xref: /openbmc/linux/fs/ubifs/file.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements VFS file and inode operations for regular files, device
13  * nodes and symlinks as well as address space operations.
14  *
15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16  * the page is dirty and is used for optimization purposes - dirty pages are
17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18  * the budget for this page. The @PG_checked flag is set if full budgeting is
19  * required for the page e.g., when it corresponds to a file hole or it is
20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21  * it is OK to fail in this function, and the budget is released in
22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23  * information about how the page was budgeted, to make it possible to release
24  * the budget properly.
25  *
26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27  * implement. However, this is not true for 'ubifs_writepage()', which may be
28  * called with @i_mutex unlocked. For example, when flusher thread is doing
29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33  *
34  * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36  * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37  * set as well. However, UBIFS disables readahead.
38  */
39 
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44 
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 		      struct ubifs_data_node *dn)
47 {
48 	struct ubifs_info *c = inode->i_sb->s_fs_info;
49 	int err, len, out_len;
50 	union ubifs_key key;
51 	unsigned int dlen;
52 
53 	data_key_init(c, &key, inode->i_ino, block);
54 	err = ubifs_tnc_lookup(c, &key, dn);
55 	if (err) {
56 		if (err == -ENOENT)
57 			/* Not found, so it must be a hole */
58 			memset(addr, 0, UBIFS_BLOCK_SIZE);
59 		return err;
60 	}
61 
62 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 		     ubifs_inode(inode)->creat_sqnum);
64 	len = le32_to_cpu(dn->size);
65 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 		goto dump;
67 
68 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69 
70 	if (IS_ENCRYPTED(inode)) {
71 		err = ubifs_decrypt(inode, dn, &dlen, block);
72 		if (err)
73 			goto dump;
74 	}
75 
76 	out_len = UBIFS_BLOCK_SIZE;
77 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 			       le16_to_cpu(dn->compr_type));
79 	if (err || len != out_len)
80 		goto dump;
81 
82 	/*
83 	 * Data length can be less than a full block, even for blocks that are
84 	 * not the last in the file (e.g., as a result of making a hole and
85 	 * appending data). Ensure that the remainder is zeroed out.
86 	 */
87 	if (len < UBIFS_BLOCK_SIZE)
88 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89 
90 	return 0;
91 
92 dump:
93 	ubifs_err(c, "bad data node (block %u, inode %lu)",
94 		  block, inode->i_ino);
95 	ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96 	return -EINVAL;
97 }
98 
99 static int do_readpage(struct page *page)
100 {
101 	void *addr;
102 	int err = 0, i;
103 	unsigned int block, beyond;
104 	struct ubifs_data_node *dn;
105 	struct inode *inode = page->mapping->host;
106 	struct ubifs_info *c = inode->i_sb->s_fs_info;
107 	loff_t i_size = i_size_read(inode);
108 
109 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 		inode->i_ino, page->index, i_size, page->flags);
111 	ubifs_assert(c, !PageChecked(page));
112 	ubifs_assert(c, !PagePrivate(page));
113 
114 	addr = kmap(page);
115 
116 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 	if (block >= beyond) {
119 		/* Reading beyond inode */
120 		SetPageChecked(page);
121 		memset(addr, 0, PAGE_SIZE);
122 		goto out;
123 	}
124 
125 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 	if (!dn) {
127 		err = -ENOMEM;
128 		goto error;
129 	}
130 
131 	i = 0;
132 	while (1) {
133 		int ret;
134 
135 		if (block >= beyond) {
136 			/* Reading beyond inode */
137 			err = -ENOENT;
138 			memset(addr, 0, UBIFS_BLOCK_SIZE);
139 		} else {
140 			ret = read_block(inode, addr, block, dn);
141 			if (ret) {
142 				err = ret;
143 				if (err != -ENOENT)
144 					break;
145 			} else if (block + 1 == beyond) {
146 				int dlen = le32_to_cpu(dn->size);
147 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148 
149 				if (ilen && ilen < dlen)
150 					memset(addr + ilen, 0, dlen - ilen);
151 			}
152 		}
153 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 			break;
155 		block += 1;
156 		addr += UBIFS_BLOCK_SIZE;
157 	}
158 	if (err) {
159 		struct ubifs_info *c = inode->i_sb->s_fs_info;
160 		if (err == -ENOENT) {
161 			/* Not found, so it must be a hole */
162 			SetPageChecked(page);
163 			dbg_gen("hole");
164 			goto out_free;
165 		}
166 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 			  page->index, inode->i_ino, err);
168 		goto error;
169 	}
170 
171 out_free:
172 	kfree(dn);
173 out:
174 	SetPageUptodate(page);
175 	ClearPageError(page);
176 	flush_dcache_page(page);
177 	kunmap(page);
178 	return 0;
179 
180 error:
181 	kfree(dn);
182 	ClearPageUptodate(page);
183 	SetPageError(page);
184 	flush_dcache_page(page);
185 	kunmap(page);
186 	return err;
187 }
188 
189 /**
190  * release_new_page_budget - release budget of a new page.
191  * @c: UBIFS file-system description object
192  *
193  * This is a helper function which releases budget corresponding to the budget
194  * of one new page of data.
195  */
196 static void release_new_page_budget(struct ubifs_info *c)
197 {
198 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199 
200 	ubifs_release_budget(c, &req);
201 }
202 
203 /**
204  * release_existing_page_budget - release budget of an existing page.
205  * @c: UBIFS file-system description object
206  *
207  * This is a helper function which releases budget corresponding to the budget
208  * of changing one page of data which already exists on the flash media.
209  */
210 static void release_existing_page_budget(struct ubifs_info *c)
211 {
212 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
213 
214 	ubifs_release_budget(c, &req);
215 }
216 
217 static int write_begin_slow(struct address_space *mapping,
218 			    loff_t pos, unsigned len, struct page **pagep)
219 {
220 	struct inode *inode = mapping->host;
221 	struct ubifs_info *c = inode->i_sb->s_fs_info;
222 	pgoff_t index = pos >> PAGE_SHIFT;
223 	struct ubifs_budget_req req = { .new_page = 1 };
224 	int err, appending = !!(pos + len > inode->i_size);
225 	struct page *page;
226 
227 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
228 		inode->i_ino, pos, len, inode->i_size);
229 
230 	/*
231 	 * At the slow path we have to budget before locking the page, because
232 	 * budgeting may force write-back, which would wait on locked pages and
233 	 * deadlock if we had the page locked. At this point we do not know
234 	 * anything about the page, so assume that this is a new page which is
235 	 * written to a hole. This corresponds to largest budget. Later the
236 	 * budget will be amended if this is not true.
