1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct page *page) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn; 105 struct inode *inode = page->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, page->index, i_size, page->flags); 111 ubifs_assert(c, !PageChecked(page)); 112 ubifs_assert(c, !PagePrivate(page)); 113 114 addr = kmap(page); 115 116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 SetPageChecked(page); 121 memset(addr, 0, PAGE_SIZE); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto error; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= UBIFS_BLOCKS_PER_PAGE) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 } 158 if (err) { 159 struct ubifs_info *c = inode->i_sb->s_fs_info; 160 if (err == -ENOENT) { 161 /* Not found, so it must be a hole */ 162 SetPageChecked(page); 163 dbg_gen("hole"); 164 goto out_free; 165 } 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 167 page->index, inode->i_ino, err); 168 goto error; 169 } 170 171 out_free: 172 kfree(dn); 173 out: 174 SetPageUptodate(page); 175 ClearPageError(page); 176 flush_dcache_page(page); 177 kunmap(page); 178 return 0; 179 180 error: 181 kfree(dn); 182 ClearPageUptodate(page); 183 SetPageError(page); 184 flush_dcache_page(page); 185 kunmap(page); 186 return err; 187 } 188 189 /** 190 * release_new_page_budget - release budget of a new page. 191 * @c: UBIFS file-system description object 192 * 193 * This is a helper function which releases budget corresponding to the budget 194 * of one new page of data. 195 */ 196 static void release_new_page_budget(struct ubifs_info *c) 197 { 198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 199 200 ubifs_release_budget(c, &req); 201 } 202 203 /** 204 * release_existing_page_budget - release budget of an existing page. 205 * @c: UBIFS file-system description object 206 * 207 * This is a helper function which releases budget corresponding to the budget 208 * of changing one page of data which already exists on the flash media. 209 */ 210 static void release_existing_page_budget(struct ubifs_info *c) 211 { 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 213 214 ubifs_release_budget(c, &req); 215 } 216 217 static int write_begin_slow(struct address_space *mapping, 218 loff_t pos, unsigned len, struct page **pagep) 219 { 220 struct inode *inode = mapping->host; 221 struct ubifs_info *c = inode->i_sb->s_fs_info; 222 pgoff_t index = pos >> PAGE_SHIFT; 223 struct ubifs_budget_req req = { .new_page = 1 }; 224 int err, appending = !!(pos + len > inode->i_size); 225 struct page *page; 226 227 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 228 inode->i_ino, pos, len, inode->i_size); 229 230 /* 231 * At the slow path we have to budget before locking the page, because 232 * budgeting may force write-back, which would wait on locked pages and 233 * deadlock if we had the page locked. At this point we do not know 234 * anything about the page, so assume that this is a new page which is 235 * written to a hole. This corresponds to largest budget. Later the 236 * budget will be amended if this is not true. 237 */ 238 if (appending) 239 /* We are appending data, budget for inode change */ 240 req.dirtied_ino = 1; 241 242 err = ubifs_budget_space(c, &req); 243 if (unlikely(err)) 244 return err; 245 246 page = grab_cache_page_write_begin(mapping, index); 247 if (unlikely(!page)) { 248 ubifs_release_budget(c, &req); 249 return -ENOMEM; 250 } 251 252 if (!PageUptodate(page)) { 253 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 254 SetPageChecked(page); 255 else { 256 err = do_readpage(page); 257 if (err) { 258 unlock_page(page); 259 put_page(page); 260 ubifs_release_budget(c, &req); 261 return err; 262 } 263 } 264 } 265 266 if (PagePrivate(page)) 267 /* 268 * The page is dirty, which means it was budgeted twice: 269 * o first time the budget was allocated by the task which 270 * made the page dirty and set the PG_private flag; 271 * o and then we budgeted for it for the second time at the 272 * very beginning of this function. 