xref: /openbmc/linux/fs/ubifs/file.c (revision 95e9fd10)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/namei.h>
55 #include <linux/slab.h>
56 
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 	out_len = UBIFS_BLOCK_SIZE;
82 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
83 			       le16_to_cpu(dn->compr_type));
84 	if (err || len != out_len)
85 		goto dump;
86 
87 	/*
88 	 * Data length can be less than a full block, even for blocks that are
89 	 * not the last in the file (e.g., as a result of making a hole and
90 	 * appending data). Ensure that the remainder is zeroed out.
91 	 */
92 	if (len < UBIFS_BLOCK_SIZE)
93 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
94 
95 	return 0;
96 
97 dump:
98 	ubifs_err("bad data node (block %u, inode %lu)",
99 		  block, inode->i_ino);
100 	ubifs_dump_node(c, dn);
101 	return -EINVAL;
102 }
103 
104 static int do_readpage(struct page *page)
105 {
106 	void *addr;
107 	int err = 0, i;
108 	unsigned int block, beyond;
109 	struct ubifs_data_node *dn;
110 	struct inode *inode = page->mapping->host;
111 	loff_t i_size = i_size_read(inode);
112 
113 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114 		inode->i_ino, page->index, i_size, page->flags);
115 	ubifs_assert(!PageChecked(page));
116 	ubifs_assert(!PagePrivate(page));
117 
118 	addr = kmap(page);
119 
120 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
121 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
122 	if (block >= beyond) {
123 		/* Reading beyond inode */
124 		SetPageChecked(page);
125 		memset(addr, 0, PAGE_CACHE_SIZE);
126 		goto out;
127 	}
128 
129 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
130 	if (!dn) {
131 		err = -ENOMEM;
132 		goto error;
133 	}
134 
135 	i = 0;
136 	while (1) {
137 		int ret;
138 
139 		if (block >= beyond) {
140 			/* Reading beyond inode */
141 			err = -ENOENT;
142 			memset(addr, 0, UBIFS_BLOCK_SIZE);
143 		} else {
144 			ret = read_block(inode, addr, block, dn);
145 			if (ret) {
146 				err = ret;
147 				if (err != -ENOENT)
148 					break;
149 			} else if (block + 1 == beyond) {
150 				int dlen = le32_to_cpu(dn->size);
151 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
152 
153 				if (ilen && ilen < dlen)
154 					memset(addr + ilen, 0, dlen - ilen);
155 			}
156 		}
157 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
158 			break;
159 		block += 1;
160 		addr += UBIFS_BLOCK_SIZE;
161 	}
162 	if (err) {
163 		if (err == -ENOENT) {
164 			/* Not found, so it must be a hole */
165 			SetPageChecked(page);
166 			dbg_gen("hole");
167 			goto out_free;
168 		}
169 		ubifs_err("cannot read page %lu of inode %lu, error %d",
170 			  page->index, inode->i_ino, err);
171 		goto error;
172 	}
173 
174 out_free:
175 	kfree(dn);
176 out:
177 	SetPageUptodate(page);
178 	ClearPageError(page);
179 	flush_dcache_page(page);
180 	kunmap(page);
181 	return 0;
182 
183 error:
184 	kfree(dn);
185 	ClearPageUptodate(page);
186 	SetPageError(page);
187 	flush_dcache_page(page);
188 	kunmap(page);
189 	return err;
190 }
191 
192 /**
193  * release_new_page_budget - release budget of a new page.
194  * @c: UBIFS file-system description object
195  *
196  * This is a helper function which releases budget corresponding to the budget
197  * of one new page of data.
198  */
199 static void release_new_page_budget(struct ubifs_info *c)
200 {
201 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
202 
203 	ubifs_release_budget(c, &req);
204 }
205 
206 /**
207  * release_existing_page_budget - release budget of an existing page.
208  * @c: UBIFS file-system description object
209  *
210  * This is a helper function which releases budget corresponding to the budget
211  * of changing one one page of data which already exists on the flash media.
212  */
213 static void release_existing_page_budget(struct ubifs_info *c)
214 {
215 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
216 
217 	ubifs_release_budget(c, &req);
218 }
219 
220 static int write_begin_slow(struct address_space *mapping,
221 			    loff_t pos, unsigned len, struct page **pagep,
222 			    unsigned flags)
223 {
224 	struct inode *inode = mapping->host;
225 	struct ubifs_info *c = inode->i_sb->s_fs_info;
226 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 	struct ubifs_budget_req req = { .new_page = 1 };
228 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 	struct page *page;
230 
231 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 		inode->i_ino, pos, len, inode->i_size);
233 
234 	/*
235 	 * At the slow path we have to budget before locking the page, because
236 	 * budgeting may force write-back, which would wait on locked pages and
237 	 * deadlock if we had the page locked. At this point we do not know
238 	 * anything about the page, so assume that this is a new page which is
239 	 * written to a hole. This corresponds to largest budget. Later the
240 	 * budget will be amended if this is not true.
241 	 */
242 	if (appending)
243 		/* We are appending data, budget for inode change */
244 		req.dirtied_ino = 1;
245 
246 	err = ubifs_budget_space(c, &req);
247 	if (unlikely(err))
248 		return err;
249 
250 	page = grab_cache_page_write_begin(mapping, index, flags);
251 	if (unlikely(!page)) {
252 		ubifs_release_budget(c, &req);
253 		return -ENOMEM;
254 	}
255 
256 	if (!PageUptodate(page)) {
257 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 			SetPageChecked(page);
259 		else {
260 			err = do_readpage(page);
261 			if (err) {
262 				unlock_page(page);
263 				page_cache_release(page);
264 				return err;
265 			}
266 		}
267 
268 		SetPageUptodate(page);
269 		ClearPageError(page);
270 	}
271 
272 	if (PagePrivate(page))
273 		/*
274 		 * The page is dirty, which means it was budgeted twice:
275 		 *   o first time the budget was allocated by the task which
276 		 *     made the page dirty and set the PG_private flag;
277 		 *   o and then we budgeted for it for the second time at the
278 		 *     very beginning of this function.