237 	 */
238 	if (appending)
239 		/* We are appending data, budget for inode change */
240 		req.dirtied_ino = 1;
241 
242 	err = ubifs_budget_space(c, &req);
243 	if (unlikely(err))
244 		return err;
245 
246 	page = grab_cache_page_write_begin(mapping, index);
247 	if (unlikely(!page)) {
248 		ubifs_release_budget(c, &req);
249 		return -ENOMEM;
250 	}
251 
252 	if (!PageUptodate(page)) {
253 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
254 			SetPageChecked(page);
255 		else {
256 			err = do_readpage(page);
257 			if (err) {
258 				unlock_page(page);
259 				put_page(page);
260 				ubifs_release_budget(c, &req);
261 				return err;
262 			}
263 		}
264 	}
265 
266 	if (PagePrivate(page))
267 		/*
268 		 * The page is dirty, which means it was budgeted twice:
269 		 *   o first time the budget was allocated by the task which
270 		 *     made the page dirty and set the PG_private flag;
271 		 *   o and then we budgeted for it for the second time at the
272 		 *     very beginning of this function.
273 		 *
274 		 * So what we have to do is to release the page budget we
275 		 * allocated.
276 		 */
277 		release_new_page_budget(c);
278 	else if (!PageChecked(page))
279 		/*
280 		 * We are changing a page which already exists on the media.
281 		 * This means that changing the page does not make the amount
282 		 * of indexing information larger, and this part of the budget
283 		 * which we have already acquired may be released.
284 		 */
285 		ubifs_convert_page_budget(c);
286 
287 	if (appending) {
288 		struct ubifs_inode *ui = ubifs_inode(inode);
289 
290 		/*
291 		 * 'ubifs_write_end()' is optimized from the fast-path part of
292 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
293 		 * if data is appended.
294 		 */
295 		mutex_lock(&ui->ui_mutex);
296 		if (ui->dirty)
297 			/*
298 			 * The inode is dirty already, so we may free the
299 			 * budget we allocated.
300 			 */
301 			ubifs_release_dirty_inode_budget(c, ui);
302 	}
303 
304 	*pagep = page;
305 	return 0;
306 }
307 
308 /**
309  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
310  * @c: UBIFS file-system description object
311  * @page: page to allocate budget for
312  * @ui: UBIFS inode object the page belongs to
313  * @appending: non-zero if the page is appended
314  *
315  * This is a helper function for 'ubifs_write_begin()' which allocates budget
316  * for the operation. The budget is allocated differently depending on whether
317  * this is appending, whether the page is dirty or not, and so on. This
318  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
319  * in case of success and %-ENOSPC in case of failure.
320  */
321 static int allocate_budget(struct ubifs_info *c, struct page *page,
322 			   struct ubifs_inode *ui, int appending)
323 {
324 	struct ubifs_budget_req req = { .fast = 1 };
325 
326 	if (PagePrivate(page)) {
327 		if (!appending)
328 			/*
329 			 * The page is dirty and we are not appending, which
330 			 * means no budget is needed at all.
331 			 */
332 			return 0;
333 
334 		mutex_lock(&ui->ui_mutex);
335 		if (ui->dirty)
336 			/*
337 			 * The page is dirty and we are appending, so the inode
338 			 * has to be marked as dirty. However, it is already
339 			 * dirty, so we do not need any budget. We may return,
340 			 * but @ui->ui_mutex hast to be left locked because we
341 			 * should prevent write-back from flushing the inode
342 			 * and freeing the budget. The lock will be released in
343 			 * 'ubifs_write_end()'.
344 			 */
345 			return 0;
346 
347 		/*
348 		 * The page is dirty, we are appending, the inode is clean, so
349 		 * we need to budget the inode change.
350 		 */
351 		req.dirtied_ino = 1;
352 	} else {
353 		if (PageChecked(page))
354 			/*
355 			 * The page corresponds to a hole and does not
356 			 * exist on the media. So changing it makes
357 			 * make the amount of indexing information
358 			 * larger, and we have to budget for a new
359 			 * page.
360 			 */
361 			req.new_page = 1;
362 		else
363 			/*
364 			 * Not a hole, the change will not add any new
365 			 * indexing information, budget for page
366 			 * change.
367 			 */
368 			req.dirtied_page = 1;
369 
370 		if (appending) {
371 			mutex_lock(&ui->ui_mutex);
372 			if (!ui->dirty)
373 				/*
374 				 * The inode is clean but we will have to mark
375 				 * it as dirty because we are appending. This
376 				 * needs a budget.
377 				 */
378 				req.dirtied_ino = 1;
379 		}
380 	}
381 
382 	return ubifs_budget_space(c, &req);
383 }
384 
385 /*
386  * This function is called when a page of data is going to be written. Since
387  * the page of data will not necessarily go to the flash straight away, UBIFS
388  * has to reserve space on the media for it, which is done by means of
389  * budgeting.
390  *
391  * This is the hot-path of the file-system and we are trying to optimize it as
392  * much as possible. For this reasons it is split on 2 parts - slow and fast.
393  *
394  * There many budgeting cases:
395  *     o a new page is appended - we have to budget for a new page and for
396  *       changing the inode; however, if the inode is already dirty, there is
397  *       no need to budget for it;
398  *     o an existing clean page is changed - we have budget for it; if the page
399  *       does not exist on the media (a hole), we have to budget for a new
400  *       page; otherwise, we may budget for changing an existing page; the
401  *       difference between these cases is that changing an existing page does
402  *       not introduce anything new to the FS indexing information, so it does
403  *       not grow, and smaller budget is acquired in this case;
404  *     o an existing dirty page is changed - no need to budget at all, because
405  *       the page budget has been acquired by earlier, when the page has been
406  *       marked dirty.
407  *
408  * UBIFS budgeting sub-system may force write-back if it thinks there is no
409  * space to reserve. This imposes some locking restrictions and makes it
410  * impossible to take into account the above cases, and makes it impossible to
411  * optimize budgeting.
412  *
413  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
414  * there is a plenty of flash space and the budget will be acquired quickly,
415  * without forcing write-back. The slow path does not make this assumption.
416  */
417 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
418 			     loff_t pos, unsigned len,
419 			     struct page **pagep, void **fsdata)
420 {
421 	struct inode *inode = mapping->host;
422 	struct ubifs_info *c = inode->i_sb->s_fs_info;
423 	struct ubifs_inode *ui = ubifs_inode(inode);
424 	pgoff_t index = pos >> PAGE_SHIFT;
425 	int err, appending = !!(pos + len > inode->i_size);
426 	int skipped_read = 0;
427 	struct page *page;
428 
429 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
430 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
431 
432 	if (unlikely(c->ro_error))
433 		return -EROFS;
434 
435 	/* Try out the fast-path part first */
436 	page = grab_cache_page_write_begin(mapping, index);
437 	if (unlikely(!page))
438 		return -ENOMEM;
439 
440 	if (!PageUptodate(page)) {
441 		/* The page is not loaded from the flash */
442 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
443 			/*
444 			 * We change whole page so no need to load it. But we
445 			 * do not know whether this page exists on the media or
446 			 * not, so we assume the latter because it requires
447 			 * larger budget. The assumption is that it is better
448 			 * to budget a bit more than to read the page from the
449 			 * media. Thus, we are setting the @PG_checked flag
450 			 * here.
