1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations for regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 28 * the page is dirty and is used for optimization purposes - dirty pages are 29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 30 * the budget for this page. The @PG_checked flag is set if full budgeting is 31 * required for the page e.g., when it corresponds to a file hole or it is 32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 33 * it is OK to fail in this function, and the budget is released in 34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 35 * information about how the page was budgeted, to make it possible to release 36 * the budget properly. 37 * 38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 39 * implement. However, this is not true for 'ubifs_writepage()', which may be 40 * called with @i_mutex unlocked. For example, when flusher thread is doing 41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 44 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 45 * 46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 49 * set as well. However, UBIFS disables readahead. 50 */ 51 52 #include "ubifs.h" 53 #include <linux/mount.h> 54 #include <linux/namei.h> 55 #include <linux/slab.h> 56 57 static int read_block(struct inode *inode, void *addr, unsigned int block, 58 struct ubifs_data_node *dn) 59 { 60 struct ubifs_info *c = inode->i_sb->s_fs_info; 61 int err, len, out_len; 62 union ubifs_key key; 63 unsigned int dlen; 64 65 data_key_init(c, &key, inode->i_ino, block); 66 err = ubifs_tnc_lookup(c, &key, dn); 67 if (err) { 68 if (err == -ENOENT) 69 /* Not found, so it must be a hole */ 70 memset(addr, 0, UBIFS_BLOCK_SIZE); 71 return err; 72 } 73 74 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 75 ubifs_inode(inode)->creat_sqnum); 76 len = le32_to_cpu(dn->size); 77 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 78 goto dump; 79 80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 81 out_len = UBIFS_BLOCK_SIZE; 82 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 83 le16_to_cpu(dn->compr_type)); 84 if (err || len != out_len) 85 goto dump; 86 87 /* 88 * Data length can be less than a full block, even for blocks that are 89 * not the last in the file (e.g., as a result of making a hole and 90 * appending data). Ensure that the remainder is zeroed out. 91 */ 92 if (len < UBIFS_BLOCK_SIZE) 93 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 94 95 return 0; 96 97 dump: 98 ubifs_err("bad data node (block %u, inode %lu)", 99 block, inode->i_ino); 100 ubifs_dump_node(c, dn); 101 return -EINVAL; 102 } 103 104 static int do_readpage(struct page *page) 105 { 106 void *addr; 107 int err = 0, i; 108 unsigned int block, beyond; 109 struct ubifs_data_node *dn; 110 struct inode *inode = page->mapping->host; 111 loff_t i_size = i_size_read(inode); 112 113 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 114 inode->i_ino, page->index, i_size, page->flags); 115 ubifs_assert(!PageChecked(page)); 116 ubifs_assert(!PagePrivate(page)); 117 118 addr = kmap(page); 119 120 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 121 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 122 if (block >= beyond) { 123 /* Reading beyond inode */ 124 SetPageChecked(page); 125 memset(addr, 0, PAGE_CACHE_SIZE); 126 goto out; 127 } 128 129 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 130 if (!dn) { 131 err = -ENOMEM; 132 goto error; 133 } 134 135 i = 0; 136 while (1) { 137 int ret; 138 139 if (block >= beyond) { 140 /* Reading beyond inode */ 141 err = -ENOENT; 142 memset(addr, 0, UBIFS_BLOCK_SIZE); 143 } else { 144 ret = read_block(inode, addr, block, dn); 145 if (ret) { 146 err = ret; 147 if (err != -ENOENT) 148 break; 149 } else if (block + 1 == beyond) { 150 int dlen = le32_to_cpu(dn->size); 151 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 152 153 if (ilen && ilen < dlen) 154 memset(addr + ilen, 0, dlen - ilen); 155 } 156 } 157 if (++i >= UBIFS_BLOCKS_PER_PAGE) 158 break; 159 block += 1; 160 addr += UBIFS_BLOCK_SIZE; 161 } 162 if (err) { 163 if (err == -ENOENT) { 164 /* Not found, so it must be a hole */ 165 SetPageChecked(page); 166 dbg_gen("hole"); 167 goto out_free; 168 } 169 ubifs_err("cannot read page %lu of inode %lu, error %d", 170 page->index, inode->i_ino, err); 171 goto error; 172 } 173 174 out_free: 175 kfree(dn); 176 out: 177 SetPageUptodate(page); 178 ClearPageError(page); 179 flush_dcache_page(page); 180 kunmap(page); 181 return 0; 182 183 error: 184 kfree(dn); 185 ClearPageUptodate(page); 186 SetPageError(page); 187 flush_dcache_page(page); 188 kunmap(page); 189 return err; 190 } 191 192 /** 193 * release_new_page_budget - release budget of a new page. 194 * @c: UBIFS file-system description object 195 * 196 * This is a helper function which releases budget corresponding to the budget 197 * of one new page of data. 198 */ 199 static void release_new_page_budget(struct ubifs_info *c) 200 { 201 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 202 203 ubifs_release_budget(c, &req); 204 } 205 206 /** 207 * release_existing_page_budget - release budget of an existing page. 208 * @c: UBIFS file-system description object 209 * 210 * This is a helper function which releases budget corresponding to the budget 211 * of changing one one page of data which already exists on the flash media. 