273 * 274 * So what we have to do is to release the page budget we 275 * allocated. 276 */ 277 release_new_page_budget(c); 278 else if (!PageChecked(page)) 279 /* 280 * We are changing a page which already exists on the media. 281 * This means that changing the page does not make the amount 282 * of indexing information larger, and this part of the budget 283 * which we have already acquired may be released. 284 */ 285 ubifs_convert_page_budget(c); 286 287 if (appending) { 288 struct ubifs_inode *ui = ubifs_inode(inode); 289 290 /* 291 * 'ubifs_write_end()' is optimized from the fast-path part of 292 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 293 * if data is appended. 294 */ 295 mutex_lock(&ui->ui_mutex); 296 if (ui->dirty) 297 /* 298 * The inode is dirty already, so we may free the 299 * budget we allocated. 300 */ 301 ubifs_release_dirty_inode_budget(c, ui); 302 } 303 304 *pagep = page; 305 return 0; 306 } 307 308 /** 309 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 310 * @c: UBIFS file-system description object 311 * @page: page to allocate budget for 312 * @ui: UBIFS inode object the page belongs to 313 * @appending: non-zero if the page is appended 314 * 315 * This is a helper function for 'ubifs_write_begin()' which allocates budget 316 * for the operation. The budget is allocated differently depending on whether 317 * this is appending, whether the page is dirty or not, and so on. This 318 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 319 * in case of success and %-ENOSPC in case of failure. 320 */ 321 static int allocate_budget(struct ubifs_info *c, struct page *page, 322 struct ubifs_inode *ui, int appending) 323 { 324 struct ubifs_budget_req req = { .fast = 1 }; 325 326 if (PagePrivate(page)) { 327 if (!appending) 328 /* 329 * The page is dirty and we are not appending, which 330 * means no budget is needed at all. 331 */ 332 return 0; 333 334 mutex_lock(&ui->ui_mutex); 335 if (ui->dirty) 336 /* 337 * The page is dirty and we are appending, so the inode 338 * has to be marked as dirty. However, it is already 339 * dirty, so we do not need any budget. We may return, 340 * but @ui->ui_mutex hast to be left locked because we 341 * should prevent write-back from flushing the inode 342 * and freeing the budget. The lock will be released in 343 * 'ubifs_write_end()'. 344 */ 345 return 0; 346 347 /* 348 * The page is dirty, we are appending, the inode is clean, so 349 * we need to budget the inode change. 350 */ 351 req.dirtied_ino = 1; 352 } else { 353 if (PageChecked(page)) 354 /* 355 * The page corresponds to a hole and does not 356 * exist on the media. So changing it makes 357 * make the amount of indexing information 358 * larger, and we have to budget for a new 359 * page. 360 */ 361 req.new_page = 1; 362 else 363 /* 364 * Not a hole, the change will not add any new 365 * indexing information, budget for page 366 * change. 367 */ 368 req.dirtied_page = 1; 369 370 if (appending) { 371 mutex_lock(&ui->ui_mutex); 372 if (!ui->dirty) 373 /* 374 * The inode is clean but we will have to mark 375 * it as dirty because we are appending. This 376 * needs a budget. 377 */ 378 req.dirtied_ino = 1; 379 } 380 } 381 382 return ubifs_budget_space(c, &req); 383 } 384 385 /* 386 * This function is called when a page of data is going to be written. Since 387 * the page of data will not necessarily go to the flash straight away, UBIFS 388 * has to reserve space on the media for it, which is done by means of 389 * budgeting. 390 * 391 * This is the hot-path of the file-system and we are trying to optimize it as 392 * much as possible. For this reasons it is split on 2 parts - slow and fast. 393 * 394 * There many budgeting cases: 395 * o a new page is appended - we have to budget for a new page and for 396 * changing the inode; however, if the inode is already dirty, there is 397 * no need to budget for it; 398 * o an existing clean page is changed - we have budget for it; if the page 399 * does not exist on the media (a hole), we have to budget for a new 400 * page; otherwise, we may budget for changing an existing page; the 401 * difference between these cases is that changing an existing page does 402 * not introduce anything new to the FS indexing information, so it does 403 * not grow, and smaller budget is acquired in this case; 404 * o an existing dirty page is changed - no need to budget at all, because 405 * the page budget has been acquired by earlier, when the page has been 406 * marked dirty. 