451 			 */
452 			SetPageChecked(page);
453 			skipped_read = 1;
454 		} else {
455 			err = do_readpage(page);
456 			if (err) {
457 				unlock_page(page);
458 				put_page(page);
459 				return err;
460 			}
461 		}
462 	}
463 
464 	err = allocate_budget(c, page, ui, appending);
465 	if (unlikely(err)) {
466 		ubifs_assert(c, err == -ENOSPC);
467 		/*
468 		 * If we skipped reading the page because we were going to
469 		 * write all of it, then it is not up to date.
470 		 */
471 		if (skipped_read)
472 			ClearPageChecked(page);
473 		/*
474 		 * Budgeting failed which means it would have to force
475 		 * write-back but didn't, because we set the @fast flag in the
476 		 * request. Write-back cannot be done now, while we have the
477 		 * page locked, because it would deadlock. Unlock and free
478 		 * everything and fall-back to slow-path.
479 		 */
480 		if (appending) {
481 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
482 			mutex_unlock(&ui->ui_mutex);
483 		}
484 		unlock_page(page);
485 		put_page(page);
486 
487 		return write_begin_slow(mapping, pos, len, pagep);
488 	}
489 
490 	/*
491 	 * Whee, we acquired budgeting quickly - without involving
492 	 * garbage-collection, committing or forcing write-back. We return
493 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
494 	 * otherwise. This is an optimization (slightly hacky though).
495 	 */
496 	*pagep = page;
497 	return 0;
498 
499 }
500 
501 /**
502  * cancel_budget - cancel budget.
503  * @c: UBIFS file-system description object
504  * @page: page to cancel budget for
505  * @ui: UBIFS inode object the page belongs to
506  * @appending: non-zero if the page is appended
507  *
508  * This is a helper function for a page write operation. It unlocks the
509  * @ui->ui_mutex in case of appending.
510  */
511 static void cancel_budget(struct ubifs_info *c, struct page *page,
512 			  struct ubifs_inode *ui, int appending)
513 {
514 	if (appending) {
515 		if (!ui->dirty)
516 			ubifs_release_dirty_inode_budget(c, ui);
517 		mutex_unlock(&ui->ui_mutex);
518 	}
519 	if (!PagePrivate(page)) {
520 		if (PageChecked(page))
521 			release_new_page_budget(c);
522 		else
523 			release_existing_page_budget(c);
524 	}
525 }
526 
527 static int ubifs_write_end(struct file *file, struct address_space *mapping,
528 			   loff_t pos, unsigned len, unsigned copied,
529 			   struct page *page, void *fsdata)
530 {
531 	struct inode *inode = mapping->host;
532 	struct ubifs_inode *ui = ubifs_inode(inode);
533 	struct ubifs_info *c = inode->i_sb->s_fs_info;
534 	loff_t end_pos = pos + len;
535 	int appending = !!(end_pos > inode->i_size);
536 
537 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
538 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
539 
540 	if (unlikely(copied < len && len == PAGE_SIZE)) {
541 		/*
542 		 * VFS copied less data to the page that it intended and
543 		 * declared in its '->write_begin()' call via the @len
544 		 * argument. If the page was not up-to-date, and @len was
545 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
546 		 * not load it from the media (for optimization reasons). This
547 		 * means that part of the page contains garbage. So read the
548 		 * page now.
549 		 */
550 		dbg_gen("copied %d instead of %d, read page and repeat",
551 			copied, len);
552 		cancel_budget(c, page, ui, appending);
553 		ClearPageChecked(page);
554 
555 		/*
556 		 * Return 0 to force VFS to repeat the whole operation, or the
557 		 * error code if 'do_readpage()' fails.
558 		 */
559 		copied = do_readpage(page);
560 		goto out;
561 	}
562 
563 	if (len == PAGE_SIZE)
564 		SetPageUptodate(page);
565 
566 	if (!PagePrivate(page)) {
567 		attach_page_private(page, (void *)1);
568 		atomic_long_inc(&c->dirty_pg_cnt);
569 		__set_page_dirty_nobuffers(page);
570 	}
571 
572 	if (appending) {
573 		i_size_write(inode, end_pos);
574 		ui->ui_size = end_pos;
575 		/*
576 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
577 		 * inode has dirty pages), this has been done in
578 		 * '__set_page_dirty_nobuffers()'.
579 		 */
580 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
581 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
582 		mutex_unlock(&ui->ui_mutex);
583 	}
584 
585 out:
586 	unlock_page(page);
587 	put_page(page);
588 	return copied;
589 }
590 
591 /**
592  * populate_page - copy data nodes into a page for bulk-read.
593  * @c: UBIFS file-system description object
594  * @page: page
595  * @bu: bulk-read information
596  * @n: next zbranch slot
597  *
598  * This function returns %0 on success and a negative error code on failure.