279 		 *
280 		 * So what we have to do is to release the page budget we
281 		 * allocated.
282 		 */
283 		release_new_page_budget(c);
284 	else if (!PageChecked(page))
285 		/*
286 		 * We are changing a page which already exists on the media.
287 		 * This means that changing the page does not make the amount
288 		 * of indexing information larger, and this part of the budget
289 		 * which we have already acquired may be released.
290 		 */
291 		ubifs_convert_page_budget(c);
292 
293 	if (appending) {
294 		struct ubifs_inode *ui = ubifs_inode(inode);
295 
296 		/*
297 		 * 'ubifs_write_end()' is optimized from the fast-path part of
298 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 		 * if data is appended.
300 		 */
301 		mutex_lock(&ui->ui_mutex);
302 		if (ui->dirty)
303 			/*
304 			 * The inode is dirty already, so we may free the
305 			 * budget we allocated.
306 			 */
307 			ubifs_release_dirty_inode_budget(c, ui);
308 	}
309 
310 	*pagep = page;
311 	return 0;
312 }
313 
314 /**
315  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316  * @c: UBIFS file-system description object
317  * @page: page to allocate budget for
318  * @ui: UBIFS inode object the page belongs to
319  * @appending: non-zero if the page is appended
320  *
321  * This is a helper function for 'ubifs_write_begin()' which allocates budget
322  * for the operation. The budget is allocated differently depending on whether
323  * this is appending, whether the page is dirty or not, and so on. This
324  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325  * in case of success and %-ENOSPC in case of failure.
326  */
327 static int allocate_budget(struct ubifs_info *c, struct page *page,
328 			   struct ubifs_inode *ui, int appending)
329 {
330 	struct ubifs_budget_req req = { .fast = 1 };
331 
332 	if (PagePrivate(page)) {
333 		if (!appending)
334 			/*
335 			 * The page is dirty and we are not appending, which
336 			 * means no budget is needed at all.
337 			 */
338 			return 0;
339 
340 		mutex_lock(&ui->ui_mutex);
341 		if (ui->dirty)
342 			/*
343 			 * The page is dirty and we are appending, so the inode
344 			 * has to be marked as dirty. However, it is already
345 			 * dirty, so we do not need any budget. We may return,
346 			 * but @ui->ui_mutex hast to be left locked because we
347 			 * should prevent write-back from flushing the inode
348 			 * and freeing the budget. The lock will be released in
349 			 * 'ubifs_write_end()'.
350 			 */
351 			return 0;
352 
353 		/*
354 		 * The page is dirty, we are appending, the inode is clean, so
355 		 * we need to budget the inode change.
356 		 */
357 		req.dirtied_ino = 1;
358 	} else {
359 		if (PageChecked(page))
360 			/*
361 			 * The page corresponds to a hole and does not
362 			 * exist on the media. So changing it makes
363 			 * make the amount of indexing information
364 			 * larger, and we have to budget for a new
365 			 * page.
366 			 */
367 			req.new_page = 1;
368 		else
369 			/*
370 			 * Not a hole, the change will not add any new
371 			 * indexing information, budget for page
372 			 * change.
373 			 */
374 			req.dirtied_page = 1;
375 
376 		if (appending) {
377 			mutex_lock(&ui->ui_mutex);
378 			if (!ui->dirty)
379 				/*
380 				 * The inode is clean but we will have to mark
381 				 * it as dirty because we are appending. This
382 				 * needs a budget.
383 				 */
384 				req.dirtied_ino = 1;
385 		}
386 	}
387 
388 	return ubifs_budget_space(c, &req);
389 }
390 
391 /*
392  * This function is called when a page of data is going to be written. Since
393  * the page of data will not necessarily go to the flash straight away, UBIFS
394  * has to reserve space on the media for it, which is done by means of
395  * budgeting.
396  *
397  * This is the hot-path of the file-system and we are trying to optimize it as
398  * much as possible. For this reasons it is split on 2 parts - slow and fast.
399  *
400  * There many budgeting cases:
401  *     o a new page is appended - we have to budget for a new page and for
402  *       changing the inode; however, if the inode is already dirty, there is
403  *       no need to budget for it;
404  *     o an existing clean page is changed - we have budget for it; if the page
405  *       does not exist on the media (a hole), we have to budget for a new
406  *       page; otherwise, we may budget for changing an existing page; the
407  *       difference between these cases is that changing an existing page does
408  *       not introduce anything new to the FS indexing information, so it does
409  *       not grow, and smaller budget is acquired in this case;
410  *     o an existing dirty page is changed - no need to budget at all, because
411  *       the page budget has been acquired by earlier, when the page has been
412  *       marked dirty.
413  *
414  * UBIFS budgeting sub-system may force write-back if it thinks there is no
415  * space to reserve. This imposes some locking restrictions and makes it
416  * impossible to take into account the above cases, and makes it impossible to
417  * optimize budgeting.
418  *
419  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420  * there is a plenty of flash space and the budget will be acquired quickly,
421  * without forcing write-back. The slow path does not make this assumption.
422  */
423 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 			     loff_t pos, unsigned len, unsigned flags,
425 			     struct page **pagep, void **fsdata)
426 {
427 	struct inode *inode = mapping->host;
428 	struct ubifs_info *c = inode->i_sb->s_fs_info;
429 	struct ubifs_inode *ui = ubifs_inode(inode);
430 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 	int skipped_read = 0;
433 	struct page *page;
434 
435 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436 	ubifs_assert(!c->ro_media && !c->ro_mount);
437 
438 	if (unlikely(c->ro_error))
439 		return -EROFS;
440 
441 	/* Try out the fast-path part first */
442 	page = grab_cache_page_write_begin(mapping, index, flags);
443 	if (unlikely(!page))
444 		return -ENOMEM;
445 
446 	if (!PageUptodate(page)) {
447 		/* The page is not loaded from the flash */
448 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
449 			/*
450 			 * We change whole page so no need to load it. But we
451 			 * do not know whether this page exists on the media or
452 			 * not, so we assume the latter because it requires
453 			 * larger budget. The assumption is that it is better
454 			 * to budget a bit more than to read the page from the
455 			 * media. Thus, we are setting the @PG_checked flag
456 			 * here.