407 * 408 * UBIFS budgeting sub-system may force write-back if it thinks there is no 409 * space to reserve. This imposes some locking restrictions and makes it 410 * impossible to take into account the above cases, and makes it impossible to 411 * optimize budgeting. 412 * 413 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 414 * there is a plenty of flash space and the budget will be acquired quickly, 415 * without forcing write-back. The slow path does not make this assumption. 416 */ 417 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 418 loff_t pos, unsigned len, 419 struct page **pagep, void **fsdata) 420 { 421 struct inode *inode = mapping->host; 422 struct ubifs_info *c = inode->i_sb->s_fs_info; 423 struct ubifs_inode *ui = ubifs_inode(inode); 424 pgoff_t index = pos >> PAGE_SHIFT; 425 int err, appending = !!(pos + len > inode->i_size); 426 int skipped_read = 0; 427 struct page *page; 428 429 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 430 ubifs_assert(c, !c->ro_media && !c->ro_mount); 431 432 if (unlikely(c->ro_error)) 433 return -EROFS; 434 435 /* Try out the fast-path part first */ 436 page = grab_cache_page_write_begin(mapping, index); 437 if (unlikely(!page)) 438 return -ENOMEM; 439 440 if (!PageUptodate(page)) { 441 /* The page is not loaded from the flash */ 442 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 443 /* 444 * We change whole page so no need to load it. But we 445 * do not know whether this page exists on the media or 446 * not, so we assume the latter because it requires 447 * larger budget. The assumption is that it is better 448 * to budget a bit more than to read the page from the 449 * media. Thus, we are setting the @PG_checked flag 450 * here. 451 */ 452 SetPageChecked(page); 453 skipped_read = 1; 454 } else { 455 err = do_readpage(page); 456 if (err) { 457 unlock_page(page); 458 put_page(page); 459 return err; 460 } 461 } 462 } 463 464 err = allocate_budget(c, page, ui, appending); 465 if (unlikely(err)) { 466 ubifs_assert(c, err == -ENOSPC); 467 /* 468 * If we skipped reading the page because we were going to 469 * write all of it, then it is not up to date. 470 */ 471 if (skipped_read) 472 ClearPageChecked(page); 473 /* 474 * Budgeting failed which means it would have to force 475 * write-back but didn't, because we set the @fast flag in the 476 * request. Write-back cannot be done now, while we have the 477 * page locked, because it would deadlock. Unlock and free 478 * everything and fall-back to slow-path. 479 */ 480 if (appending) { 481 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 482 mutex_unlock(&ui->ui_mutex); 483 } 484 unlock_page(page); 485 put_page(page); 486 487 return write_begin_slow(mapping, pos, len, pagep); 488 } 489 490 /* 491 * Whee, we acquired budgeting quickly - without involving 492 * garbage-collection, committing or forcing write-back. We return 493 * with @ui->ui_mutex locked if we are appending pages, and unlocked 494 * otherwise. This is an optimization (slightly hacky though). 495 */ 496 *pagep = page; 497 return 0; 498 499 } 500 501 /** 502 * cancel_budget - cancel budget. 503 * @c: UBIFS file-system description object 504 * @page: page to cancel budget for 505 * @ui: UBIFS inode object the page belongs to 506 * @appending: non-zero if the page is appended 507 * 508 * This is a helper function for a page write operation. It unlocks the 509 * @ui->ui_mutex in case of appending. 