212 */ 213 static void release_existing_page_budget(struct ubifs_info *c) 214 { 215 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 216 217 ubifs_release_budget(c, &req); 218 } 219 220 static int write_begin_slow(struct address_space *mapping, 221 loff_t pos, unsigned len, struct page **pagep, 222 unsigned flags) 223 { 224 struct inode *inode = mapping->host; 225 struct ubifs_info *c = inode->i_sb->s_fs_info; 226 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 227 struct ubifs_budget_req req = { .new_page = 1 }; 228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 229 struct page *page; 230 231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 232 inode->i_ino, pos, len, inode->i_size); 233 234 /* 235 * At the slow path we have to budget before locking the page, because 236 * budgeting may force write-back, which would wait on locked pages and 237 * deadlock if we had the page locked. At this point we do not know 238 * anything about the page, so assume that this is a new page which is 239 * written to a hole. This corresponds to largest budget. Later the 240 * budget will be amended if this is not true. 241 */ 242 if (appending) 243 /* We are appending data, budget for inode change */ 244 req.dirtied_ino = 1; 245 246 err = ubifs_budget_space(c, &req); 247 if (unlikely(err)) 248 return err; 249 250 page = grab_cache_page_write_begin(mapping, index, flags); 251 if (unlikely(!page)) { 252 ubifs_release_budget(c, &req); 253 return -ENOMEM; 254 } 255 256 if (!PageUptodate(page)) { 257 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 258 SetPageChecked(page); 259 else { 260 err = do_readpage(page); 261 if (err) { 262 unlock_page(page); 263 page_cache_release(page); 264 return err; 265 } 266 } 267 268 SetPageUptodate(page); 269 ClearPageError(page); 270 } 271 272 if (PagePrivate(page)) 273 /* 274 * The page is dirty, which means it was budgeted twice: 275 * o first time the budget was allocated by the task which 276 * made the page dirty and set the PG_private flag; 277 * o and then we budgeted for it for the second time at the 278 * very beginning of this function. 279 * 280 * So what we have to do is to release the page budget we 281 * allocated. 282 */ 283 release_new_page_budget(c); 284 else if (!PageChecked(page)) 285 /* 286 * We are changing a page which already exists on the media. 287 * This means that changing the page does not make the amount 288 * of indexing information larger, and this part of the budget 289 * which we have already acquired may be released. 290 */ 291 ubifs_convert_page_budget(c); 292 293 if (appending) { 294 struct ubifs_inode *ui = ubifs_inode(inode); 295 296 /* 297 * 'ubifs_write_end()' is optimized from the fast-path part of 298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 299 * if data is appended. 300 */ 301 mutex_lock(&ui->ui_mutex); 302 if (ui->dirty) 303 /* 304 * The inode is dirty already, so we may free the 305 * budget we allocated. 306 */ 307 ubifs_release_dirty_inode_budget(c, ui); 308 } 309 310 *pagep = page; 311 return 0; 312 } 313 314 /** 315 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 316 * @c: UBIFS file-system description object 317 * @page: page to allocate budget for 318 * @ui: UBIFS inode object the page belongs to 319 * @appending: non-zero if the page is appended 320 * 321 * This is a helper function for 'ubifs_write_begin()' which allocates budget 322 * for the operation. The budget is allocated differently depending on whether 323 * this is appending, whether the page is dirty or not, and so on. This 324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 325 * in case of success and %-ENOSPC in case of failure. 326 */ 327 static int allocate_budget(struct ubifs_info *c, struct page *page, 328 struct ubifs_inode *ui, int appending) 329 { 330 struct ubifs_budget_req req = { .fast = 1 }; 331 332 if (PagePrivate(page)) { 333 if (!appending) 334 /* 335 * The page is dirty and we are not appending, which 336 * means no budget is needed at all. 337 */ 338 return 0; 339 340 mutex_lock(&ui->ui_mutex); 341 if (ui->dirty) 342 /* 343 * The page is dirty and we are appending, so the inode 344 * has to be marked as dirty. However, it is already 345 * dirty, so we do not need any budget. We may return, 346 * but @ui->ui_mutex hast to be left locked because we 347 * should prevent write-back from flushing the inode 348 * and freeing the budget. The lock will be released in 349 * 'ubifs_write_end()'. 350 */ 351 return 0; 352 353 /* 354 * The page is dirty, we are appending, the inode is clean, so 355 * we need to budget the inode change. 356 */ 357 req.dirtied_ino = 1; 358 } else { 359 if (PageChecked(page)) 360 /* 361 * The page corresponds to a hole and does not 362 * exist on the media. So changing it makes 363 * make the amount of indexing information 364 * larger, and we have to budget for a new 365 * page. 366 */ 367 req.new_page = 1; 368 else 369 /* 370 * Not a hole, the change will not add any new 371 * indexing information, budget for page 372 * change. 373 */ 374 req.dirtied_page = 1; 375 376 if (appending) { 377 mutex_lock(&ui->ui_mutex); 378 if (!ui->dirty) 379 /* 380 * The inode is clean but we will have to mark 381 * it as dirty because we are appending. This 382 * needs a budget. 383 */ 384 req.dirtied_ino = 1; 385 } 386 } 387 388 return ubifs_budget_space(c, &req); 389 } 390 391 /* 392 * This function is called when a page of data is going to be written. Since 393 * the page of data will not necessarily go to the flash straight away, UBIFS 394 * has to reserve space on the media for it, which is done by means of 395 * budgeting. 396 * 397 * This is the hot-path of the file-system and we are trying to optimize it as 398 * much as possible. For this reasons it is split on 2 parts - slow and fast. 399 * 400 * There many budgeting cases: 401 * o a new page is appended - we have to budget for a new page and for 402 * changing the inode; however, if the inode is already dirty, there is 403 * no need to budget for it; 404 * o an existing clean page is changed - we have budget for it; if the page 405 * does not exist on the media (a hole), we have to budget for a new 406 * page; otherwise, we may budget for changing an existing page; the 407 * difference between these cases is that changing an existing page does 408 * not introduce anything new to the FS indexing information, so it does 409 * not grow, and smaller budget is acquired in this case; 410 * o an existing dirty page is changed - no need to budget at all, because 411 * the page budget has been acquired by earlier, when the page has been 412 * marked dirty. 