599  */
600 static int populate_page(struct ubifs_info *c, struct page *page,
601 			 struct bu_info *bu, int *n)
602 {
603 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
604 	struct inode *inode = page->mapping->host;
605 	loff_t i_size = i_size_read(inode);
606 	unsigned int page_block;
607 	void *addr, *zaddr;
608 	pgoff_t end_index;
609 
610 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
611 		inode->i_ino, page->index, i_size, page->flags);
612 
613 	addr = zaddr = kmap(page);
614 
615 	end_index = (i_size - 1) >> PAGE_SHIFT;
616 	if (!i_size || page->index > end_index) {
617 		hole = 1;
618 		memset(addr, 0, PAGE_SIZE);
619 		goto out_hole;
620 	}
621 
622 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
623 	while (1) {
624 		int err, len, out_len, dlen;
625 
626 		if (nn >= bu->cnt) {
627 			hole = 1;
628 			memset(addr, 0, UBIFS_BLOCK_SIZE);
629 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
630 			struct ubifs_data_node *dn;
631 
632 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
633 
634 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
635 				     ubifs_inode(inode)->creat_sqnum);
636 
637 			len = le32_to_cpu(dn->size);
638 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
639 				goto out_err;
640 
641 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
642 			out_len = UBIFS_BLOCK_SIZE;
643 
644 			if (IS_ENCRYPTED(inode)) {
645 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
646 				if (err)
647 					goto out_err;
648 			}
649 
650 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
651 					       le16_to_cpu(dn->compr_type));
652 			if (err || len != out_len)
653 				goto out_err;
654 
655 			if (len < UBIFS_BLOCK_SIZE)
656 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
657 
658 			nn += 1;
659 			read = (i << UBIFS_BLOCK_SHIFT) + len;
660 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
661 			nn += 1;
662 			continue;
663 		} else {
664 			hole = 1;
665 			memset(addr, 0, UBIFS_BLOCK_SIZE);
666 		}
667 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
668 			break;
669 		addr += UBIFS_BLOCK_SIZE;
670 		page_block += 1;
671 	}
672 
673 	if (end_index == page->index) {
674 		int len = i_size & (PAGE_SIZE - 1);
675 
676 		if (len && len < read)
677 			memset(zaddr + len, 0, read - len);
678 	}
679 
680 out_hole:
681 	if (hole) {
682 		SetPageChecked(page);
683 		dbg_gen("hole");
684 	}
685 
686 	SetPageUptodate(page);
687 	ClearPageError(page);
688 	flush_dcache_page(page);
689 	kunmap(page);
690 	*n = nn;
691 	return 0;
692 
693 out_err:
694 	ClearPageUptodate(page);
695 	SetPageError(page);
696 	flush_dcache_page(page);
697 	kunmap(page);
698 	ubifs_err(c, "bad data node (block %u, inode %lu)",
699 		  page_block, inode->i_ino);
700 	return -EINVAL;
701 }
702 
703 /**
704  * ubifs_do_bulk_read - do bulk-read.
705  * @c: UBIFS file-system description object
706  * @bu: bulk-read information
707  * @page1: first page to read
708  *
709  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
710  */
711 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
712 			      struct page *page1)
713 {
714 	pgoff_t offset = page1->index, end_index;
715 	struct address_space *mapping = page1->mapping;
716 	struct inode *inode = mapping->host;
717 	struct ubifs_inode *ui = ubifs_inode(inode);
718 	int err, page_idx, page_cnt, ret = 0, n = 0;
719 	int allocate = bu->buf ? 0 : 1;
720 	loff_t isize;
721 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
722 
723 	err = ubifs_tnc_get_bu_keys(c, bu);
724 	if (err)
725 		goto out_warn;
726 
727 	if (bu->eof) {
728 		/* Turn off bulk-read at the end of the file */
729 		ui->read_in_a_row = 1;
730 		ui->bulk_read = 0;
731 	}
732 
733 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
734 	if (!page_cnt) {
735 		/*
736 		 * This happens when there are multiple blocks per page and the
737 		 * blocks for the first page we are looking for, are not
738 		 * together. If all the pages were like this, bulk-read would
739 		 * reduce performance, so we turn it off for a while.
740 		 */
741 		goto out_bu_off;
742 	}
743 
744 	if (bu->cnt) {
745 		if (allocate) {
746 			/*
747 			 * Allocate bulk-read buffer depending on how many data
748 			 * nodes we are going to read.
749 			 */
750 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
751 				      bu->zbranch[bu->cnt - 1].len -
752 				      bu->zbranch[0].offs;
753 			ubifs_assert(c, bu->buf_len > 0);
754 			ubifs_assert(c, bu->buf_len <= c->leb_size);
755 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
756 			if (!bu->buf)
757 				goto out_bu_off;
758 		}
759 
760 		err = ubifs_tnc_bulk_read(c, bu);
761 		if (err)
762 			goto out_warn;
763 	}
764 
765 	err = populate_page(c, page1, bu, &n);
766 	if (err)
767 		goto out_warn;
768 
769 	unlock_page(page1);
770 	ret = 1;
771 
772 	isize = i_size_read(inode);
773 	if (isize == 0)
774 		goto out_free;
775 	end_index = ((isize - 1) >> PAGE_SHIFT);
776 
777 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
778 		pgoff_t page_offset = offset + page_idx;
779 		struct page *page;
780 
781 		if (page_offset > end_index)
782 			break;
783 		page = pagecache_get_page(mapping, page_offset,
784 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
785 				 ra_gfp_mask);
786 		if (!page)
787 			break;
788 		if (!PageUptodate(page))
789 			err = populate_page(c, page, bu, &n);
790 		unlock_page(page);
791 		put_page(page);
792 		if (err)
793 			break;
794 	}
795 
796 	ui->last_page_read = offset + page_idx - 1;
797 
798 out_free:
799 	if (allocate)
800 		kfree(bu->buf);
801 	return ret;
802 
803 out_warn:
804 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
805 	goto out_free;
806 
807 out_bu_off:
808 	ui->read_in_a_row = ui->bulk_read = 0;
809 	goto out_free;
810 }
811 
812 /**
813  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814  * @page: page from which to start bulk-read.
815  *
816  * Some flash media are capable of reading sequentially at faster rates. UBIFS
817  * bulk-read facility is designed to take advantage of that, by reading in one
818  * go consecutive data nodes that are also located consecutively in the same
819  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
820  */
821 static int ubifs_bulk_read(struct page *page)
822 {
823 	struct inode *inode = page->mapping->host;
824 	struct ubifs_info *c = inode->i_sb->s_fs_info;
825 	struct ubifs_inode *ui = ubifs_inode(inode);
826 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
827 	struct bu_info *bu;
828 	int err = 0, allocated = 0;
829 
830 	ui->last_page_read = index;
831 	if (!c->bulk_read)
832 		return 0;
833 
834 	/*
835 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
836 	 * so don't bother if we cannot lock the mutex.
837 	 */
838 	if (!mutex_trylock(&ui->ui_mutex))
839 		return 0;
840 
841 	if (index != last_page_read + 1) {
842 		/* Turn off bulk-read if we stop reading sequentially */
843 		ui->read_in_a_row = 1;
844 		if (ui->bulk_read)
845 			ui->bulk_read = 0;
846 		goto out_unlock;
847 	}
848 
849 	if (!ui->bulk_read) {
850 		ui->read_in_a_row += 1;
851 		if (ui->read_in_a_row < 3)
852 			goto out_unlock;
853 		/* Three reads in a row, so switch on bulk-read */
854 		ui->bulk_read = 1;
855 	}
856 
857 	/*
858 	 * If possible, try to use pre-allocated bulk-read information, which
859 	 * is protected by @c->bu_mutex.