510 */ 511 static void cancel_budget(struct ubifs_info *c, struct page *page, 512 struct ubifs_inode *ui, int appending) 513 { 514 if (appending) { 515 if (!ui->dirty) 516 ubifs_release_dirty_inode_budget(c, ui); 517 mutex_unlock(&ui->ui_mutex); 518 } 519 if (!PagePrivate(page)) { 520 if (PageChecked(page)) 521 release_new_page_budget(c); 522 else 523 release_existing_page_budget(c); 524 } 525 } 526 527 static int ubifs_write_end(struct file *file, struct address_space *mapping, 528 loff_t pos, unsigned len, unsigned copied, 529 struct page *page, void *fsdata) 530 { 531 struct inode *inode = mapping->host; 532 struct ubifs_inode *ui = ubifs_inode(inode); 533 struct ubifs_info *c = inode->i_sb->s_fs_info; 534 loff_t end_pos = pos + len; 535 int appending = !!(end_pos > inode->i_size); 536 537 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 538 inode->i_ino, pos, page->index, len, copied, inode->i_size); 539 540 if (unlikely(copied < len && len == PAGE_SIZE)) { 541 /* 542 * VFS copied less data to the page that it intended and 543 * declared in its '->write_begin()' call via the @len 544 * argument. If the page was not up-to-date, and @len was 545 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 546 * not load it from the media (for optimization reasons). This 547 * means that part of the page contains garbage. So read the 548 * page now. 549 */ 550 dbg_gen("copied %d instead of %d, read page and repeat", 551 copied, len); 552 cancel_budget(c, page, ui, appending); 553 ClearPageChecked(page); 554 555 /* 556 * Return 0 to force VFS to repeat the whole operation, or the 557 * error code if 'do_readpage()' fails. 558 */ 559 copied = do_readpage(page); 560 goto out; 561 } 562 563 if (len == PAGE_SIZE) 564 SetPageUptodate(page); 565 566 if (!PagePrivate(page)) { 567 attach_page_private(page, (void *)1); 568 atomic_long_inc(&c->dirty_pg_cnt); 569 __set_page_dirty_nobuffers(page); 570 } 571 572 if (appending) { 573 i_size_write(inode, end_pos); 574 ui->ui_size = end_pos; 575 /* 576 * Note, we do not set @I_DIRTY_PAGES (which means that the 577 * inode has dirty pages), this has been done in 578 * '__set_page_dirty_nobuffers()'. 579 */ 580 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 581 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 582 mutex_unlock(&ui->ui_mutex); 583 } 584 585 out: 586 unlock_page(page); 587 put_page(page); 588 return copied; 589 } 590 591 /** 592 * populate_page - copy data nodes into a page for bulk-read. 593 * @c: UBIFS file-system description object 594 * @page: page 595 * @bu: bulk-read information 596 * @n: next zbranch slot 597 * 598 * This function returns %0 on success and a negative error code on failure. 599 */ 600 static int populate_page(struct ubifs_info *c, struct page *page, 601 struct bu_info *bu, int *n) 602 { 603 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 604 struct inode *inode = page->mapping->host; 605 loff_t i_size = i_size_read(inode); 606 unsigned int page_block; 607 void *addr, *zaddr; 608 pgoff_t end_index; 609 610 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 611 inode->i_ino, page->index, i_size, page->flags); 612 613 addr = zaddr = kmap(page); 614 615 end_index = (i_size - 1) >> PAGE_SHIFT; 616 if (!i_size || page->index > end_index) { 617 hole = 1; 618 memset(addr, 0, PAGE_SIZE); 619 goto out_hole; 620 } 621 622 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 623 while (1) { 624 int err, len, out_len, dlen; 625 626 if (nn >= bu->cnt) { 627 hole = 1; 628 memset(addr, 0, UBIFS_BLOCK_SIZE); 629 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 630 struct ubifs_data_node *dn; 631 632 dn = bu->buf + (bu->zbranch[nn].offs - offs); 633 634 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 635 ubifs_inode(inode)->creat_sqnum); 636 637 len = le32_to_cpu(dn->size); 638 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 639 goto out_err; 640 641 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 642 out_len = UBIFS_BLOCK_SIZE; 643 644 if (IS_ENCRYPTED(inode)) { 645 err = ubifs_decrypt(inode, dn, &dlen, page_block); 646 if (err) 647 goto out_err; 