457 			 */
458 			SetPageChecked(page);
459 			skipped_read = 1;
460 		} else {
461 			err = do_readpage(page);
462 			if (err) {
463 				unlock_page(page);
464 				page_cache_release(page);
465 				return err;
466 			}
467 		}
468 
469 		SetPageUptodate(page);
470 		ClearPageError(page);
471 	}
472 
473 	err = allocate_budget(c, page, ui, appending);
474 	if (unlikely(err)) {
475 		ubifs_assert(err == -ENOSPC);
476 		/*
477 		 * If we skipped reading the page because we were going to
478 		 * write all of it, then it is not up to date.
479 		 */
480 		if (skipped_read) {
481 			ClearPageChecked(page);
482 			ClearPageUptodate(page);
483 		}
484 		/*
485 		 * Budgeting failed which means it would have to force
486 		 * write-back but didn't, because we set the @fast flag in the
487 		 * request. Write-back cannot be done now, while we have the
488 		 * page locked, because it would deadlock. Unlock and free
489 		 * everything and fall-back to slow-path.
490 		 */
491 		if (appending) {
492 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
493 			mutex_unlock(&ui->ui_mutex);
494 		}
495 		unlock_page(page);
496 		page_cache_release(page);
497 
498 		return write_begin_slow(mapping, pos, len, pagep, flags);
499 	}
500 
501 	/*
502 	 * Whee, we acquired budgeting quickly - without involving
503 	 * garbage-collection, committing or forcing write-back. We return
504 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
505 	 * otherwise. This is an optimization (slightly hacky though).
506 	 */
507 	*pagep = page;
508 	return 0;
509 
510 }
511 
512 /**
513  * cancel_budget - cancel budget.
514  * @c: UBIFS file-system description object
515  * @page: page to cancel budget for
516  * @ui: UBIFS inode object the page belongs to
517  * @appending: non-zero if the page is appended
518  *
519  * This is a helper function for a page write operation. It unlocks the
520  * @ui->ui_mutex in case of appending.
521  */
522 static void cancel_budget(struct ubifs_info *c, struct page *page,
523 			  struct ubifs_inode *ui, int appending)
524 {
525 	if (appending) {
526 		if (!ui->dirty)
527 			ubifs_release_dirty_inode_budget(c, ui);
528 		mutex_unlock(&ui->ui_mutex);
529 	}
530 	if (!PagePrivate(page)) {
531 		if (PageChecked(page))
532 			release_new_page_budget(c);
533 		else
534 			release_existing_page_budget(c);
535 	}
536 }
537 
538 static int ubifs_write_end(struct file *file, struct address_space *mapping,
539 			   loff_t pos, unsigned len, unsigned copied,
540 			   struct page *page, void *fsdata)
541 {
542 	struct inode *inode = mapping->host;
543 	struct ubifs_inode *ui = ubifs_inode(inode);
544 	struct ubifs_info *c = inode->i_sb->s_fs_info;
545 	loff_t end_pos = pos + len;
546 	int appending = !!(end_pos > inode->i_size);
547 
548 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
549 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
550 
551 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
552 		/*
553 		 * VFS copied less data to the page that it intended and
554 		 * declared in its '->write_begin()' call via the @len
555 		 * argument. If the page was not up-to-date, and @len was
556 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
557 		 * not load it from the media (for optimization reasons). This
558 		 * means that part of the page contains garbage. So read the
559 		 * page now.
560 		 */
561 		dbg_gen("copied %d instead of %d, read page and repeat",
562 			copied, len);
563 		cancel_budget(c, page, ui, appending);
564 		ClearPageChecked(page);
565 
566 		/*
567 		 * Return 0 to force VFS to repeat the whole operation, or the
568 		 * error code if 'do_readpage()' fails.
569 		 */
570 		copied = do_readpage(page);
571 		goto out;
572 	}
573 
574 	if (!PagePrivate(page)) {
575 		SetPagePrivate(page);
576 		atomic_long_inc(&c->dirty_pg_cnt);
577 		__set_page_dirty_nobuffers(page);
578 	}
579 
580 	if (appending) {
581 		i_size_write(inode, end_pos);
582 		ui->ui_size = end_pos;
583 		/*
584 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
585 		 * inode has dirty pages), this has been done in
586 		 * '__set_page_dirty_nobuffers()'.
587 		 */
588 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
589 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
590 		mutex_unlock(&ui->ui_mutex);
591 	}
592 
593 out:
594 	unlock_page(page);
595 	page_cache_release(page);
596 	return copied;
597 }
598 
599 /**
600  * populate_page - copy data nodes into a page for bulk-read.
601  * @c: UBIFS file-system description object
602  * @page: page
603  * @bu: bulk-read information
604  * @n: next zbranch slot
605  *
606  * This function returns %0 on success and a negative error code on failure.
