087 1088 if (offset) { 1089 pgoff_t index = new_size >> PAGE_CACHE_SHIFT; 1090 struct page *page; 1091 1092 page = find_lock_page(inode->i_mapping, index); 1093 if (page) { 1094 if (PageDirty(page)) { 1095 /* 1096 * 'ubifs_jnl_truncate()' will try to truncate 1097 * the last data node, but it contains 1098 * out-of-date data because the page is dirty. 1099 * Write the page now, so that 1100 * 'ubifs_jnl_truncate()' will see an already 1101 * truncated (and up to date) data node. 1102 */ 1103 ubifs_assert(PagePrivate(page)); 1104 1105 clear_page_dirty_for_io(page); 1106 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1107 offset = new_size & 1108 (PAGE_CACHE_SIZE - 1); 1109 err = do_writepage(page, offset); 1110 page_cache_release(page); 1111 if (err) 1112 goto out_budg; 1113 /* 1114 * We could now tell 'ubifs_jnl_truncate()' not 1115 * to read the last block. 1116 */ 1117 } else { 1118 /* 1119 * We could 'kmap()' the page and pass the data 1120 * to 'ubifs_jnl_truncate()' to save it from 1121 * having to read it. 1122 */ 1123 unlock_page(page); 1124 page_cache_release(page); 1125 } 1126 } 1127 } 1128 1129 mutex_lock(&ui->ui_mutex); 1130 ui->ui_size = inode->i_size; 1131 /* Truncation changes inode [mc]time */ 1132 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1133 /* The other attributes may be changed at the same time as well */ 1134 do_attr_changes(inode, attr); 1135 1136 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1137 mutex_unlock(&ui->ui_mutex); 1138 out_budg: 1139 if (budgeted) 1140 ubifs_release_budget(c, &req); 1141 else { 1142 c->nospace = c->nospace_rp = 0; 1143 smp_wmb(); 1144 } 1145 return err; 1146 } 1147 1148 /** 1149 * do_setattr - change inode attributes. 1150 * @c: UBIFS file-system description object 1151 * @inode: inode to change attributes for 1152 * @attr: inode attribute changes description 1153 * 1154 * This function implements VFS '->setattr()' call for all cases except 1155 * truncations to smaller size. Returns zero in case of success and a negative 1156 * error code in case of failure. 1157 */ 1158 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1159 const struct iattr *attr) 1160 { 1161 int err, release; 1162 loff_t new_size = attr->ia_size; 1163 struct ubifs_inode *ui = ubifs_inode(inode); 1164 struct ubifs_budget_req req = { .dirtied_ino = 1, 1165 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1166 1167 err = ubifs_budget_space(c, &req); 1168 if (err) 1169 return err; 1170 1171 if (attr->ia_valid & ATTR_SIZE) { 1172 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1173 err = vmtruncate(inode, new_size); 1174 if (err) 1175 goto out; 1176 } 1177 1178 mutex_lock(&ui->ui_mutex); 1179 if (attr->ia_valid & ATTR_SIZE) { 1180 /* Truncation changes inode [mc]time */ 1181 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1182 /* 'vmtruncate()' changed @i_size, update @ui_size */ 1183 ui->ui_size = inode->i_size; 1184 } 1185 1186 do_attr_changes(inode, attr); 1187 1188 release = ui->dirty; 1189 if (attr->ia_valid & ATTR_SIZE) 1190 /* 1191 * Inode length changed, so we have to make sure 1192 * @I_DIRTY_DATASYNC is set. 1193 */ 1194 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1195 else 1196 mark_inode_dirty_sync(inode); 1197 mutex_unlock(&ui->ui_mutex); 1198 1199 if (release) 1200 ubifs_release_budget(c, &req); 1201 if (IS_SYNC(inode)) 1202 err = inode->i_sb->s_op->write_inode(inode, 1); 1203 return err; 1204 1205 out: 1206 ubifs_release_budget(c, &req); 1207 return err; 1208 } 1209 1210 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1211 { 1212 int err; 1213 struct inode *inode = dentry->d_inode; 1214 struct ubifs_info *c = inode->i_sb->s_fs_info; 1215 1216 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1217 inode->i_ino, inode->i_mode, attr->ia_valid); 1218 err = inode_change_ok(inode, attr); 1219 if (err) 1220 return err; 1221 1222 err = dbg_check_synced_i_size(inode); 1223 if (err) 1224 return err; 1225 1226 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1227 /* Truncation to a smaller size */ 1228 err = do_truncation(c, inode, attr); 1229 else 1230 err = do_setattr(c, inode, attr); 1231 1232 return err; 1233 } 1234 1235 static void ubifs_invalidatepage(struct page *page, unsigned long offset) 1236 { 1237 struct inode *inode = page->mapping->host; 1238 struct ubifs_info *c = inode->i_sb->s_fs_info; 1239 1240 ubifs_assert(PagePrivate(page)); 1241 if (offset) 1242 /* Partial page remains dirty */ 1243 return; 1244 1245 if (PageChecked(page)) 1246 release_new_page_budget(c); 1247 else 1248 release_existing_page_budget(c); 1249 1250 atomic_long_dec(&c->dirty_pg_cnt); 1251 ClearPagePrivate(page); 1252 ClearPageChecked(page); 1253 } 1254 1255 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd) 1256 { 1257 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode); 1258 1259 nd_set_link(nd, ui->data); 1260 return NULL; 1261 } 1262 1263 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync) 1264 { 1265 struct inode *inode = dentry->d_inode; 1266 struct ubifs_info *c = inode->i_sb->s_fs_info; 1267 int err; 1268 1269 dbg_gen("syncing inode %lu", inode->i_ino); 1270 1271 /* 1272 * VFS has already synchronized dirty pages for this inode. Synchronize 1273 * the inode unless this is a 'datasync()' call. 1274 */ 1275 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1276 err = inode->i_sb->s_op->write_inode(inode, 1); 1277 if (err) 1278 return err; 1279 } 1280 1281 /* 1282 * Nodes related to this inode may still sit in a write-buffer. Flush 1283 * them. 1284 */ 1285 err = ubifs_sync_wbufs_by_inode(c, inode); 1286 if (err) 1287 return err; 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * mctime_update_needed - check if mtime or ctime update is needed. 1294 * @inode: the inode to do the check for 1295 * @now: current time 1296 * 1297 * This helper function checks if the inode mtime/ctime should be updated or 1298 * not. If current values of the time-stamps are within the UBIFS inode time 1299 * granularity, they are not updated. This is an optimization. 1300 */ 1301 static inline int mctime_update_needed(const struct inode *inode, 1302 const struct timespec *now) 1303 { 1304 if (!timespec_equal(&inode->i_mtime, now) || 1305 !timespec_equal(&inode->i_ctime, now)) 1306 return 1; 1307 return 0; 1308 } 1309 1310 /** 1311 * update_ctime - update mtime and ctime of an inode. 1312 * @c: UBIFS file-system description object 1313 * @inode: inode to update 1314 * 1315 * This function updates mtime and ctime of the inode if it is not equivalent to 1316 * current time. Returns zero in case of success and a negative error code in 1317 * case of failure. 1318 */ 1319 static int update_mctime(struct ubifs_info *c, struct inode *inode) 1320 { 1321 struct timespec now = ubifs_current_time(inode); 1322 struct ubifs_inode *ui = ubifs_inode(inode); 1323 1324 if (mctime_update_needed(inode, &now)) { 1325 int err, release; 1326 struct ubifs_budget_req req = { .dirtied_ino = 1, 1327 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1328 1329 err = ubifs_budget_space(c, &req); 1330 if (err) 1331 return err; 1332 1333 mutex_lock(&ui->ui_mutex); 1334 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1335 release = ui->dirty; 1336 mark_inode_dirty_sync(inode); 1337 mutex_unlock(&ui->ui_mutex); 1338 if (release) 1339 ubifs_release_budget(c, &req); 1340 } 1341 1342 return 0; 1343 } 1344 1345 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov, 1346 unsigned long nr_segs, loff_t pos) 1347 { 1348 int err; 1349 ssize_t ret; 1350 struct inode *inode = iocb->ki_filp->f_mapping->host; 1351 struct ubifs_info *c = inode->i_sb->s_fs_info; 1352 1353 err = update_mctime(c, inode); 1354 if (err) 1355 return err; 1356 1357 ret = generic_file_aio_write(iocb, iov, nr_segs, pos); 1358 if (ret < 0) 1359 return ret; 1360 1361 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) { 1362 err = ubifs_sync_wbufs_by_inode(c, inode); 1363 if (err) 1364 return err; 1365 } 1366 1367 return ret; 1368 } 1369 1370 static int ubifs_set_page_dirty(struct page *page) 1371 { 1372 int ret; 1373 1374 ret = __set_page_dirty_nobuffers(page); 1375 /* 1376 * An attempt to dirty a page without budgeting for it - should not 1377 * happen. 1378 */ 1379 ubifs_assert(ret == 0); 1380 return ret; 1381 } 1382 1383 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1384 { 1385 /* 1386 * An attempt to release a dirty page without budgeting for it - should 1387 * not happen. 