648 } 649 650 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 651 le16_to_cpu(dn->compr_type)); 652 if (err || len != out_len) 653 goto out_err; 654 655 if (len < UBIFS_BLOCK_SIZE) 656 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 657 658 nn += 1; 659 read = (i << UBIFS_BLOCK_SHIFT) + len; 660 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 661 nn += 1; 662 continue; 663 } else { 664 hole = 1; 665 memset(addr, 0, UBIFS_BLOCK_SIZE); 666 } 667 if (++i >= UBIFS_BLOCKS_PER_PAGE) 668 break; 669 addr += UBIFS_BLOCK_SIZE; 670 page_block += 1; 671 } 672 673 if (end_index == page->index) { 674 int len = i_size & (PAGE_SIZE - 1); 675 676 if (len && len < read) 677 memset(zaddr + len, 0, read - len); 678 } 679 680 out_hole: 681 if (hole) { 682 SetPageChecked(page); 683 dbg_gen("hole"); 684 } 685 686 SetPageUptodate(page); 687 ClearPageError(page); 688 flush_dcache_page(page); 689 kunmap(page); 690 *n = nn; 691 return 0; 692 693 out_err: 694 ClearPageUptodate(page); 695 SetPageError(page); 696 flush_dcache_page(page); 697 kunmap(page); 698 ubifs_err(c, "bad data node (block %u, inode %lu)", 699 page_block, inode->i_ino); 700 return -EINVAL; 701 } 702 703 /** 704 * ubifs_do_bulk_read - do bulk-read. 705 * @c: UBIFS file-system description object 706 * @bu: bulk-read information 707 * @page1: first page to read 708 * 709 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 710 */ 711 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 712 struct page *page1) 713 { 714 pgoff_t offset = page1->index, end_index; 715 struct address_space *mapping = page1->mapping; 716 struct inode *inode = mapping->host; 717 struct ubifs_inode *ui = ubifs_inode(inode); 718 int err, page_idx, page_cnt, ret = 0, n = 0; 719 int allocate = bu->buf ? 0 : 1; 720 loff_t isize; 721 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 722 723 err = ubifs_tnc_get_bu_keys(c, bu); 724 if (err) 725 goto out_warn; 726 727 if (bu->eof) { 728 /* Turn off bulk-read at the end of the file */ 729 ui->read_in_a_row = 1; 730 ui->bulk_read = 0; 731 } 732 733 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 734 if (!page_cnt) { 735 /* 736 * This happens when there are multiple blocks per page and the 737 * blocks for the first page we are looking for, are not 738 * together. If all the pages were like this, bulk-read would 739 * reduce performance, so we turn it off for a while. 740 */ 741 goto out_bu_off; 742 } 743 744 if (bu->cnt) { 745 if (allocate) { 746 /* 747 * Allocate bulk-read buffer depending on how many data 748 * nodes we are going to read. 749 */ 750 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 751 bu->zbranch[bu->cnt - 1].len - 752 bu->zbranch[0].offs; 753 ubifs_assert(c, bu->buf_len > 0); 754 ubifs_assert(c, bu->buf_len <= c->leb_size); 755 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 756 if (!bu->buf) 757 goto out_bu_off; 758 } 759 760 err = ubifs_tnc_bulk_read(c, bu); 761 if (err) 762 goto out_warn; 763 } 764 765 err = populate_page(c, page1, bu, &n); 766 if (err) 767 goto out_warn; 768 769 unlock_page(page1); 770 ret = 1; 771 772 isize = i_size_read(inode); 773 if (isize == 0) 774 goto out_free; 775 end_index = ((isize - 1) >> PAGE_SHIFT); 776 777 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 778 pgoff_t page_offset = offset + page_idx; 779 struct page *page; 780 781 if (page_offset > end_index) 782 break; 783 page = pagecache_get_page(mapping, page_offset, 784 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 785 ra_gfp_mask); 786 if (!page) 787 break; 788 if (!PageUptodate(page)) 789 err = populate_page(c, page, bu, &n); 790 unlock_page(page); 791 put_page(page); 792 if (err) 793 break; 794 } 795 796 ui->last_page_read = offset + page_idx - 1; 797 798 out_free: 799 if (allocate) 800 kfree(bu->buf); 801 return ret; 802 803 out_warn: 804 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 805 goto out_free; 806 807 out_bu_off: 808 ui->read_in_a_row = ui->bulk_read = 0; 809 goto out_free; 810 } 811 812 /** 