607  */
608 static int populate_page(struct ubifs_info *c, struct page *page,
609 			 struct bu_info *bu, int *n)
610 {
611 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
612 	struct inode *inode = page->mapping->host;
613 	loff_t i_size = i_size_read(inode);
614 	unsigned int page_block;
615 	void *addr, *zaddr;
616 	pgoff_t end_index;
617 
618 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
619 		inode->i_ino, page->index, i_size, page->flags);
620 
621 	addr = zaddr = kmap(page);
622 
623 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
624 	if (!i_size || page->index > end_index) {
625 		hole = 1;
626 		memset(addr, 0, PAGE_CACHE_SIZE);
627 		goto out_hole;
628 	}
629 
630 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
631 	while (1) {
632 		int err, len, out_len, dlen;
633 
634 		if (nn >= bu->cnt) {
635 			hole = 1;
636 			memset(addr, 0, UBIFS_BLOCK_SIZE);
637 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
638 			struct ubifs_data_node *dn;
639 
640 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
641 
642 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
643 				     ubifs_inode(inode)->creat_sqnum);
644 
645 			len = le32_to_cpu(dn->size);
646 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
647 				goto out_err;
648 
649 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
650 			out_len = UBIFS_BLOCK_SIZE;
651 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
652 					       le16_to_cpu(dn->compr_type));
653 			if (err || len != out_len)
654 				goto out_err;
655 
656 			if (len < UBIFS_BLOCK_SIZE)
657 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
658 
659 			nn += 1;
660 			read = (i << UBIFS_BLOCK_SHIFT) + len;
661 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
662 			nn += 1;
663 			continue;
664 		} else {
665 			hole = 1;
666 			memset(addr, 0, UBIFS_BLOCK_SIZE);
667 		}
668 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
669 			break;
670 		addr += UBIFS_BLOCK_SIZE;
671 		page_block += 1;
672 	}
673 
674 	if (end_index == page->index) {
675 		int len = i_size & (PAGE_CACHE_SIZE - 1);
676 
677 		if (len && len < read)
678 			memset(zaddr + len, 0, read - len);
679 	}
680 
681 out_hole:
682 	if (hole) {
683 		SetPageChecked(page);
684 		dbg_gen("hole");
685 	}
686 
687 	SetPageUptodate(page);
688 	ClearPageError(page);
689 	flush_dcache_page(page);
690 	kunmap(page);
691 	*n = nn;
692 	return 0;
693 
694 out_err:
695 	ClearPageUptodate(page);
696 	SetPageError(page);
697 	flush_dcache_page(page);
698 	kunmap(page);
699 	ubifs_err("bad data node (block %u, inode %lu)",
700 		  page_block, inode->i_ino);
701 	return -EINVAL;
702 }
703 
704 /**
705  * ubifs_do_bulk_read - do bulk-read.
706  * @c: UBIFS file-system description object
707  * @bu: bulk-read information
708  * @page1: first page to read
709  *
710  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
711  */
712 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
713 			      struct page *page1)
714 {
715 	pgoff_t offset = page1->index, end_index;
716 	struct address_space *mapping = page1->mapping;
717 	struct inode *inode = mapping->host;
718 	struct ubifs_inode *ui = ubifs_inode(inode);
719 	int err, page_idx, page_cnt, ret = 0, n = 0;
720 	int allocate = bu->buf ? 0 : 1;
721 	loff_t isize;
722 
723 	err = ubifs_tnc_get_bu_keys(c, bu);
724 	if (err)
725 		goto out_warn;
726 
727 	if (bu->eof) {
728 		/* Turn off bulk-read at the end of the file */
729 		ui->read_in_a_row = 1;
730 		ui->bulk_read = 0;
731 	}
732 
733 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
734 	if (!page_cnt) {
735 		/*
736 		 * This happens when there are multiple blocks per page and the
737 		 * blocks for the first page we are looking for, are not
738 		 * together. If all the pages were like this, bulk-read would
739 		 * reduce performance, so we turn it off for a while.
740 		 */
741 		goto out_bu_off;
742 	}
743 
744 	if (bu->cnt) {
745 		if (allocate) {
746 			/*
747 			 * Allocate bulk-read buffer depending on how many data
748 			 * nodes we are going to read.
749 			 */
750 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
751 				      bu->zbranch[bu->cnt - 1].len -
752 				      bu->zbranch[0].offs;
753 			ubifs_assert(bu->buf_len > 0);
754 			ubifs_assert(bu->buf_len <= c->leb_size);
755 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
756 			if (!bu->buf)
757 				goto out_bu_off;
758 		}
759 
760 		err = ubifs_tnc_bulk_read(c, bu);
761 		if (err)
762 			goto out_warn;
763 	}
764 
765 	err = populate_page(c, page1, bu, &n);
766 	if (err)
767 		goto out_warn;
768 
769 	unlock_page(page1);
770 	ret = 1;
771 
772 	isize = i_size_read(inode);
773 	if (isize == 0)
774 		goto out_free;
775 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
776 
777 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
778 		pgoff_t page_offset = offset + page_idx;
779 		struct page *page;
780 
781 		if (page_offset > end_index)
782 			break;
783 		page = find_or_create_page(mapping, page_offset,
784 					   GFP_NOFS | __GFP_COLD);
785 		if (!page)
786 			break;
787 		if (!PageUptodate(page))
788 			err = populate_page(c, page, bu, &n);
789 		unlock_page(page);
790 		page_cache_release(page);
791 		if (err)
792 			break;
793 	}
794 
795 	ui->last_page_read = offset + page_idx - 1;
796 
797 out_free:
798 	if (allocate)
799 		kfree(bu->buf);
800 	return ret;
801 
802 out_warn:
803 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
804 	goto out_free;
805 
806 out_bu_off:
807 	ui->read_in_a_row = ui->bulk_read = 0;
808 	goto out_free;
809 }
810 
811 /**
812  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
813  * @page: page from which to start bulk-read.
814  *
815  * Some flash media are capable of reading sequentially at faster rates. UBIFS
816  * bulk-read facility is designed to take advantage of that, by reading in one
817  * go consecutive data nodes that are also located consecutively in the same
818  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
819  */
820 static int ubifs_bulk_read(struct page *page)
821 {
822 	struct inode *inode = page->mapping->host;
823 	struct ubifs_info *c = inode->i_sb->s_fs_info;
824 	struct ubifs_inode *ui = ubifs_inode(inode);
825 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
826 	struct bu_info *bu;
827 	int err = 0, allocated = 0;
828 
829 	ui->last_page_read = index;
830 	if (!c->bulk_read)
831 		return 0;
832 
833 	/*
834 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
835 	 * so don't bother if we cannot lock the mutex.
836 	 */
837 	if (!mutex_trylock(&ui->ui_mutex))
838 		return 0;
839 
840 	if (index != last_page_read + 1) {
841 		/* Turn off bulk-read if we stop reading sequentially */
842 		ui->read_in_a_row = 1;
843 		if (ui->bulk_read)
844 			ui->bulk_read = 0;
845 		goto out_unlock;
846 	}
847 
848 	if (!ui->bulk_read) {
849 		ui->read_in_a_row += 1;
850 		if (ui->read_in_a_row < 3)
851 			goto out_unlock;
852 		/* Three reads in a row, so switch on bulk-read */
853 		ui->bulk_read = 1;
854 	}
855 
856 	/*
857 	 * If possible, try to use pre-allocated bulk-read information, which
858 	 * is protected by @c->bu_mutex.