413 * 414 * UBIFS budgeting sub-system may force write-back if it thinks there is no 415 * space to reserve. This imposes some locking restrictions and makes it 416 * impossible to take into account the above cases, and makes it impossible to 417 * optimize budgeting. 418 * 419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 420 * there is a plenty of flash space and the budget will be acquired quickly, 421 * without forcing write-back. The slow path does not make this assumption. 422 */ 423 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 424 loff_t pos, unsigned len, unsigned flags, 425 struct page **pagep, void **fsdata) 426 { 427 struct inode *inode = mapping->host; 428 struct ubifs_info *c = inode->i_sb->s_fs_info; 429 struct ubifs_inode *ui = ubifs_inode(inode); 430 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 432 int skipped_read = 0; 433 struct page *page; 434 435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 436 ubifs_assert(!c->ro_media && !c->ro_mount); 437 438 if (unlikely(c->ro_error)) 439 return -EROFS; 440 441 /* Try out the fast-path part first */ 442 page = grab_cache_page_write_begin(mapping, index, flags); 443 if (unlikely(!page)) 444 return -ENOMEM; 445 446 if (!PageUptodate(page)) { 447 /* The page is not loaded from the flash */ 448 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) { 449 /* 450 * We change whole page so no need to load it. But we 451 * do not know whether this page exists on the media or 452 * not, so we assume the latter because it requires 453 * larger budget. The assumption is that it is better 454 * to budget a bit more than to read the page from the 455 * media. Thus, we are setting the @PG_checked flag 456 * here. 457 */ 458 SetPageChecked(page); 459 skipped_read = 1; 460 } else { 461 err = do_readpage(page); 462 if (err) { 463 unlock_page(page); 464 page_cache_release(page); 465 return err; 466 } 467 } 468 469 SetPageUptodate(page); 470 ClearPageError(page); 471 } 472 473 err = allocate_budget(c, page, ui, appending); 474 if (unlikely(err)) { 475 ubifs_assert(err == -ENOSPC); 476 /* 477 * If we skipped reading the page because we were going to 478 * write all of it, then it is not up to date. 479 */ 480 if (skipped_read) { 481 ClearPageChecked(page); 482 ClearPageUptodate(page); 483 } 484 /* 485 * Budgeting failed which means it would have to force 486 * write-back but didn't, because we set the @fast flag in the 487 * request. Write-back cannot be done now, while we have the 488 * page locked, because it would deadlock. Unlock and free 489 * everything and fall-back to slow-path. 490 */ 491 if (appending) { 492 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 493 mutex_unlock(&ui->ui_mutex); 494 } 495 unlock_page(page); 496 page_cache_release(page); 497 498 return write_begin_slow(mapping, pos, len, pagep, flags); 499 } 500 501 /* 502 * Whee, we acquired budgeting quickly - without involving 503 * garbage-collection, committing or forcing write-back. We return 504 * with @ui->ui_mutex locked if we are appending pages, and unlocked 505 * otherwise. This is an optimization (slightly hacky though). 506 */ 507 *pagep = page; 508 return 0; 509 510 } 511 512 /** 513 * cancel_budget - cancel budget. 514 * @c: UBIFS file-system description object 515 * @page: page to cancel budget for 516 * @ui: UBIFS inode object the page belongs to 517 * @appending: non-zero if the page is appended 518 * 519 * This is a helper function for a page write operation. It unlocks the 520 * @ui->ui_mutex in case of appending. 521 */ 522 static void cancel_budget(struct ubifs_info *c, struct page *page, 523 struct ubifs_inode *ui, int appending) 524 { 525 if (appending) { 526 if (!ui->dirty) 527 ubifs_release_dirty_inode_budget(c, ui); 528 mutex_unlock(&ui->ui_mutex); 529 } 530 if (!PagePrivate(page)) { 531 if (PageChecked(page)) 532 release_new_page_budget(c); 533 else 534 release_existing_page_budget(c); 535 } 536 } 537 538 static int ubifs_write_end(struct file *file, struct address_space *mapping, 539 loff_t pos, unsigned len, unsigned copied, 540 struct page *page, void *fsdata) 541 { 542 struct inode *inode = mapping->host; 543 struct ubifs_inode *ui = ubifs_inode(inode); 544 struct ubifs_info *c = inode->i_sb->s_fs_info; 545 loff_t end_pos = pos + len; 546 int appending = !!(end_pos > inode->i_size); 547 548 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 549 inode->i_ino, pos, page->index, len, copied, inode->i_size); 550 551 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) { 552 /* 553 * VFS copied less data to the page that it intended and 554 * declared in its '->write_begin()' call via the @len 555 * argument. If the page was not up-to-date, and @len was 556 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did 557 * not load it from the media (for optimization reasons). This 558 * means that part of the page contains garbage. So read the 559 * page now. 560 */ 561 dbg_gen("copied %d instead of %d, read page and repeat", 562 copied, len); 563 cancel_budget(c, page, ui, appending); 564 ClearPageChecked(page); 565 566 /* 567 * Return 0 to force VFS to repeat the whole operation, or the 568 * error code if 'do_readpage()' fails. 569 */ 570 copied = do_readpage(page); 571 goto out; 572 } 573 574 if (!PagePrivate(page)) { 575 SetPagePrivate(page); 576 atomic_long_inc(&c->dirty_pg_cnt); 577 __set_page_dirty_nobuffers(page); 578 } 579 580 if (appending) { 581 i_size_write(inode, end_pos); 582 ui->ui_size = end_pos; 583 /* 584 * Note, we do not set @I_DIRTY_PAGES (which means that the 585 * inode has dirty pages), this has been done in 586 * '__set_page_dirty_nobuffers()'. 587 */ 588 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 589 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 590 mutex_unlock(&ui->ui_mutex); 591 } 592 593 out: 594 unlock_page(page); 595 page_cache_release(page); 596 return copied; 597 } 598 599 /** 600 * populate_page - copy data nodes into a page for bulk-read. 601 * @c: UBIFS file-system description object 602 * @page: page 603 * @bu: bulk-read information 604 * @n: next zbranch slot 605 * 606 * This function returns %0 on success and a negative error code on failure. 