813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 814 * @page: page from which to start bulk-read. 815 * 816 * Some flash media are capable of reading sequentially at faster rates. UBIFS 817 * bulk-read facility is designed to take advantage of that, by reading in one 818 * go consecutive data nodes that are also located consecutively in the same 819 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 820 */ 821 static int ubifs_bulk_read(struct page *page) 822 { 823 struct inode *inode = page->mapping->host; 824 struct ubifs_info *c = inode->i_sb->s_fs_info; 825 struct ubifs_inode *ui = ubifs_inode(inode); 826 pgoff_t index = page->index, last_page_read = ui->last_page_read; 827 struct bu_info *bu; 828 int err = 0, allocated = 0; 829 830 ui->last_page_read = index; 831 if (!c->bulk_read) 832 return 0; 833 834 /* 835 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 836 * so don't bother if we cannot lock the mutex. 837 */ 838 if (!mutex_trylock(&ui->ui_mutex)) 839 return 0; 840 841 if (index != last_page_read + 1) { 842 /* Turn off bulk-read if we stop reading sequentially */ 843 ui->read_in_a_row = 1; 844 if (ui->bulk_read) 845 ui->bulk_read = 0; 846 goto out_unlock; 847 } 848 849 if (!ui->bulk_read) { 850 ui->read_in_a_row += 1; 851 if (ui->read_in_a_row < 3) 852 goto out_unlock; 853 /* Three reads in a row, so switch on bulk-read */ 854 ui->bulk_read = 1; 855 } 856 857 /* 858 * If possible, try to use pre-allocated bulk-read information, which 859 * is protected by @c->bu_mutex. 860 */ 861 if (mutex_trylock(&c->bu_mutex)) 862 bu = &c->bu; 863 else { 864 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 865 if (!bu) 866 goto out_unlock; 867 868 bu->buf = NULL; 869 allocated = 1; 870 } 871 872 bu->buf_len = c->max_bu_buf_len; 873 data_key_init(c, &bu->key, inode->i_ino, 874 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 875 err = ubifs_do_bulk_read(c, bu, page); 876 877 if (!allocated) 878 mutex_unlock(&c->bu_mutex); 879 else 880 kfree(bu); 881 882 out_unlock: 883 mutex_unlock(&ui->ui_mutex); 884 return err; 885 } 886 887 static int ubifs_read_folio(struct file *file, struct folio *folio) 888 { 889 struct page *page = &folio->page; 890 891 if (ubifs_bulk_read(page)) 892 return 0; 893 do_readpage(page); 894 folio_unlock(folio); 895 return 0; 896 } 897 898 static int do_writepage(struct page *page, int len) 899 { 900 int err = 0, i, blen; 901 unsigned int block; 902 void *addr; 903 union ubifs_key key; 904 struct inode *inode = page->mapping->host; 905 struct ubifs_info *c = inode->i_sb->s_fs_info; 906 907 #ifdef UBIFS_DEBUG 908 struct ubifs_inode *ui = ubifs_inode(inode); 909 spin_lock(&ui->ui_lock); 910 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT); 911 spin_unlock(&ui->ui_lock); 912 #endif 913 914 /* Update radix tree tags */ 915 set_page_writeback(page); 916 917 addr = kmap(page); 918 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 919 i = 0; 920 while (len) { 921 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 922 data_key_init(c, &key, inode->i_ino, block); 923 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 924 if (err) 925 break; 926 if (++i >= UBIFS_BLOCKS_PER_PAGE) 927 break; 928 block += 1; 929 addr += blen; 930 len -= blen; 931 } 932 if (err) { 933 SetPageError(page); 934 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 935 page->index, inode->i_ino, err); 936 ubifs_ro_mode(c, err); 937 } 938 939 ubifs_assert(c, PagePrivate(page)); 940 if (PageChecked(page)) 941 release_new_page_budget(c); 942 else 943 release_existing_page_budget(c); 944 945 atomic_long_dec(&c->dirty_pg_cnt); 946 detach_page_private(page); 947 ClearPageChecked(page); 948 949 kunmap(page); 950 unlock_page(page); 951 end_page_writeback(page); 952 return err; 953 } 954 955 /* 956 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 957 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 958 * situation when a we have an inode with size 0, then a megabyte of data is 959 * appended to the inode, then write-back starts and flushes some amount of the 960 * dirty pages, the journal becomes full, commit happens and finishes, and then 961 * an unclean reboot happens. When the file system is mounted next time, the 962 * inode size would still be 0, but there would be many pages which are beyond 963 * the inode size, they would be indexed and consume flash space. Because the 964 * journal has been committed, the replay would not be able to detect this 965 * situation and correct the inode size. This means UBIFS would have to scan 966 * whole index and correct all inode sizes, which is long an unacceptable. 