860 	 */
861 	if (mutex_trylock(&c->bu_mutex))
862 		bu = &c->bu;
863 	else {
864 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
865 		if (!bu)
866 			goto out_unlock;
867 
868 		bu->buf = NULL;
869 		allocated = 1;
870 	}
871 
872 	bu->buf_len = c->max_bu_buf_len;
873 	data_key_init(c, &bu->key, inode->i_ino,
874 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
875 	err = ubifs_do_bulk_read(c, bu, page);
876 
877 	if (!allocated)
878 		mutex_unlock(&c->bu_mutex);
879 	else
880 		kfree(bu);
881 
882 out_unlock:
883 	mutex_unlock(&ui->ui_mutex);
884 	return err;
885 }
886 
887 static int ubifs_read_folio(struct file *file, struct folio *folio)
888 {
889 	struct page *page = &folio->page;
890 
891 	if (ubifs_bulk_read(page))
892 		return 0;
893 	do_readpage(page);
894 	folio_unlock(folio);
895 	return 0;
896 }
897 
898 static int do_writepage(struct page *page, int len)
899 {
900 	int err = 0, i, blen;
901 	unsigned int block;
902 	void *addr;
903 	union ubifs_key key;
904 	struct inode *inode = page->mapping->host;
905 	struct ubifs_info *c = inode->i_sb->s_fs_info;
906 
907 #ifdef UBIFS_DEBUG
908 	struct ubifs_inode *ui = ubifs_inode(inode);
909 	spin_lock(&ui->ui_lock);
910 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
911 	spin_unlock(&ui->ui_lock);
912 #endif
913 
914 	/* Update radix tree tags */
915 	set_page_writeback(page);
916 
917 	addr = kmap(page);
918 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
919 	i = 0;
920 	while (len) {
921 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
922 		data_key_init(c, &key, inode->i_ino, block);
923 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
924 		if (err)
925 			break;
926 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
927 			break;
928 		block += 1;
929 		addr += blen;
930 		len -= blen;
931 	}
932 	if (err) {
933 		SetPageError(page);
934 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
935 			  page->index, inode->i_ino, err);
936 		ubifs_ro_mode(c, err);
937 	}
938 
939 	ubifs_assert(c, PagePrivate(page));
940 	if (PageChecked(page))
941 		release_new_page_budget(c);
942 	else
943 		release_existing_page_budget(c);
944 
945 	atomic_long_dec(&c->dirty_pg_cnt);
946 	detach_page_private(page);
947 	ClearPageChecked(page);
948 
949 	kunmap(page);
950 	unlock_page(page);
951 	end_page_writeback(page);
952 	return err;
953 }
954 
955 /*
956  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
957  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
958  * situation when a we have an inode with size 0, then a megabyte of data is
959  * appended to the inode, then write-back starts and flushes some amount of the
960  * dirty pages, the journal becomes full, commit happens and finishes, and then
961  * an unclean reboot happens. When the file system is mounted next time, the
962  * inode size would still be 0, but there would be many pages which are beyond
963  * the inode size, they would be indexed and consume flash space. Because the
964  * journal has been committed, the replay would not be able to detect this
965  * situation and correct the inode size. This means UBIFS would have to scan
966  * whole index and correct all inode sizes, which is long an unacceptable.
967  *
968  * To prevent situations like this, UBIFS writes pages back only if they are
969  * within the last synchronized inode size, i.e. the size which has been
970  * written to the flash media last time. Otherwise, UBIFS forces inode
971  * write-back, thus making sure the on-flash inode contains current inode size,
972  * and then keeps writing pages back.
973  *
974  * Some locking issues explanation. 'ubifs_writepage()' first is called with
975  * the page locked, and it locks @ui_mutex. However, write-back does take inode
976  * @i_mutex, which means other VFS operations may be run on this inode at the
977  * same time. And the problematic one is truncation to smaller size, from where
978  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
979  * then drops the truncated pages. And while dropping the pages, it takes the
980  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
981  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
982  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
983  *
984  * XXX(truncate): with the new truncate sequence this is not true anymore,
985  * and the calls to truncate_setsize can be move around freely.  They should
986  * be moved to the very end of the truncate sequence.
987  *
988  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
989  * inode size. How do we do this if @inode->i_size may became smaller while we
990  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
991  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
992  * internally and updates it under @ui_mutex.
993  *
994  * Q: why we do not worry that if we race with truncation, we may end up with a
995  * situation when the inode is truncated while we are in the middle of
996  * 'do_writepage()', so we do write beyond inode size?
997  * A: If we are in the middle of 'do_writepage()', truncation would be locked
998  * on the page lock and it would not write the truncated inode node to the
999  * journal before we have finished.
1000  */
1001 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1002 {
1003 	struct inode *inode = page->mapping->host;
1004 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1005 	struct ubifs_inode *ui = ubifs_inode(inode);
1006 	loff_t i_size =  i_size_read(inode), synced_i_size;
1007 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1008 	int err, len = i_size & (PAGE_SIZE - 1);
1009 	void *kaddr;
1010 
1011 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1012 		inode->i_ino, page->index, page->flags);
1013 	ubifs_assert(c, PagePrivate(page));
1014 
1015 	/* Is the page fully outside @i_size? (truncate in progress) */
1016 	if (page->index > end_index || (page->index == end_index && !len)) {
1017 		err = 0;
1018 		goto out_unlock;
1019 	}
1020 
1021 	spin_lock(&ui->ui_lock);
1022 	synced_i_size = ui->synced_i_size;
1023 	spin_unlock(&ui->ui_lock);
1024 
1025 	/* Is the page fully inside @i_size? */
1026 	if (page->index < end_index) {
1027 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1028 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1029 			if (err)
1030 				goto out_redirty;
1031 			/*
1032 			 * The inode has been written, but the write-buffer has
1033 			 * not been synchronized, so in case of an unclean
1034 			 * reboot we may end up with some pages beyond inode
1035 			 * size, but they would be in the journal (because
1036 			 * commit flushes write buffers) and recovery would deal
1037 			 * with this.
1038 			 */
1039 		}
1040 		return do_writepage(page, PAGE_SIZE);
1041 	}
1042 
1043 	/*
1044 	 * The page straddles @i_size. It must be zeroed out on each and every
1045 	 * writepage invocation because it may be mmapped. "A file is mapped
1046 	 * in multiples of the page size. For a file that is not a multiple of
1047 	 * the page size, the remaining memory is zeroed when mapped, and
1048 	 * writes to that region are not written out to the file."
1049 	 */
1050 	kaddr = kmap_atomic(page);
1051 	memset(kaddr + len, 0, PAGE_SIZE - len);
1052 	flush_dcache_page(page);
1053 	kunmap_atomic(kaddr);
1054 
1055 	if (i_size > synced_i_size) {
1056 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1057 		if (err)
1058 			goto out_redirty;
1059 	}
1060 
1061 	return do_writepage(page, len);
1062 out_redirty:
1063 	/*
1064 	 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1065 	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1066 	 * there is no need to do space budget for dirty inode.