607 */ 608 static int populate_page(struct ubifs_info *c, struct page *page, 609 struct bu_info *bu, int *n) 610 { 611 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 612 struct inode *inode = page->mapping->host; 613 loff_t i_size = i_size_read(inode); 614 unsigned int page_block; 615 void *addr, *zaddr; 616 pgoff_t end_index; 617 618 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 619 inode->i_ino, page->index, i_size, page->flags); 620 621 addr = zaddr = kmap(page); 622 623 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 624 if (!i_size || page->index > end_index) { 625 hole = 1; 626 memset(addr, 0, PAGE_CACHE_SIZE); 627 goto out_hole; 628 } 629 630 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 631 while (1) { 632 int err, len, out_len, dlen; 633 634 if (nn >= bu->cnt) { 635 hole = 1; 636 memset(addr, 0, UBIFS_BLOCK_SIZE); 637 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 638 struct ubifs_data_node *dn; 639 640 dn = bu->buf + (bu->zbranch[nn].offs - offs); 641 642 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 643 ubifs_inode(inode)->creat_sqnum); 644 645 len = le32_to_cpu(dn->size); 646 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 647 goto out_err; 648 649 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 650 out_len = UBIFS_BLOCK_SIZE; 651 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 652 le16_to_cpu(dn->compr_type)); 653 if (err || len != out_len) 654 goto out_err; 655 656 if (len < UBIFS_BLOCK_SIZE) 657 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 658 659 nn += 1; 660 read = (i << UBIFS_BLOCK_SHIFT) + len; 661 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 662 nn += 1; 663 continue; 664 } else { 665 hole = 1; 666 memset(addr, 0, UBIFS_BLOCK_SIZE); 667 } 668 if (++i >= UBIFS_BLOCKS_PER_PAGE) 669 break; 670 addr += UBIFS_BLOCK_SIZE; 671 page_block += 1; 672 } 673 674 if (end_index == page->index) { 675 int len = i_size & (PAGE_CACHE_SIZE - 1); 676 677 if (len && len < read) 678 memset(zaddr + len, 0, read - len); 679 } 680 681 out_hole: 682 if (hole) { 683 SetPageChecked(page); 684 dbg_gen("hole"); 685 } 686 687 SetPageUptodate(page); 688 ClearPageError(page); 689 flush_dcache_page(page); 690 kunmap(page); 691 *n = nn; 692 return 0; 693 694 out_err: 695 ClearPageUptodate(page); 696 SetPageError(page); 697 flush_dcache_page(page); 698 kunmap(page); 699 ubifs_err("bad data node (block %u, inode %lu)", 700 page_block, inode->i_ino); 701 return -EINVAL; 702 } 703 704 /** 705 * ubifs_do_bulk_read - do bulk-read. 706 * @c: UBIFS file-system description object 707 * @bu: bulk-read information 708 * @page1: first page to read 709 * 710 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 711 */ 712 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 713 struct page *page1) 714 { 715 pgoff_t offset = page1->index, end_index; 716 struct address_space *mapping = page1->mapping; 717 struct inode *inode = mapping->host; 718 struct ubifs_inode *ui = ubifs_inode(inode); 719 int err, page_idx, page_cnt, ret = 0, n = 0; 720 int allocate = bu->buf ? 0 : 1; 721 loff_t isize; 722 723 err = ubifs_tnc_get_bu_keys(c, bu); 724 if (err) 725 goto out_warn; 726 727 if (bu->eof) { 728 /* Turn off bulk-read at the end of the file */ 729 ui->read_in_a_row = 1; 730 ui->bulk_read = 0; 731 } 732 733 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 734 if (!page_cnt) { 735 /* 736 * This happens when there are multiple blocks per page and the 737 * blocks for the first page we are looking for, are not 738 * together. If all the pages were like this, bulk-read would 739 * reduce performance, so we turn it off for a while. 740 */ 741 goto out_bu_off; 742 } 743 744 if (bu->cnt) { 745 if (allocate) { 746 /* 747 * Allocate bulk-read buffer depending on how many data 748 * nodes we are going to read. 749 */ 750 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 751 bu->zbranch[bu->cnt - 1].len - 752 bu->zbranch[0].offs; 753 ubifs_assert(bu->buf_len > 0); 754 ubifs_assert(bu->buf_len <= c->leb_size); 755 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 756 if (!bu->buf) 757 goto out_bu_off; 758 } 759 760 err = ubifs_tnc_bulk_read(c, bu); 761 if (err) 762 goto out_warn; 763 } 764 765 err = populate_page(c, page1, bu, &n); 766 if (err) 767 goto out_warn; 768 769 unlock_page(page1); 770 ret = 1; 771 772 isize = i_size_read(inode); 773 if (isize == 0) 774 goto out_free; 775 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 776 777 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 778 pgoff_t page_offset = offset + page_idx; 779 struct page *page; 780 781 if (page_offset > end_index) 782 break; 783 page = find_or_create_page(mapping, page_offset, 784 GFP_NOFS | __GFP_COLD); 785 if (!page) 786 break; 787 if (!PageUptodate(page)) 788 err = populate_page(c, page, bu, &n); 789 unlock_page(page); 790 page_cache_release(page); 791 if (err) 792 break; 793 } 794 795 ui->last_page_read = offset + page_idx - 1; 796 797 out_free: 798 if (allocate) 799 kfree(bu->buf); 800 return ret; 801 802 out_warn: 803 ubifs_warn("ignoring error %d and skipping bulk-read", err); 804 goto out_free; 805 806 out_bu_off: 807 ui->read_in_a_row = ui->bulk_read = 0; 808 goto out_free; 809 } 810 811 /** 812 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 813 * @page: page from which to start bulk-read. 814 * 815 * Some flash media are capable of reading sequentially at faster rates. UBIFS 816 * bulk-read facility is designed to take advantage of that, by reading in one 817 * go consecutive data nodes that are also located consecutively in the same 818 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 819 */ 820 static int ubifs_bulk_read(struct page *page) 821 { 822 struct inode *inode = page->mapping->host; 823 struct ubifs_info *c = inode->i_sb->s_fs_info; 824 struct ubifs_inode *ui = ubifs_inode(inode); 825 pgoff_t index = page->index, last_page_read = ui->last_page_read; 826 struct bu_info *bu; 827 int err = 0, allocated = 0; 828 829 ui->last_page_read = index; 830 if (!c->bulk_read) 831 return 0; 832 833 /* 834 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 835 * so don't bother if we cannot lock the mutex. 