967 * 968 * To prevent situations like this, UBIFS writes pages back only if they are 969 * within the last synchronized inode size, i.e. the size which has been 970 * written to the flash media last time. Otherwise, UBIFS forces inode 971 * write-back, thus making sure the on-flash inode contains current inode size, 972 * and then keeps writing pages back. 973 * 974 * Some locking issues explanation. 'ubifs_writepage()' first is called with 975 * the page locked, and it locks @ui_mutex. However, write-back does take inode 976 * @i_mutex, which means other VFS operations may be run on this inode at the 977 * same time. And the problematic one is truncation to smaller size, from where 978 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 979 * then drops the truncated pages. And while dropping the pages, it takes the 980 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 981 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 982 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 983 * 984 * XXX(truncate): with the new truncate sequence this is not true anymore, 985 * and the calls to truncate_setsize can be move around freely. They should 986 * be moved to the very end of the truncate sequence. 987 * 988 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 989 * inode size. How do we do this if @inode->i_size may became smaller while we 990 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 991 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 992 * internally and updates it under @ui_mutex. 993 * 994 * Q: why we do not worry that if we race with truncation, we may end up with a 995 * situation when the inode is truncated while we are in the middle of 996 * 'do_writepage()', so we do write beyond inode size? 997 * A: If we are in the middle of 'do_writepage()', truncation would be locked 998 * on the page lock and it would not write the truncated inode node to the 999 * journal before we have finished. 1000 */ 1001 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1002 { 1003 struct inode *inode = page->mapping->host; 1004 struct ubifs_info *c = inode->i_sb->s_fs_info; 1005 struct ubifs_inode *ui = ubifs_inode(inode); 1006 loff_t i_size = i_size_read(inode), synced_i_size; 1007 pgoff_t end_index = i_size >> PAGE_SHIFT; 1008 int err, len = i_size & (PAGE_SIZE - 1); 1009 void *kaddr; 1010 1011 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1012 inode->i_ino, page->index, page->flags); 1013 ubifs_assert(c, PagePrivate(page)); 1014 1015 /* Is the page fully outside @i_size? (truncate in progress) */ 1016 if (page->index > end_index || (page->index == end_index && !len)) { 1017 err = 0; 1018 goto out_unlock; 1019 } 1020 1021 spin_lock(&ui->ui_lock); 1022 synced_i_size = ui->synced_i_size; 1023 spin_unlock(&ui->ui_lock); 1024 1025 /* Is the page fully inside @i_size? */ 1026 if (page->index < end_index) { 1027 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1028 err = inode->i_sb->s_op->write_inode(inode, NULL); 1029 if (err) 1030 goto out_redirty; 1031 /* 1032 * The inode has been written, but the write-buffer has 1033 * not been synchronized, so in case of an unclean 1034 * reboot we may end up with some pages beyond inode 1035 * size, but they would be in the journal (because 1036 * commit flushes write buffers) and recovery would deal 1037 * with this. 1038 */ 1039 } 1040 return do_writepage(page, PAGE_SIZE); 1041 } 1042 1043 /* 1044 * The page straddles @i_size. It