1067 	 */
1068 	redirty_page_for_writepage(wbc, page);
1069 out_unlock:
1070 	unlock_page(page);
1071 	return err;
1072 }
1073 
1074 /**
1075  * do_attr_changes - change inode attributes.
1076  * @inode: inode to change attributes for
1077  * @attr: describes attributes to change
1078  */
1079 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1080 {
1081 	if (attr->ia_valid & ATTR_UID)
1082 		inode->i_uid = attr->ia_uid;
1083 	if (attr->ia_valid & ATTR_GID)
1084 		inode->i_gid = attr->ia_gid;
1085 	if (attr->ia_valid & ATTR_ATIME)
1086 		inode->i_atime = attr->ia_atime;
1087 	if (attr->ia_valid & ATTR_MTIME)
1088 		inode->i_mtime = attr->ia_mtime;
1089 	if (attr->ia_valid & ATTR_CTIME)
1090 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1091 	if (attr->ia_valid & ATTR_MODE) {
1092 		umode_t mode = attr->ia_mode;
1093 
1094 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1095 			mode &= ~S_ISGID;
1096 		inode->i_mode = mode;
1097 	}
1098 }
1099 
1100 /**
1101  * do_truncation - truncate an inode.
1102  * @c: UBIFS file-system description object
1103  * @inode: inode to truncate
1104  * @attr: inode attribute changes description
1105  *
1106  * This function implements VFS '->setattr()' call when the inode is truncated
1107  * to a smaller size. Returns zero in case of success and a negative error code
1108  * in case of failure.
1109  */
1110 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1111 			 const struct iattr *attr)
1112 {
1113 	int err;
1114 	struct ubifs_budget_req req;
1115 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1116 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1117 	struct ubifs_inode *ui = ubifs_inode(inode);
1118 
1119 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1120 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1121 
1122 	/*
1123 	 * If this is truncation to a smaller size, and we do not truncate on a
1124 	 * block boundary, budget for changing one data block, because the last
1125 	 * block will be re-written.
1126 	 */
1127 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1128 		req.dirtied_page = 1;
1129 
1130 	req.dirtied_ino = 1;
1131 	/* A funny way to budget for truncation node */
1132 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1133 	err = ubifs_budget_space(c, &req);
1134 	if (err) {
1135 		/*
1136 		 * Treat truncations to zero as deletion and always allow them,
1137 		 * just like we do for '->unlink()'.
1138 		 */
1139 		if (new_size || err != -ENOSPC)
1140 			return err;
1141 		budgeted = 0;
1142 	}
1143 
1144 	truncate_setsize(inode, new_size);
1145 
1146 	if (offset) {
1147 		pgoff_t index = new_size >> PAGE_SHIFT;
1148 		struct page *page;
1149 
1150 		page = find_lock_page(inode->i_mapping, index);
1151 		if (page) {
1152 			if (PageDirty(page)) {
1153 				/*
1154 				 * 'ubifs_jnl_truncate()' will try to truncate
1155 				 * the last data node, but it contains
1156 				 * out-of-date data because the page is dirty.
1157 				 * Write the page now, so that
1158 				 * 'ubifs_jnl_truncate()' will see an already
1159 				 * truncated (and up to date) data node.
1160 				 */
1161 				ubifs_assert(c, PagePrivate(page));
1162 
1163 				clear_page_dirty_for_io(page);
1164 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1165 					offset = new_size &
1166 						 (PAGE_SIZE - 1);
1167 				err = do_writepage(page, offset);
1168 				put_page(page);
1169 				if (err)
1170 					goto out_budg;
1171 				/*
1172 				 * We could now tell 'ubifs_jnl_truncate()' not
1173 				 * to read the last block.
1174 				 */
1175 			} else {
1176 				/*
1177 				 * We could 'kmap()' the page and pass the data
1178 				 * to 'ubifs_jnl_truncate()' to save it from
1179 				 * having to read it.
1180 				 */
1181 				unlock_page(page);
1182 				put_page(page);
1183 			}
1184 		}
1185 	}
1186 
1187 	mutex_lock(&ui->ui_mutex);
1188 	ui->ui_size = inode->i_size;
1189 	/* Truncation changes inode [mc]time */
1190 	inode->i_mtime = inode_set_ctime_current(inode);
1191 	/* Other attributes may be changed at the same time as well */
1192 	do_attr_changes(inode, attr);
1193 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1194 	mutex_unlock(&ui->ui_mutex);
1195 
1196 out_budg:
1197 	if (budgeted)
1198 		ubifs_release_budget(c, &req);
1199 	else {
1200 		c->bi.nospace = c->bi.nospace_rp = 0;
1201 		smp_wmb();
1202 	}
1203 	return err;
1204 }
1205 
1206 /**
1207  * do_setattr - change inode attributes.
1208  * @c: UBIFS file-system description object
1209  * @inode: inode to change attributes for
1210  * @attr: inode attribute changes description
1211  *
1212  * This function implements VFS '->setattr()' call for all cases except
1213  * truncations to smaller size. Returns zero in case of success and a negative
1214  * error code in case of failure.
1215  */
1216 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1217 		      const struct iattr *attr)
1218 {
1219 	int err, release;
1220 	loff_t new_size = attr->ia_size;
1221 	struct ubifs_inode *ui = ubifs_inode(inode);
1222 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1223 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1224 
1225 	err = ubifs_budget_space(c, &req);
1226 	if (err)
1227 		return err;
1228 
1229 	if (attr->ia_valid & ATTR_SIZE) {
1230 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1231 		truncate_setsize(inode, new_size);
1232 	}
1233 
1234 	mutex_lock(&ui->ui_mutex);
1235 	if (attr->ia_valid & ATTR_SIZE) {
1236 		/* Truncation changes inode [mc]time */
1237 		inode->i_mtime = inode_set_ctime_current(inode);
1238 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1239 		ui->ui_size = inode->i_size;
1240 	}
1241 
1242 	do_attr_changes(inode, attr);
1243 
1244 	release = ui->dirty;
1245 	if (attr->ia_valid & ATTR_SIZE)
1246 		/*
1247 		 * Inode length changed, so we have to make sure
1248 		 * @I_DIRTY_DATASYNC is set.