836 */ 837 if (!mutex_trylock(&ui->ui_mutex)) 838 return 0; 839 840 if (index != last_page_read + 1) { 841 /* Turn off bulk-read if we stop reading sequentially */ 842 ui->read_in_a_row = 1; 843 if (ui->bulk_read) 844 ui->bulk_read = 0; 845 goto out_unlock; 846 } 847 848 if (!ui->bulk_read) { 849 ui->read_in_a_row += 1; 850 if (ui->read_in_a_row < 3) 851 goto out_unlock; 852 /* Three reads in a row, so switch on bulk-read */ 853 ui->bulk_read = 1; 854 } 855 856 /* 857 * If possible, try to use pre-allocated bulk-read information, which 858 * is protected by @c->bu_mutex. 859 */ 860 if (mutex_trylock(&c->bu_mutex)) 861 bu = &c->bu; 862 else { 863 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 864 if (!bu) 865 goto out_unlock; 866 867 bu->buf = NULL; 868 allocated = 1; 869 } 870 871 bu->buf_len = c->max_bu_buf_len; 872 data_key_init(c, &bu->key, inode->i_ino, 873 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 874 err = ubifs_do_bulk_read(c, bu, page); 875 876 if (!allocated) 877 mutex_unlock(&c->bu_mutex); 878 else 879 kfree(bu); 880 881 out_unlock: 882 mutex_unlock(&ui->ui_mutex); 883 return err; 884 } 885 886 static int ubifs_readpage(struct file *file, struct page *page) 887 { 888 if (ubifs_bulk_read(page)) 889 return 0; 890 do_readpage(page); 891 unlock_page(page); 892 return 0; 893 } 894 895 static int do_writepage(struct page *page, int len) 896 { 897 int err = 0, i, blen; 898 unsigned int block; 899 void *addr; 900 union ubifs_key key; 901 struct inode *inode = page->mapping->host; 902 struct ubifs_info *c = inode->i_sb->s_fs_info; 903 904 #ifdef UBIFS_DEBUG 905 spin_lock(&ui->ui_lock); 906 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE); 907 spin_unlock(&ui->ui_lock); 908 #endif 909 910 /* Update radix tree tags */ 911 set_page_writeback(page); 912 913 addr = kmap(page); 914 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 915 i = 0; 916 while (len) { 917 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 918 data_key_init(c, &key, inode->i_ino, block); 919 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 920 if (err) 921 break; 922 if (++i >= UBIFS_BLOCKS_PER_PAGE) 923 break; 924 block += 1; 925 addr += blen; 926 len -= blen; 927 } 928 if (err) { 929 SetPageError(page); 930 ubifs_err("cannot write page %lu of inode %lu, error %d", 931 page->index, inode->i_ino, err); 932 ubifs_ro_mode(c, err); 933 } 934 935 ubifs_assert(PagePrivate(page)); 936 if (PageChecked(page)) 937 release_new_page_budget(c); 938 else 939 release_existing_page_budget(c); 940 941 atomic_long_dec(&c->dirty_pg_cnt); 942 ClearPagePrivate(page); 943 ClearPageChecked(page); 944 945 kunmap(page); 946 unlock_page(page); 947 end_page_writeback(page); 948 return err; 949 } 950 951 /* 952 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 953 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 954 * situation when a we have an inode with size 0, then a megabyte of data is 955 * appended to the inode, then write-back starts and flushes some amount of the 956 * dirty pages, the journal becomes full, commit happens and finishes, and then 957 * an unclean reboot happens. When the file system is mounted next time, the 958 * inode size would still be 0, but there would be many pages which are beyond 959 * the inode size, they would be indexed and consume flash space. Because the 960 * journal has been committed, the replay would not be able to detect this 961 * situation and correct the inode size. This means UBIFS would have to scan 962 * whole index and correct all inode sizes, which is long an unacceptable. 963 * 964 * To prevent situations like this, UBIFS writes pages back only if they are 965 * within the last synchronized inode size, i.e. the size which has been 966 * written to the flash media last time. Otherwise, UBIFS forces inode 967 * write-back, thus making sure the on-flash inode contains current inode size, 968 * and then keeps writing pages back. 969 * 970 * Some locking issues explanation. 'ubifs_writepage()' first is called with 971 * the page locked, and it locks @ui_mutex. However, write-back does take inode 972 * @i_mutex, which means other VFS operations may be run on this inode at the 973 * same time. And the problematic one is truncation to smaller size, from where 974 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 975 * then drops the truncated pages. And while dropping the pages, it takes the 976 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 977 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 978 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 979 * 980 * XXX(truncate): with the new truncate sequence this is not true anymore, 981 * and the calls to truncate_setsize can be move around freely. They should 982 * be moved to the very end of the truncate sequence. 983 * 984 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 985 * inode size. How do we do this if @inode->i_size may became smaller while we 986 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 987 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 988 * internally and updates it under @ui_mutex. 989 * 990 * Q: why we do not worry that if we race with truncation, we may end up with a 991 * situation when the inode is truncated while we are in the middle of 992 * 'do_writepage()', so we do write beyond inode size? 993 * A: If we are in the middle of 'do_writepage()', truncation would be locked 994 * on the page lock and it would not write the truncated inode node to the 995 * journal before we have finished. 