859 	 */
860 	if (mutex_trylock(&c->bu_mutex))
861 		bu = &c->bu;
862 	else {
863 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
864 		if (!bu)
865 			goto out_unlock;
866 
867 		bu->buf = NULL;
868 		allocated = 1;
869 	}
870 
871 	bu->buf_len = c->max_bu_buf_len;
872 	data_key_init(c, &bu->key, inode->i_ino,
873 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
874 	err = ubifs_do_bulk_read(c, bu, page);
875 
876 	if (!allocated)
877 		mutex_unlock(&c->bu_mutex);
878 	else
879 		kfree(bu);
880 
881 out_unlock:
882 	mutex_unlock(&ui->ui_mutex);
883 	return err;
884 }
885 
886 static int ubifs_readpage(struct file *file, struct page *page)
887 {
888 	if (ubifs_bulk_read(page))
889 		return 0;
890 	do_readpage(page);
891 	unlock_page(page);
892 	return 0;
893 }
894 
895 static int do_writepage(struct page *page, int len)
896 {
897 	int err = 0, i, blen;
898 	unsigned int block;
899 	void *addr;
900 	union ubifs_key key;
901 	struct inode *inode = page->mapping->host;
902 	struct ubifs_info *c = inode->i_sb->s_fs_info;
903 
904 #ifdef UBIFS_DEBUG
905 	spin_lock(&ui->ui_lock);
906 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
907 	spin_unlock(&ui->ui_lock);
908 #endif
909 
910 	/* Update radix tree tags */
911 	set_page_writeback(page);
912 
913 	addr = kmap(page);
914 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
915 	i = 0;
916 	while (len) {
917 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
918 		data_key_init(c, &key, inode->i_ino, block);
919 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
920 		if (err)
921 			break;
922 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
923 			break;
924 		block += 1;
925 		addr += blen;
926 		len -= blen;
927 	}
928 	if (err) {
929 		SetPageError(page);
930 		ubifs_err("cannot write page %lu of inode %lu, error %d",
931 			  page->index, inode->i_ino, err);
932 		ubifs_ro_mode(c, err);
933 	}
934 
935 	ubifs_assert(PagePrivate(page));
936 	if (PageChecked(page))
937 		release_new_page_budget(c);
938 	else
939 		release_existing_page_budget(c);
940 
941 	atomic_long_dec(&c->dirty_pg_cnt);
942 	ClearPagePrivate(page);
943 	ClearPageChecked(page);
944 
945 	kunmap(page);
946 	unlock_page(page);
947 	end_page_writeback(page);
948 	return err;
949 }
950 
951 /*
952  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
953  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
954  * situation when a we have an inode with size 0, then a megabyte of data is
955  * appended to the inode, then write-back starts and flushes some amount of the
956  * dirty pages, the journal becomes full, commit happens and finishes, and then
957  * an unclean reboot happens. When the file system is mounted next time, the
958  * inode size would still be 0, but there would be many pages which are beyond
959  * the inode size, they would be indexed and consume flash space. Because the
960  * journal has been committed, the replay would not be able to detect this
961  * situation and correct the inode size. This means UBIFS would have to scan
962  * whole index and correct all inode sizes, which is long an unacceptable.
963  *
964  * To prevent situations like this, UBIFS writes pages back only if they are
965  * within the last synchronized inode size, i.e. the size which has been
966  * written to the flash media last time. Otherwise, UBIFS forces inode
967  * write-back, thus making sure the on-flash inode contains current inode size,
968  * and then keeps writing pages back.
969  *
970  * Some locking issues explanation. 'ubifs_writepage()' first is called with
971  * the page locked, and it locks @ui_mutex. However, write-back does take inode
972  * @i_mutex, which means other VFS operations may be run on this inode at the
973  * same time. And the problematic one is truncation to smaller size, from where
974  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
975  * then drops the truncated pages. And while dropping the pages, it takes the
976  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
977  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
978  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
979  *
980  * XXX(truncate): with the new truncate sequence this is not true anymore,
981  * and the calls to truncate_setsize can be move around freely.  They should
982  * be moved to the very end of the truncate sequence.
983  *
984  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
985  * inode size. How do we do this if @inode->i_size may became smaller while we
986  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
987  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
988  * internally and updates it under @ui_mutex.
989  *
990  * Q: why we do not worry that if we race with truncation, we may end up with a
991  * situation when the inode is truncated while we are in the middle of
992  * 'do_writepage()', so we do write beyond inode size?
993  * A: If we are in the middle of 'do_writepage()', truncation would be locked
994  * on the page lock and it would not write the truncated inode node to the
995  * journal before we have finished.
996  */
997 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
998 {
999 	struct inode *inode = page->mapping->host;
1000 	struct ubifs_inode *ui = ubifs_inode(inode);
1001 	loff_t i_size =  i_size_read(inode), synced_i_size;
1002 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1003 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1004 	void *kaddr;
1005 
1006 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1007 		inode->i_ino, page->index, page->flags);
1008 	ubifs_assert(PagePrivate(page));
1009 
1010 	/* Is the page fully outside @i_size? (truncate in progress) */
1011 	if (page->index > end_index || (page->index == end_index && !len)) {
1012 		err = 0;
1013 		goto out_unlock;
1014 	}
1015 
1016 	spin_lock(&ui->ui_lock);
1017 	synced_i_size = ui->synced_i_size;
1018 	spin_unlock(&ui->ui_lock);
1019 
1020 	/* Is the page fully inside @i_size? */
1021 	if (page->index < end_index) {
1022 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1023 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1024 			if (err)
1025 				goto out_unlock;
1026 			/*
1027 			 * The inode has been written, but the write-buffer has
1028 			 * not been synchronized, so in case of an unclean
1029 			 * reboot we may end up with some pages beyond inode
1030 			 * size, but they would be in the journal (because
1031 			 * commit flushes write buffers) and recovery would deal
1032 			 * with this.