1249 		 */
1250 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1251 	else
1252 		mark_inode_dirty_sync(inode);
1253 	mutex_unlock(&ui->ui_mutex);
1254 
1255 	if (release)
1256 		ubifs_release_budget(c, &req);
1257 	if (IS_SYNC(inode))
1258 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1259 	return err;
1260 }
1261 
1262 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1263 		  struct iattr *attr)
1264 {
1265 	int err;
1266 	struct inode *inode = d_inode(dentry);
1267 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1268 
1269 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1270 		inode->i_ino, inode->i_mode, attr->ia_valid);
1271 	err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1272 	if (err)
1273 		return err;
1274 
1275 	err = dbg_check_synced_i_size(c, inode);
1276 	if (err)
1277 		return err;
1278 
1279 	err = fscrypt_prepare_setattr(dentry, attr);
1280 	if (err)
1281 		return err;
1282 
1283 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1284 		/* Truncation to a smaller size */
1285 		err = do_truncation(c, inode, attr);
1286 	else
1287 		err = do_setattr(c, inode, attr);
1288 
1289 	return err;
1290 }
1291 
1292 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1293 				 size_t length)
1294 {
1295 	struct inode *inode = folio->mapping->host;
1296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1297 
1298 	ubifs_assert(c, folio_test_private(folio));
1299 	if (offset || length < folio_size(folio))
1300 		/* Partial folio remains dirty */
1301 		return;
1302 
1303 	if (folio_test_checked(folio))
1304 		release_new_page_budget(c);
1305 	else
1306 		release_existing_page_budget(c);
1307 
1308 	atomic_long_dec(&c->dirty_pg_cnt);
1309 	folio_detach_private(folio);
1310 	folio_clear_checked(folio);
1311 }
1312 
1313 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1314 {
1315 	struct inode *inode = file->f_mapping->host;
1316 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1317 	int err;
1318 
1319 	dbg_gen("syncing inode %lu", inode->i_ino);
1320 
1321 	if (c->ro_mount)
1322 		/*
1323 		 * For some really strange reasons VFS does not filter out
1324 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1325 		 */
1326 		return 0;
1327 
1328 	err = file_write_and_wait_range(file, start, end);
1329 	if (err)
1330 		return err;
1331 	inode_lock(inode);
1332 
1333 	/* Synchronize the inode unless this is a 'datasync()' call. */
1334 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1335 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1336 		if (err)
1337 			goto out;
1338 	}
1339 
1340 	/*
1341 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1342 	 * them.
1343 	 */
1344 	err = ubifs_sync_wbufs_by_inode(c, inode);
1345 out:
1346 	inode_unlock(inode);
1347 	return err;
1348 }
1349 
1350 /**
1351  * mctime_update_needed - check if mtime or ctime update is needed.
1352  * @inode: the inode to do the check for
1353  * @now: current time
1354  *
1355  * This helper function checks if the inode mtime/ctime should be updated or
1356  * not. If current values of the time-stamps are within the UBIFS inode time
1357  * granularity, they are not updated. This is an optimization.
1358  */
1359 static inline int mctime_update_needed(const struct inode *inode,
1360 				       const struct timespec64 *now)
1361 {
1362 	struct timespec64 ctime = inode_get_ctime(inode);
1363 
1364 	if (!timespec64_equal(&inode->i_mtime, now) ||
1365 	    !timespec64_equal(&ctime, now))
1366 		return 1;
1367 	return 0;
1368 }
1369 
1370 /**
1371  * ubifs_update_time - update time of inode.
1372  * @inode: inode to update
1373  *
1374  * This function updates time of the inode.
1375  */
1376 int ubifs_update_time(struct inode *inode, int flags)
1377 {
1378 	struct ubifs_inode *ui = ubifs_inode(inode);
1379 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1380 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1381 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382 	int err, release;
1383 
1384 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1385 		generic_update_time(inode, flags);
1386 		return 0;
1387 	}
1388 
1389 	err = ubifs_budget_space(c, &req);
1390 	if (err)
1391 		return err;
1392 
1393 	mutex_lock(&ui->ui_mutex);
1394 	inode_update_timestamps(inode, flags);
1395 	release = ui->dirty;
1396 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1397 	mutex_unlock(&ui->ui_mutex);
1398 	if (release)
1399 		ubifs_release_budget(c, &req);
1400 	return 0;
1401 }
1402 
1403 /**
1404  * update_mctime - update mtime and ctime of an inode.
1405  * @inode: inode to update
1406  *
1407  * This function updates mtime and ctime of the inode if it is not equivalent to
1408  * current time. Returns zero in case of success and a negative error code in
1409  * case of failure.
1410  */
1411 static int update_mctime(struct inode *inode)
1412 {
1413 	struct timespec64 now = current_time(inode);
1414 	struct ubifs_inode *ui = ubifs_inode(inode);
1415 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1416 
1417 	if (mctime_update_needed(inode, &now)) {
1418 		int err, release;
1419 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1420 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1421 
1422 		err = ubifs_budget_space(c, &req);
1423 		if (err)
1424 			return err;
1425 
1426 		mutex_lock(&ui->ui_mutex);
1427 		inode->i_mtime = inode_set_ctime_current(inode);
1428 		release = ui->dirty;
1429 		mark_inode_dirty_sync(inode);
1430 		mutex_unlock(&ui->ui_mutex);
1431 		if (release)
1432 			ubifs_release_budget(c, &req);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1439 {
1440 	int err = update_mctime(file_inode(iocb->ki_filp));
1441 	if (err)
1442 		return err;
1443 
1444 	return generic_file_write_iter(iocb, from);
1445 }
1446 
1447 static bool ubifs_dirty_folio(struct address_space *mapping,
1448 		struct folio *folio)
1449 {
1450 	bool ret;
1451 	struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1452 
1453 	ret = filemap_dirty_folio(mapping, folio);
1454 	/*
1455 	 * An attempt to dirty a page without budgeting for it - should not
1456 	 * happen.
1457 	 */
1458 	ubifs_assert(c, ret == false);
1459 	return ret;
1460 }
1461 
1462 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1463 {
1464 	struct inode *inode = folio->mapping->host;
1465 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1466 
1467 	if (folio_test_writeback(folio))
1468 		return false;
1469 
1470 	/*
1471 	 * Page is private but not dirty, weird? There is one condition
1472 	 * making it happened. ubifs_writepage skipped the page because
1473 	 * page index beyonds isize (for example. truncated by other
1474 	 * process named A), then the page is invalidated by fadvise64
1475 	 * syscall before being truncated by process A.
1476 	 */
1477 	ubifs_assert(c, folio_test_private(folio));
1478 	if (folio_test_checked(folio))
1479 		release_new_page_budget(c);
1480 	else
1481 		release_existing_page_budget(c);
1482 
1483 	atomic_long_dec(&c->dirty_pg_cnt);
1484 	folio_detach_private(folio);
1485 	folio_clear_checked(folio);
1486 	return true;
1487 }
1488 
1489 /*
1490  * mmap()d file has taken write protection fault and is being made writable.
1491  * UBIFS must ensure page is budgeted for.