996 */ 997 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 998 { 999 struct inode *inode = page->mapping->host; 1000 struct ubifs_inode *ui = ubifs_inode(inode); 1001 loff_t i_size = i_size_read(inode), synced_i_size; 1002 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 1003 int err, len = i_size & (PAGE_CACHE_SIZE - 1); 1004 void *kaddr; 1005 1006 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1007 inode->i_ino, page->index, page->flags); 1008 ubifs_assert(PagePrivate(page)); 1009 1010 /* Is the page fully outside @i_size? (truncate in progress) */ 1011 if (page->index > end_index || (page->index == end_index && !len)) { 1012 err = 0; 1013 goto out_unlock; 1014 } 1015 1016 spin_lock(&ui->ui_lock); 1017 synced_i_size = ui->synced_i_size; 1018 spin_unlock(&ui->ui_lock); 1019 1020 /* Is the page fully inside @i_size? */ 1021 if (page->index < end_index) { 1022 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) { 1023 err = inode->i_sb->s_op->write_inode(inode, NULL); 1024 if (err) 1025 goto out_unlock; 1026 /* 1027 * The inode has been written, but the write-buffer has 1028 * not been synchronized, so in case of an unclean 1029 * reboot we may end up with some pages beyond inode 1030 * size, but they would be in the journal (because 1031 * commit flushes write buffers) and recovery would deal 1032 * with this. 1033 */ 1034 } 1035 return do_writepage(page, PAGE_CACHE_SIZE); 1036 } 1037 1038 /* 1039 * The page straddles @i_size. It must be zeroed out on each and every 1040 * writepage invocation because it may be mmapped. "A file is mapped 1041 * in multiples of the page size. For a file that is not a multiple of 1042 * the page size, the remaining memory is zeroed when mapped, and 1043 * writes to that region are not written out to the file." 1044 */ 1045 kaddr = kmap_atomic(page); 1046 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len); 1047 flush_dcache_page(page); 1048 kunmap_atomic(kaddr); 1049 1050 if (i_size > synced_i_size) { 1051 err = inode->i_sb->s_op->write_inode(inode, NULL); 1052 if (err) 1053 goto out_unlock; 1054 } 1055 1056 return do_writepage(page, len); 1057 1058 out_unlock: 1059 unlock_page(page); 1060 return err; 1061 } 1062 1063 /** 1064 * do_attr_changes - change inode attributes. 1065 * @inode: inode to change attributes for 1066 * @attr: describes attributes to change 1067 */ 1068 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1069 { 1070 if (attr->ia_valid & ATTR_UID) 1071 inode->i_uid = attr->ia_uid; 1072 if (attr->ia_valid & ATTR_GID) 1073 inode->i_gid = attr->ia_gid; 1074 if (attr->ia_valid & ATTR_ATIME) 1075 inode->i_atime = timespec_trunc(attr->ia_atime, 1076 inode->i_sb->s_time_gran); 1077 if (attr->ia_valid & ATTR_MTIME) 1078 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1079 inode->i_sb->s_time_gran); 1080 if (attr->ia_valid & ATTR_CTIME) 1081 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1082 inode->i_sb->s_time_gran); 1083 if (attr->ia_valid & ATTR_MODE) { 1084 umode_t mode = attr->ia_mode; 1085 1086 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1087 mode &= ~S_ISGID; 1088 inode->i_mode = mode; 1089 } 1090 } 1091 1092 /** 1093 * do_truncation - truncate an inode. 1094 * @c: UBIFS file-system description object 1095 * @inode: inode to truncate 1096 * @attr: inode attribute changes description 1097 * 1098 * This function implements VFS '->setattr()' call when the inode is truncated 1099 * to a smaller size. Returns zero in case of success and a negative error code 1100 * in case of failure. 1101 */ 1102 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1103 const struct iattr *attr) 1104 { 1105 int err; 1106 struct ubifs_budget_req req; 1107 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1108 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1109 struct ubifs_inode *ui = ubifs_inode(inode); 1110 1111 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1112 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1113 1114 /* 1115 * If this is truncation to a smaller size, and we do not truncate on a 1116 * block boundary, budget for changing one data block, because the last 1117 * block will be re-written. 1118 */ 1119 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1120 req.dirtied_page = 1; 1121 1122 req.dirtied_ino = 1; 1123 /* A funny way to budget for truncation node */ 1124 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1125 err = ubifs_budget_space(c, &req); 1126 if (err) { 1127 /* 1128 * Treat truncations to zero as deletion and always allow them, 1129 * just like we do for '->unlink()'. 1130 */ 1131 if (new_size || err != -ENOSPC) 1132 return err; 1133 budgeted = 0; 1134 } 1135 1136 truncate_setsize(inode, new_size); 1137 1138 if (offset) { 1139 pgoff_t index = new_size >> PAGE_CACHE_SHIFT; 1140 struct page *page; 1141 1142 page = find_lock_page(inode->i_mapping, index); 1143 if (page) { 1144 if (PageDirty(page)) { 1145 /* 1146 * 'ubifs_jnl_truncate()' will try to truncate 1147 * the last data node, but it contains 1148 * out-of-date data because the page is dirty. 1149 * Write the page now, so that 1150 * 'ubifs_jnl_truncate()' will see an already 1151 * truncated (and up to date) data node. 1152 */ 1153 ubifs_assert(PagePrivate(page)); 1154 1155 clear_page_dirty_for_io(page); 1156 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1157 offset = new_size & 1158 (PAGE_CACHE_SIZE - 1); 1159 err = do_writepage(page, offset); 1160 page_cache_release(page); 1161 if (err) 1162 goto out_budg; 1163 /* 1164 * We could now tell 'ubifs_jnl_truncate()' not 1165 * to read the last block. 1166 */ 1167 } else { 1168 /* 1169 * We could 'kmap()' the page and pass the data 1170 * to 'ubifs_jnl_truncate()' to save it from 1171 * having to read it. 1172 */ 1173 unlock_page(page); 1174 page_cache_release(page); 1175 } 1176 } 1177 } 1178 1179 mutex_lock(&ui->ui_mutex); 1180 ui->ui_size = inode->i_size; 1181 /* Truncation changes inode [mc]time */ 1182 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1183 /* Other attributes may be changed at the same time as well */ 1184 do_attr_changes(inode, attr); 1185 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1186 mutex_unlock(&ui->ui_mutex); 1187 1188 out_budg: 1189 if (budgeted) 1190 ubifs_release_budget(c, &req); 1191 else { 1192 c->bi.nospace = c->bi.nospace_rp = 0; 1193 smp_wmb(); 1194 } 1195 return err; 1196 } 1197 1198 /** 1199 * do_setattr - change inode attributes. 