1388 */ 1389 if (PageWriteback(page)) 1390 return 0; 1391 ubifs_assert(PagePrivate(page)); 1392 ubifs_assert(0); 1393 ClearPagePrivate(page); 1394 ClearPageChecked(page); 1395 return 1; 1396 } 1397 1398 /* 1399 * mmap()d file has taken write protection fault and is being made 1400 * writable. UBIFS must ensure page is budgeted for. 1401 */ 1402 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page) 1403 { 1404 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1405 struct ubifs_info *c = inode->i_sb->s_fs_info; 1406 struct timespec now = ubifs_current_time(inode); 1407 struct ubifs_budget_req req = { .new_page = 1 }; 1408 int err, update_time; 1409 1410 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1411 i_size_read(inode)); 1412 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY)); 1413 1414 if (unlikely(c->ro_media)) 1415 return -EROFS; 1416 1417 /* 1418 * We have not locked @page so far so we may budget for changing the 1419 * page. Note, we cannot do this after we locked the page, because 1420 * budgeting may cause write-back which would cause deadlock. 1421 * 1422 * At the moment we do not know whether the page is dirty or not, so we 1423 * assume that it is not and budget for a new page. We could look at 1424 * the @PG_private flag and figure this out, but we may race with write 1425 * back and the page state may change by the time we lock it, so this 1426 * would need additional care. We do not bother with this at the 1427 * moment, although it might be good idea to do. Instead, we allocate 1428 * budget for a new page and amend it later on if the page was in fact 1429 * dirty. 1430 * 1431 * The budgeting-related logic of this function is similar to what we 1432 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1433 * for more comments. 1434 */ 1435 update_time = mctime_update_needed(inode, &now); 1436 if (update_time) 1437 /* 1438 * We have to change inode time stamp which requires extra 1439 * budgeting. 1440 */ 1441 req.dirtied_ino = 1; 1442 1443 err = ubifs_budget_space(c, &req); 1444 if (unlikely(err)) { 1445 if (err == -ENOSPC) 1446 ubifs_warn("out of space for mmapped file " 1447 "(inode number %lu)", inode->i_ino); 1448 return err; 1449 } 1450 1451 lock_page(page); 1452 if (unlikely(page->mapping != inode->i_mapping || 1453 page_offset(page) > i_size_read(inode))) { 1454 /* Page got truncated out from underneath us */ 1455 err = -EINVAL; 1456 goto out_unlock; 1457 } 1458 1459 if (PagePrivate(page)) 1460 release_new_page_budget(c); 1461 else { 1462 if (!PageChecked(page)) 1463 ubifs_convert_page_budget(c); 1464 SetPagePrivate(page); 1465 atomic_long_inc(&c->dirty_pg_cnt); 1466 __set_page_dirty_nobuffers(page); 1467 } 1468 1469 if (update_time) { 1470 int release; 1471 struct ubifs_inode *ui = ubifs_inode(inode); 1472 1473 mutex_lock(&ui->ui_mutex); 1474 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1475 release = ui->dirty; 1476 mark_inode_dirty_sync(inode); 1477 mutex_unlock(&ui->ui_mutex); 1478 if (release) 1479 ubifs_release_dirty_inode_budget(c, ui); 1480 } 1481 1482 unlock_page(page); 1483 return 0; 1484 1485 out_unlock: 1486 unlock_page(page); 1487 ubifs_release_budget(c, &req); 1488 return err; 1489 } 1490 1491 static struct vm_operations_struct ubifs_file_vm_ops = { 1492 .fault = filemap_fault, 1493 .page_mkwrite = ubifs_vm_page_mkwrite, 1494 }; 1495 1496 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1497 { 1498 int err; 1499 1500 /* 'generic_file_mmap()' takes care of NOMMU case */ 1501 err = generic_file_mmap(file, vma); 1502 if (err) 1503 return err; 1504 vma->vm_ops = &ubifs_file_vm_ops; 1505 return 0; 1506 } 1507 1508 struct address_space_operations ubifs_file_address_operations = { 1509 .readpage = ubifs_readpage, 1510 .writepage = ubifs_writepage, 1511 .write_begin = ubifs_write_begin, 1512 .write_end = ubifs_write_end, 1513 .invalidatepage = ubifs_invalidatepage, 1514 .set_page_dirty = ubifs_set_page_dirty, 1515 .releasepage = ubifs_releasepage, 1516 }; 1517 1518 struct inode_operations ubifs_file_inode_operations = { 1519 .setattr = ubifs_setattr, 1520 .getattr = ubifs_getattr, 1521 #ifdef CONFIG_UBIFS_FS_XATTR 1522 .setxattr = ubifs_setxattr, 1523 .getxattr = ubifs_getxattr, 1524 .listxattr = ubifs_listxattr, 1525 .removexattr = ubifs_removexattr, 1526 #endif 1527 }; 1528 1529 struct inode_operations ubifs_symlink_inode_operations = { 1530 .readlink = generic_readlink, 1531 .follow_link = ubifs_follow_link, 1532 .setattr = ubifs_setattr, 1533 .getattr = ubifs_getattr, 1534 }; 1535 1536 struct file_operations ubifs_file_operations = { 1537 .llseek = generic_file_llseek, 1538 .read = do_sync_read, 1539 .write = do_sync_write, 1540 .aio_read = generic_file_aio_read, 1541 .aio_write = ubifs_aio_write, 1542 .mmap = ubifs_file_mmap, 1543 .fsync = ubifs_fsync, 1544 .unlocked_ioctl = ubifs_ioctl, 1545 .splice_read = generic_file_splice_read, 1546 .splice_write = generic_file_splice_write, 1547 #ifdef CONFIG_COMPAT 1548 .compat_ioctl = ubifs_compat_ioctl, 1549 #endif 1550 }; 1551