1492  */
1493 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1494 {
1495 	struct page *page = vmf->page;
1496 	struct inode *inode = file_inode(vmf->vma->vm_file);
1497 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1498 	struct timespec64 now = current_time(inode);
1499 	struct ubifs_budget_req req = { .new_page = 1 };
1500 	int err, update_time;
1501 
1502 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1503 		i_size_read(inode));
1504 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1505 
1506 	if (unlikely(c->ro_error))
1507 		return VM_FAULT_SIGBUS; /* -EROFS */
1508 
1509 	/*
1510 	 * We have not locked @page so far so we may budget for changing the
1511 	 * page. Note, we cannot do this after we locked the page, because
1512 	 * budgeting may cause write-back which would cause deadlock.
1513 	 *
1514 	 * At the moment we do not know whether the page is dirty or not, so we
1515 	 * assume that it is not and budget for a new page. We could look at
1516 	 * the @PG_private flag and figure this out, but we may race with write
1517 	 * back and the page state may change by the time we lock it, so this
1518 	 * would need additional care. We do not bother with this at the
1519 	 * moment, although it might be good idea to do. Instead, we allocate
1520 	 * budget for a new page and amend it later on if the page was in fact
1521 	 * dirty.
1522 	 *
1523 	 * The budgeting-related logic of this function is similar to what we
1524 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1525 	 * for more comments.
1526 	 */
1527 	update_time = mctime_update_needed(inode, &now);
1528 	if (update_time)
1529 		/*
1530 		 * We have to change inode time stamp which requires extra
1531 		 * budgeting.
1532 		 */
1533 		req.dirtied_ino = 1;
1534 
1535 	err = ubifs_budget_space(c, &req);
1536 	if (unlikely(err)) {
1537 		if (err == -ENOSPC)
1538 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1539 				   inode->i_ino);
1540 		return VM_FAULT_SIGBUS;
1541 	}
1542 
1543 	lock_page(page);
1544 	if (unlikely(page->mapping != inode->i_mapping ||
1545 		     page_offset(page) > i_size_read(inode))) {
1546 		/* Page got truncated out from underneath us */
1547 		goto sigbus;
1548 	}
1549 
1550 	if (PagePrivate(page))
1551 		release_new_page_budget(c);
1552 	else {
1553 		if (!PageChecked(page))
1554 			ubifs_convert_page_budget(c);
1555 		attach_page_private(page, (void *)1);
1556 		atomic_long_inc(&c->dirty_pg_cnt);
1557 		__set_page_dirty_nobuffers(page);
1558 	}
1559 
1560 	if (update_time) {
1561 		int release;
1562 		struct ubifs_inode *ui = ubifs_inode(inode);
1563 
1564 		mutex_lock(&ui->ui_mutex);
1565 		inode->i_mtime = inode_set_ctime_current(inode);
1566 		release = ui->dirty;
1567 		mark_inode_dirty_sync(inode);
1568 		mutex_unlock(&ui->ui_mutex);
1569 		if (release)
1570 			ubifs_release_dirty_inode_budget(c, ui);
1571 	}
1572 
1573 	wait_for_stable_page(page);
1574 	return VM_FAULT_LOCKED;
1575 
1576 sigbus:
1577 	unlock_page(page);
1578 	ubifs_release_budget(c, &req);
1579 	return VM_FAULT_SIGBUS;
1580 }
1581 
1582 static const struct vm_operations_struct ubifs_file_vm_ops = {
1583 	.fault        = filemap_fault,
1584 	.map_pages = filemap_map_pages,
1585 	.page_mkwrite = ubifs_vm_page_mkwrite,
1586 };
1587 
1588 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1589 {
1590 	int err;
1591 
1592 	err = generic_file_mmap(file, vma);
1593 	if (err)
1594 		return err;
1595 	vma->vm_ops = &ubifs_file_vm_ops;
1596 
1597 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1598 		file_accessed(file);
1599 
1600 	return 0;
1601 }
1602 
1603 static const char *ubifs_get_link(struct dentry *dentry,
1604 					    struct inode *inode,
1605 					    struct delayed_call *done)
1606 {
1607 	struct ubifs_inode *ui = ubifs_inode(inode);
1608 
1609 	if (!IS_ENCRYPTED(inode))
1610 		return ui->data;
1611 
1612 	if (!dentry)
1613 		return ERR_PTR(-ECHILD);
1614 
1615 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1616 }
1617 
1618 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1619 				 const struct path *path, struct kstat *stat,
1620 				 u32 request_mask, unsigned int query_flags)
1621 {
1622 	ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1623 
1624 	if (IS_ENCRYPTED(d_inode(path->dentry)))
1625 		return fscrypt_symlink_getattr(path, stat);
1626 	return 0;
1627 }
1628 
1629 const struct address_space_operations ubifs_file_address_operations = {
1630 	.read_folio     = ubifs_read_folio,
1631 	.writepage      = ubifs_writepage,
1632 	.write_begin    = ubifs_write_begin,
1633 	.write_end      = ubifs_write_end,
1634 	.invalidate_folio = ubifs_invalidate_folio,
1635 	.dirty_folio	= ubifs_dirty_folio,
1636 	.migrate_folio	= filemap_migrate_folio,
1637 	.release_folio	= ubifs_release_folio,
1638 };
1639 
1640 const struct inode_operations ubifs_file_inode_operations = {
1641 	.setattr     = ubifs_setattr,
1642 	.getattr     = ubifs_getattr,
1643 	.listxattr   = ubifs_listxattr,
1644 	.update_time = ubifs_update_time,
1645 	.fileattr_get = ubifs_fileattr_get,
1646 	.fileattr_set = ubifs_fileattr_set,
1647 };
1648 
1649 const struct inode_operations ubifs_symlink_inode_operations = {
1650 	.get_link    = ubifs_get_link,
1651 	.setattr     = ubifs_setattr,
1652 	.getattr     = ubifs_symlink_getattr,
1653 	.listxattr   = ubifs_listxattr,
1654 	.update_time = ubifs_update_time,
1655 };
1656 
1657 const struct file_operations ubifs_file_operations = {
1658 	.llseek         = generic_file_llseek,
1659 	.read_iter      = generic_file_read_iter,
1660 	.write_iter     = ubifs_write_iter,
1661 	.mmap           = ubifs_file_mmap,
1662 	.fsync          = ubifs_fsync,
1663 	.unlocked_ioctl = ubifs_ioctl,
1664 	.splice_read	= filemap_splice_read,
1665 	.splice_write	= iter_file_splice_write,
1666 	.open		= fscrypt_file_open,
1667 #ifdef CONFIG_COMPAT
1668 	.compat_ioctl   = ubifs_compat_ioctl,
1669 #endif
1670 };
1671