1200 * @c: UBIFS file-system description object 1201 * @inode: inode to change attributes for 1202 * @attr: inode attribute changes description 1203 * 1204 * This function implements VFS '->setattr()' call for all cases except 1205 * truncations to smaller size. Returns zero in case of success and a negative 1206 * error code in case of failure. 1207 */ 1208 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1209 const struct iattr *attr) 1210 { 1211 int err, release; 1212 loff_t new_size = attr->ia_size; 1213 struct ubifs_inode *ui = ubifs_inode(inode); 1214 struct ubifs_budget_req req = { .dirtied_ino = 1, 1215 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1216 1217 err = ubifs_budget_space(c, &req); 1218 if (err) 1219 return err; 1220 1221 if (attr->ia_valid & ATTR_SIZE) { 1222 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1223 truncate_setsize(inode, new_size); 1224 } 1225 1226 mutex_lock(&ui->ui_mutex); 1227 if (attr->ia_valid & ATTR_SIZE) { 1228 /* Truncation changes inode [mc]time */ 1229 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1230 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1231 ui->ui_size = inode->i_size; 1232 } 1233 1234 do_attr_changes(inode, attr); 1235 1236 release = ui->dirty; 1237 if (attr->ia_valid & ATTR_SIZE) 1238 /* 1239 * Inode length changed, so we have to make sure 1240 * @I_DIRTY_DATASYNC is set. 1241 */ 1242 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1243 else 1244 mark_inode_dirty_sync(inode); 1245 mutex_unlock(&ui->ui_mutex); 1246 1247 if (release) 1248 ubifs_release_budget(c, &req); 1249 if (IS_SYNC(inode)) 1250 err = inode->i_sb->s_op->write_inode(inode, NULL); 1251 return err; 1252 } 1253 1254 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1255 { 1256 int err; 1257 struct inode *inode = dentry->d_inode; 1258 struct ubifs_info *c = inode->i_sb->s_fs_info; 1259 1260 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1261 inode->i_ino, inode->i_mode, attr->ia_valid); 1262 err = inode_change_ok(inode, attr); 1263 if (err) 1264 return err; 1265 1266 err = dbg_check_synced_i_size(c, inode); 1267 if (err) 1268 return err; 1269 1270 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1271 /* Truncation to a smaller size */ 1272 err = do_truncation(c, inode, attr); 1273 else 1274 err = do_setattr(c, inode, attr); 1275 1276 return err; 1277 } 1278 1279 static void ubifs_invalidatepage(struct page *page, unsigned long offset) 1280 { 1281 struct inode *inode = page->mapping->host; 1282 struct ubifs_info *c = inode->i_sb->s_fs_info; 1283 1284 ubifs_assert(PagePrivate(page)); 1285 if (offset) 1286 /* Partial page remains dirty */ 1287 return; 1288 1289 if (PageChecked(page)) 1290 release_new_page_budget(c); 1291 else 1292 release_existing_page_budget(c); 1293 1294 atomic_long_dec(&c->dirty_pg_cnt); 1295 ClearPagePrivate(page); 1296 ClearPageChecked(page); 1297 } 1298 1299 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd) 1300 { 1301 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode); 1302 1303 nd_set_link(nd, ui->data); 1304 return NULL; 1305 } 1306 1307 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1308 { 1309 struct inode *inode = file->f_mapping->host; 1310 struct ubifs_info *c = inode->i_sb->s_fs_info; 1311 int err; 1312 1313 dbg_gen("syncing inode %lu", inode->i_ino); 1314 1315 if (c->ro_mount) 1316 /* 1317 * For some really strange reasons VFS does not filter out 1318 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1319 */ 1320 return 0; 1321 1322 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 1323 if (err) 1324 return err; 1325 mutex_lock(&inode->i_mutex); 1326 1327 /* Synchronize the inode unless this is a 'datasync()' call. */ 1328 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1329 err = inode->i_sb->s_op->write_inode(inode, NULL); 1330 if (err) 1331 goto out; 1332 } 1333 1334 /* 1335 * Nodes related to this inode may still sit in a write-buffer. Flush 1336 * them. 1337 */ 1338 err = ubifs_sync_wbufs_by_inode(c, inode); 1339 out: 1340 mutex_unlock(&inode->i_mutex); 1341 return err; 1342 } 1343 1344 /** 1345 * mctime_update_needed - check if mtime or ctime update is needed. 1346 * @inode: the inode to do the check for 1347 * @now: current time 1348 * 1349 * This helper function checks if the inode mtime/ctime should be updated or 1350 * not. If current values of the time-stamps are within the UBIFS inode time 1351 * granularity, they are not updated. This is an optimization. 1352 */ 1353 static inline int mctime_update_needed(const struct inode *inode, 1354 const struct timespec *now) 1355 { 1356 if (!timespec_equal(&inode->i_mtime, now) || 1357 !timespec_equal(&inode->i_ctime, now)) 1358 return 1; 1359 return 0; 1360 } 1361 1362 /** 1363 * update_ctime - update mtime and ctime of an inode. 1364 * @c: UBIFS file-system description object 1365 * @inode: inode to update 1366 * 1367 * This function updates mtime and ctime of the inode if it is not equivalent to 1368 * current time. Returns zero in case of success and a negative error code in 1369 * case of failure. 1370 */ 1371 static int update_mctime(struct ubifs_info *c, struct inode *inode) 1372 { 1373 struct timespec now = ubifs_current_time(inode); 1374 struct ubifs_inode *ui = ubifs_inode(inode); 1375 1376 if (mctime_update_needed(inode, &now)) { 1377 int err, release; 1378 struct ubifs_budget_req req = { .dirtied_ino = 1, 1379 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1380 1381 err = ubifs_budget_space(c, &req); 1382 if (err) 1383 return err; 1384 1385 mutex_lock(&ui->ui_mutex); 1386 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1387 release = ui->dirty; 1388 mark_inode_dirty_sync(inode); 1389 mutex_unlock(&ui->ui_mutex); 1390 if (release) 1391 ubifs_release_budget(c, &req); 1392 } 1393 1394 return 0; 1395 } 1396 1397 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov, 1398 unsigned long nr_segs, loff_t pos) 1399 { 1400 int err; 1401 struct inode *inode = iocb->ki_filp->f_mapping->host; 1402 struct ubifs_info *c = inode->i_sb->s_fs_info; 1403 1404 err = update_mctime(c, inode); 1405 if (err) 1406 return err; 1407 1408 return generic_file_aio_write(iocb, iov, nr_segs, pos); 1409 } 1410 1411 static int ubifs_set_page_dirty(struct page *page) 1412 { 1413 int ret; 1414 1415 ret = __set_page_dirty_nobuffers(page); 1416 /* 1417 * An attempt to dirty a page without budgeting for it - should not 1418 * happen. 