1033 			 */
1034 		}
1035 		return do_writepage(page, PAGE_CACHE_SIZE);
1036 	}
1037 
1038 	/*
1039 	 * The page straddles @i_size. It must be zeroed out on each and every
1040 	 * writepage invocation because it may be mmapped. "A file is mapped
1041 	 * in multiples of the page size. For a file that is not a multiple of
1042 	 * the page size, the remaining memory is zeroed when mapped, and
1043 	 * writes to that region are not written out to the file."
1044 	 */
1045 	kaddr = kmap_atomic(page);
1046 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1047 	flush_dcache_page(page);
1048 	kunmap_atomic(kaddr);
1049 
1050 	if (i_size > synced_i_size) {
1051 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1052 		if (err)
1053 			goto out_unlock;
1054 	}
1055 
1056 	return do_writepage(page, len);
1057 
1058 out_unlock:
1059 	unlock_page(page);
1060 	return err;
1061 }
1062 
1063 /**
1064  * do_attr_changes - change inode attributes.
1065  * @inode: inode to change attributes for
1066  * @attr: describes attributes to change
1067  */
1068 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1069 {
1070 	if (attr->ia_valid & ATTR_UID)
1071 		inode->i_uid = attr->ia_uid;
1072 	if (attr->ia_valid & ATTR_GID)
1073 		inode->i_gid = attr->ia_gid;
1074 	if (attr->ia_valid & ATTR_ATIME)
1075 		inode->i_atime = timespec_trunc(attr->ia_atime,
1076 						inode->i_sb->s_time_gran);
1077 	if (attr->ia_valid & ATTR_MTIME)
1078 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1079 						inode->i_sb->s_time_gran);
1080 	if (attr->ia_valid & ATTR_CTIME)
1081 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1082 						inode->i_sb->s_time_gran);
1083 	if (attr->ia_valid & ATTR_MODE) {
1084 		umode_t mode = attr->ia_mode;
1085 
1086 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1087 			mode &= ~S_ISGID;
1088 		inode->i_mode = mode;
1089 	}
1090 }
1091 
1092 /**
1093  * do_truncation - truncate an inode.
1094  * @c: UBIFS file-system description object
1095  * @inode: inode to truncate
1096  * @attr: inode attribute changes description
1097  *
1098  * This function implements VFS '->setattr()' call when the inode is truncated
1099  * to a smaller size. Returns zero in case of success and a negative error code
1100  * in case of failure.
1101  */
1102 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1103 			 const struct iattr *attr)
1104 {
1105 	int err;
1106 	struct ubifs_budget_req req;
1107 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1108 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1109 	struct ubifs_inode *ui = ubifs_inode(inode);
1110 
1111 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1112 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1113 
1114 	/*
1115 	 * If this is truncation to a smaller size, and we do not truncate on a
1116 	 * block boundary, budget for changing one data block, because the last
1117 	 * block will be re-written.
1118 	 */
1119 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1120 		req.dirtied_page = 1;
1121 
1122 	req.dirtied_ino = 1;
1123 	/* A funny way to budget for truncation node */
1124 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1125 	err = ubifs_budget_space(c, &req);
1126 	if (err) {
1127 		/*
1128 		 * Treat truncations to zero as deletion and always allow them,
1129 		 * just like we do for '->unlink()'.
1130 		 */
1131 		if (new_size || err != -ENOSPC)
1132 			return err;
1133 		budgeted = 0;
1134 	}
1135 
1136 	truncate_setsize(inode, new_size);
1137 
1138 	if (offset) {
1139 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1140 		struct page *page;
1141 
1142 		page = find_lock_page(inode->i_mapping, index);
1143 		if (page) {
1144 			if (PageDirty(page)) {
1145 				/*
1146 				 * 'ubifs_jnl_truncate()' will try to truncate
1147 				 * the last data node, but it contains
1148 				 * out-of-date data because the page is dirty.
1149 				 * Write the page now, so that
1150 				 * 'ubifs_jnl_truncate()' will see an already
1151 				 * truncated (and up to date) data node.
1152 				 */
1153 				ubifs_assert(PagePrivate(page));
1154 
1155 				clear_page_dirty_for_io(page);
1156 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1157 					offset = new_size &
1158 						 (PAGE_CACHE_SIZE - 1);
1159 				err = do_writepage(page, offset);
1160 				page_cache_release(page);
1161 				if (err)
1162 					goto out_budg;
1163 				/*
1164 				 * We could now tell 'ubifs_jnl_truncate()' not
1165 				 * to read the last block.
1166 				 */
1167 			} else {
1168 				/*
1169 				 * We could 'kmap()' the page and pass the data
1170 				 * to 'ubifs_jnl_truncate()' to save it from
1171 				 * having to read it.
1172 				 */
1173 				unlock_page(page);
1174 				page_cache_release(page);
1175 			}
1176 		}
1177 	}
1178 
1179 	mutex_lock(&ui->ui_mutex);
1180 	ui->ui_size = inode->i_size;
1181 	/* Truncation changes inode [mc]time */
1182 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1183 	/* Other attributes may be changed at the same time as well */
1184 	do_attr_changes(inode, attr);
1185 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1186 	mutex_unlock(&ui->ui_mutex);
1187 
1188 out_budg:
1189 	if (budgeted)
1190 		ubifs_release_budget(c, &req);
1191 	else {
1192 		c->bi.nospace = c->bi.nospace_rp = 0;
1193 		smp_wmb();
1194 	}
1195 	return err;
1196 }
1197 
1198 /**
1199  * do_setattr - change inode attributes.
1200  * @c: UBIFS file-system description object
1201  * @inode: inode to change attributes for
1202  * @attr: inode attribute changes description
1203  *
1204  * This function implements VFS '->setattr()' call for all cases except
1205  * truncations to smaller size. Returns zero in case of success and a negative
1206  * error code in case of failure.
1207  */
1208 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1209 		      const struct iattr *attr)
1210 {
1211 	int err, release;
1212 	loff_t new_size = attr->ia_size;
1213 	struct ubifs_inode *ui = ubifs_inode(inode);
1214 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1215 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1216 
1217 	err = ubifs_budget_space(c, &req);
1218 	if (err)
1219 		return err;
1220 
1221 	if (attr->ia_valid & ATTR_SIZE) {
1222 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1223 		truncate_setsize(inode, new_size);
1224 	}
1225 
1226 	mutex_lock(&ui->ui_mutex);
1227 	if (attr->ia_valid & ATTR_SIZE) {
1228 		/* Truncation changes inode [mc]time */
1229 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1230 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1231 		ui->ui_size = inode->i_size;
1232 	}
1233 
1234 	do_attr_changes(inode, attr);
1235 
1236 	release = ui->dirty;
1237 	if (attr->ia_valid & ATTR_SIZE)
1238 		/*
1239 		 * Inode length changed, so we have to make sure
1240 		 * @I_DIRTY_DATASYNC is set.
1241 		 */
1242 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1243 	else
1244 		mark_inode_dirty_sync(inode);
1245 	mutex_unlock(&ui->ui_mutex);
1246 
1247 	if (release)
1248 		ubifs_release_budget(c, &req);
1249 	if (IS_SYNC(inode))
1250 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1251 	return err;
1252 }
1253 
1254 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1255 {
1256 	int err;
1257 	struct inode *inode = dentry->d_inode;
1258 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1259 
1260 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1261 		inode->i_ino, inode->i_mode, attr->ia_valid);
1262 	err = inode_change_ok(inode, attr);
1263 	if (err)
1264 		return err;
1265 
1266 	err = dbg_check_synced_i_size(c, inode);
1267 	if (err)
1268 		return err;
1269 
1270 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1271 		/* Truncation to a smaller size */
1272 		err = do_truncation(c, inode, attr);
1273 	else
1274 		err = do_setattr(c, inode, attr);
1275 
1276 	return err;
1277 }
1278 
1279 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1280 {
1281 	struct inode *inode = page->mapping->host;
1282 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1283 
1284 	ubifs_assert(PagePrivate(page));
1285 	if (offset)
1286 		/* Partial page remains dirty */
1287 		return;
1288 
1289 	if (PageChecked(page))
1290 		release_new_page_budget(c);
1291 	else
1292 		release_existing_page_budget(c);
1293 
1294 	atomic_long_dec(&c->dirty_pg_cnt);
1295 	ClearPagePrivate(page);
1296 	ClearPageChecked(page);
1297 }
1298 
1299 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1300 {
1301 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1302 
1303 	nd_set_link(nd, ui->data);
1304 	return NULL;
1305 }
1306 
1307 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1308 {
1309 	struct inode *inode = file->f_mapping->host;
1310 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1311 	int err;
1312 
1313 	dbg_gen("syncing inode %lu", inode->i_ino);
1314 
1315 	if (c->ro_mount)
1316 		/*
1317 		 * For some really strange reasons VFS does not filter out
1318 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1319 		 */
1320 		return 0;
1321 
1322 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1323 	if (err)
1324 		return err;
1325 	mutex_lock(&inode->i_mutex);
1326 
1327 	/* Synchronize the inode unless this is a 'datasync()' call. */
1328 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1329 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1330 		if (err)
1331 			goto out;
1332 	}
1333 
1334 	/*
1335 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1336 	 * them.
1337 	 */
1338 	err = ubifs_sync_wbufs_by_inode(c, inode);
1339 out:
1340 	mutex_unlock(&inode->i_mutex);
1341 	return err;
1342 }
1343 
1344 /**
1345  * mctime_update_needed - check if mtime or ctime update is needed.
1346  * @inode: the inode to do the check for
1347  * @now: current time
1348  *
1349  * This helper function checks if the inode mtime/ctime should be updated or
1350  * not. If current values of the time-stamps are within the UBIFS inode time
1351  * granularity, they are not updated. This is an optimization.
1352  */
1353 static inline int mctime_update_needed(const struct inode *inode,
1354 				       const struct timespec *now)
1355 {
1356 	if (!timespec_equal(&inode->i_mtime, now) ||
1357 	    !timespec_equal(&inode->i_ctime, now))
1358 		return 1;
1359 	return 0;
1360 }
1361 
1362 /**
1363  * update_ctime - update mtime and ctime of an inode.
1364  * @c: UBIFS file-system description object
1365  * @inode: inode to update
1366  *
1367  * This function updates mtime and ctime of the inode if it is not equivalent to
1368  * current time. Returns zero in case of success and a negative error code in
1369  * case of failure.
1370  */
1371 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1372 {
1373 	struct timespec now = ubifs_current_time(inode);
1374 	struct ubifs_inode *ui = ubifs_inode(inode);
1375 
1376 	if (mctime_update_needed(inode, &now)) {
1377 		int err, release;
1378 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1379 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1380 
1381 		err = ubifs_budget_space(c, &req);
1382 		if (err)
1383 			return err;
1384 
1385 		mutex_lock(&ui->ui_mutex);
1386 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1387 		release = ui->dirty;
1388 		mark_inode_dirty_sync(inode);
1389 		mutex_unlock(&ui->ui_mutex);
1390 		if (release)
1391 			ubifs_release_budget(c, &req);
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1398 			       unsigned long nr_segs, loff_t pos)
1399 {
1400 	int err;
1401 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1402 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1403 
1404 	err = update_mctime(c, inode);
1405 	if (err)
1406 		return err;
1407 
1408 	return generic_file_aio_write(iocb, iov, nr_segs, pos);
1409 }
1410 
1411 static int ubifs_set_page_dirty(struct page *page)
1412 {
1413 	int ret;
1414 
1415 	ret = __set_page_dirty_nobuffers(page);
1416 	/*
1417 	 * An attempt to dirty a page without budgeting for it - should not
1418 	 * happen.
1419 	 */
1420 	ubifs_assert(ret == 0);
1421 	return ret;
1422 }
1423 
1424 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1425 {
1426 	/*
1427 	 * An attempt to release a dirty page without budgeting for it - should
1428 	 * not happen.