1419 */ 1420 ubifs_assert(ret == 0); 1421 return ret; 1422 } 1423 1424 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1425 { 1426 /* 1427 * An attempt to release a dirty page without budgeting for it - should 1428 * not happen. 1429 */ 1430 if (PageWriteback(page)) 1431 return 0; 1432 ubifs_assert(PagePrivate(page)); 1433 ubifs_assert(0); 1434 ClearPagePrivate(page); 1435 ClearPageChecked(page); 1436 return 1; 1437 } 1438 1439 /* 1440 * mmap()d file has taken write protection fault and is being made writable. 1441 * UBIFS must ensure page is budgeted for. 1442 */ 1443 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, 1444 struct vm_fault *vmf) 1445 { 1446 struct page *page = vmf->page; 1447 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1448 struct ubifs_info *c = inode->i_sb->s_fs_info; 1449 struct timespec now = ubifs_current_time(inode); 1450 struct ubifs_budget_req req = { .new_page = 1 }; 1451 int err, update_time; 1452 1453 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1454 i_size_read(inode)); 1455 ubifs_assert(!c->ro_media && !c->ro_mount); 1456 1457 if (unlikely(c->ro_error)) 1458 return VM_FAULT_SIGBUS; /* -EROFS */ 1459 1460 /* 1461 * We have not locked @page so far so we may budget for changing the 1462 * page. Note, we cannot do this after we locked the page, because 1463 * budgeting may cause write-back which would cause deadlock. 1464 * 1465 * At the moment we do not know whether the page is dirty or not, so we 1466 * assume that it is not and budget for a new page. We could look at 1467 * the @PG_private flag and figure this out, but we may race with write 1468 * back and the page state may change by the time we lock it, so this 1469 * would need additional care. We do not bother with this at the 1470 * moment, although it might be good idea to do. Instead, we allocate 1471 * budget for a new page and amend it later on if the page was in fact 1472 * dirty. 1473 * 1474 * The budgeting-related logic of this function is similar to what we 1475 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1476 * for more comments. 1477 */ 1478 update_time = mctime_update_needed(inode, &now); 1479 if (update_time) 1480 /* 1481 * We have to change inode time stamp which requires extra 1482 * budgeting. 1483 */ 1484 req.dirtied_ino = 1; 1485 1486 err = ubifs_budget_space(c, &req); 1487 if (unlikely(err)) { 1488 if (err == -ENOSPC) 1489 ubifs_warn("out of space for mmapped file (inode number %lu)", 1490 inode->i_ino); 1491 return VM_FAULT_SIGBUS; 1492 } 1493 1494 lock_page(page); 1495 if (unlikely(page->mapping != inode->i_mapping || 1496 page_offset(page) > i_size_read(inode))) { 1497 /* Page got truncated out from underneath us */ 1498 err = -EINVAL; 1499 goto out_unlock; 1500 } 1501 1502 if (PagePrivate(page)) 1503 release_new_page_budget(c); 1504 else { 1505 if (!PageChecked(page)) 1506 ubifs_convert_page_budget(c); 1507 SetPagePrivate(page); 1508 atomic_long_inc(&c->dirty_pg_cnt); 1509 __set_page_dirty_nobuffers(page); 1510 } 1511 1512 if (update_time) { 1513 int release; 1514 struct ubifs_inode *ui = ubifs_inode(inode); 1515 1516 mutex_lock(&ui->ui_mutex); 1517 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1518 release = ui->dirty; 1519 mark_inode_dirty_sync(inode); 1520 mutex_unlock(&ui->ui_mutex); 1521 if (release) 1522 ubifs_release_dirty_inode_budget(c, ui); 1523 } 1524 1525 unlock_page(page); 1526 return 0; 1527 1528 out_unlock: 1529 unlock_page(page); 1530 ubifs_release_budget(c, &req); 1531 if (err) 1532 err = VM_FAULT_SIGBUS; 1533 return err; 1534 } 1535 1536 static const struct vm_operations_struct ubifs_file_vm_ops = { 1537 .fault = filemap_fault, 1538 .page_mkwrite = ubifs_vm_page_mkwrite, 1539 .remap_pages = generic_file_remap_pages, 1540 }; 1541 1542 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1543 { 1544 int err; 1545 1546 err = generic_file_mmap(file, vma); 1547 if (err) 1548 return err; 1549 vma->vm_ops = &ubifs_file_vm_ops; 1550 return 0; 1551 } 1552 1553 const struct address_space_operations ubifs_file_address_operations = { 1554 .readpage = ubifs_readpage, 1555 .writepage = ubifs_writepage, 1556 .write_begin = ubifs_write_begin, 1557 .write_end = ubifs_write_end, 1558 .invalidatepage = ubifs_invalidatepage, 1559 .set_page_dirty = ubifs_set_page_dirty, 1560 .releasepage = ubifs_releasepage, 1561 }; 1562 1563 const struct inode_operations ubifs_file_inode_operations = { 1564 .setattr = ubifs_setattr, 1565 .getattr = ubifs_getattr, 1566 .setxattr = ubifs_setxattr, 1567 .getxattr = ubifs_getxattr, 1568 .listxattr = ubifs_listxattr, 1569 .removexattr = ubifs_removexattr, 1570 }; 1571 1572 const struct inode_operations ubifs_symlink_inode_operations = { 1573 .readlink = generic_readlink, 1574 .follow_link = ubifs_follow_link, 1575 .setattr = ubifs_setattr, 1576 .getattr = ubifs_getattr, 1577 }; 1578 1579 const struct file_operations ubifs_file_operations = { 1580 .llseek = generic_file_llseek, 1581 .read = do_sync_read, 1582 .write = do_sync_write, 1583 .aio_read = generic_file_aio_read, 1584 .aio_write = ubifs_aio_write, 1585 .mmap = ubifs_file_mmap, 1586 .fsync = ubifs_fsync, 1587 .unlocked_ioctl = ubifs_ioctl, 1588 .splice_read = generic_file_splice_read, 1589 .splice_write = generic_file_splice_write, 1590 #ifdef CONFIG_COMPAT 1591 .compat_ioctl = ubifs_compat_ioctl, 1592 #endif 1593 }; 1594