1429 	 */
1430 	if (PageWriteback(page))
1431 		return 0;
1432 	ubifs_assert(PagePrivate(page));
1433 	ubifs_assert(0);
1434 	ClearPagePrivate(page);
1435 	ClearPageChecked(page);
1436 	return 1;
1437 }
1438 
1439 /*
1440  * mmap()d file has taken write protection fault and is being made writable.
1441  * UBIFS must ensure page is budgeted for.
1442  */
1443 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1444 				 struct vm_fault *vmf)
1445 {
1446 	struct page *page = vmf->page;
1447 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1448 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1449 	struct timespec now = ubifs_current_time(inode);
1450 	struct ubifs_budget_req req = { .new_page = 1 };
1451 	int err, update_time;
1452 
1453 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1454 		i_size_read(inode));
1455 	ubifs_assert(!c->ro_media && !c->ro_mount);
1456 
1457 	if (unlikely(c->ro_error))
1458 		return VM_FAULT_SIGBUS; /* -EROFS */
1459 
1460 	/*
1461 	 * We have not locked @page so far so we may budget for changing the
1462 	 * page. Note, we cannot do this after we locked the page, because
1463 	 * budgeting may cause write-back which would cause deadlock.
1464 	 *
1465 	 * At the moment we do not know whether the page is dirty or not, so we
1466 	 * assume that it is not and budget for a new page. We could look at
1467 	 * the @PG_private flag and figure this out, but we may race with write
1468 	 * back and the page state may change by the time we lock it, so this
1469 	 * would need additional care. We do not bother with this at the
1470 	 * moment, although it might be good idea to do. Instead, we allocate
1471 	 * budget for a new page and amend it later on if the page was in fact
1472 	 * dirty.
1473 	 *
1474 	 * The budgeting-related logic of this function is similar to what we
1475 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1476 	 * for more comments.
1477 	 */
1478 	update_time = mctime_update_needed(inode, &now);
1479 	if (update_time)
1480 		/*
1481 		 * We have to change inode time stamp which requires extra
1482 		 * budgeting.
1483 		 */
1484 		req.dirtied_ino = 1;
1485 
1486 	err = ubifs_budget_space(c, &req);
1487 	if (unlikely(err)) {
1488 		if (err == -ENOSPC)
1489 			ubifs_warn("out of space for mmapped file "
1490 				   "(inode number %lu)", inode->i_ino);
1491 		return VM_FAULT_SIGBUS;
1492 	}
1493 
1494 	lock_page(page);
1495 	if (unlikely(page->mapping != inode->i_mapping ||
1496 		     page_offset(page) > i_size_read(inode))) {
1497 		/* Page got truncated out from underneath us */
1498 		err = -EINVAL;
1499 		goto out_unlock;
1500 	}
1501 
1502 	if (PagePrivate(page))
1503 		release_new_page_budget(c);
1504 	else {
1505 		if (!PageChecked(page))
1506 			ubifs_convert_page_budget(c);
1507 		SetPagePrivate(page);
1508 		atomic_long_inc(&c->dirty_pg_cnt);
1509 		__set_page_dirty_nobuffers(page);
1510 	}
1511 
1512 	if (update_time) {
1513 		int release;
1514 		struct ubifs_inode *ui = ubifs_inode(inode);
1515 
1516 		mutex_lock(&ui->ui_mutex);
1517 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1518 		release = ui->dirty;
1519 		mark_inode_dirty_sync(inode);
1520 		mutex_unlock(&ui->ui_mutex);
1521 		if (release)
1522 			ubifs_release_dirty_inode_budget(c, ui);
1523 	}
1524 
1525 	unlock_page(page);
1526 	return 0;
1527 
1528 out_unlock:
1529 	unlock_page(page);
1530 	ubifs_release_budget(c, &req);
1531 	if (err)
1532 		err = VM_FAULT_SIGBUS;
1533 	return err;
1534 }
1535 
1536 static const struct vm_operations_struct ubifs_file_vm_ops = {
1537 	.fault        = filemap_fault,
1538 	.page_mkwrite = ubifs_vm_page_mkwrite,
1539 };
1540 
1541 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1542 {
1543 	int err;
1544 
1545 	err = generic_file_mmap(file, vma);
1546 	if (err)
1547 		return err;
1548 	vma->vm_ops = &ubifs_file_vm_ops;
1549 	return 0;
1550 }
1551 
1552 const struct address_space_operations ubifs_file_address_operations = {
1553 	.readpage       = ubifs_readpage,
1554 	.writepage      = ubifs_writepage,
1555 	.write_begin    = ubifs_write_begin,
1556 	.write_end      = ubifs_write_end,
1557 	.invalidatepage = ubifs_invalidatepage,
1558 	.set_page_dirty = ubifs_set_page_dirty,
1559 	.releasepage    = ubifs_releasepage,
1560 };
1561 
1562 const struct inode_operations ubifs_file_inode_operations = {
1563 	.setattr     = ubifs_setattr,
1564 	.getattr     = ubifs_getattr,
1565 	.setxattr    = ubifs_setxattr,
1566 	.getxattr    = ubifs_getxattr,
1567 	.listxattr   = ubifs_listxattr,
1568 	.removexattr = ubifs_removexattr,
1569 };
1570 
1571 const struct inode_operations ubifs_symlink_inode_operations = {
1572 	.readlink    = generic_readlink,
1573 	.follow_link = ubifs_follow_link,
1574 	.setattr     = ubifs_setattr,
1575 	.getattr     = ubifs_getattr,
1576 };
1577 
1578 const struct file_operations ubifs_file_operations = {
1579 	.llseek         = generic_file_llseek,
1580 	.read           = do_sync_read,
1581 	.write          = do_sync_write,
1582 	.aio_read       = generic_file_aio_read,
1583 	.aio_write      = ubifs_aio_write,
1584 	.mmap           = ubifs_file_mmap,
1585 	.fsync          = ubifs_fsync,
1586 	.unlocked_ioctl = ubifs_ioctl,
1587 	.splice_read	= generic_file_splice_read,
1588 	.splice_write	= generic_file_splice_write,
1589 #ifdef CONFIG_COMPAT
1590 	.compat_ioctl   = ubifs_compat_ioctl,
1591 #endif
1592 };
1593