must be zeroed out on each and every 1045 * writepage invocation because it may be mmapped. "A file is mapped 1046 * in multiples of the page size. For a file that is not a multiple of 1047 * the page size, the remaining memory is zeroed when mapped, and 1048 * writes to that region are not written out to the file." 1049 */ 1050 kaddr = kmap_atomic(page); 1051 memset(kaddr + len, 0, PAGE_SIZE - len); 1052 flush_dcache_page(page); 1053 kunmap_atomic(kaddr); 1054 1055 if (i_size > synced_i_size) { 1056 err = inode->i_sb->s_op->write_inode(inode, NULL); 1057 if (err) 1058 goto out_redirty; 1059 } 1060 1061 return do_writepage(page, len); 1062 out_redirty: 1063 /* 1064 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because 1065 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1066 * there is no need to do space budget for dirty inode. 1067 */ 1068 redirty_page_for_writepage(wbc, page); 1069 out_unlock: 1070 unlock_page(page); 1071 return err; 1072 } 1073 1074 /** 1075 * do_attr_changes - change inode attributes. 1076 * @inode: inode to change attributes for 1077 * @attr: describes attributes to change 1078 */ 1079 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1080 { 1081 if (attr->ia_valid & ATTR_UID) 1082 inode->i_uid = attr->ia_uid; 1083 if (attr->ia_valid & ATTR_GID) 1084 inode->i_gid = attr->ia_gid; 1085 if (attr->ia_valid & ATTR_ATIME) 1086 inode->i_atime = attr->ia_atime; 1087 if (attr->ia_valid & ATTR_MTIME) 1088 inode->i_mtime = attr->ia_mtime; 1089 if (attr->ia_valid & ATTR_CTIME) 1090 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1091 if (attr->ia_valid & ATTR_MODE) { 1092 umode_t mode = attr->ia_mode; 1093 1094 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1095 mode &= ~S_ISGID; 1096 inode->i_mode = mode; 1097 } 1098 } 1099 1100 /** 1101 * do_truncation - truncate an inode. 1102 * @c: UBIFS file-system description object 1103 * @inode: inode to truncate 1104 * @attr: inode attribute changes description 1105 * 1106 * This function implements VFS '->setattr()' call when the inode is truncated 1107 * to a smaller size. Returns zero in case of success and a negative error code 1108 * in case of failure. 1109 */ 1110 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1111 const struct iattr *attr) 1112 { 1113 int err; 1114 struct ubifs_budget_req req; 1115 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1116 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1117 struct ubifs_inode *ui = ubifs_inode(inode); 1118 1119 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1120 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1121 1122 /* 1123 * If this is truncation to a smaller size, and we do not truncate on a 1124 * block boundary, budget for changing one data block, because the last 1125 * block will be re-written. 1126 */ 1127 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1128 req.dirtied_page = 1; 1129 1130 req.dirtied_ino = 1; 1131 /* A funny way to budget for truncation node */ 1132 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1133 err = ubifs_budget_space(c, &req); 1134 if (err) { 1135 /* 1136 * Treat truncations to zero as deletion and always allow them, 1137 * just like we do for '->unlink()'. 1138 */ 1139 if (new_size || err != -ENOSPC) 1140 return err; 1141 budgeted = 0; 1142 } 1143 1144 truncate_setsize(inode, new_size); 1145 1146 if (offset) { 1147 pgoff_t index = new_size >> PAGE_SHIFT; 1148 struct page *page; 1149 1150 page = find_lock_page(inode->i_mapping, index); 1151 if (page) { 1152 if (PageDirty(page)) { 1153 /* 1154 * 'ubifs_jnl_truncate()' will try to truncate 1155 * the last data node, but it contains 1156 * out-of-date data because the page is dirty. 1157 * Write the page now, so that 1158 * 'ubifs_jnl_truncate()' will see an already 1159 * truncated (and up to date) data node. 1160 */ 1161 ubifs_assert(c, PagePrivate(page)); 1162 1163 clear_page_dirty_for_io(page); 1164 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1165 offset = new_size & 1166 (PAGE_SIZE - 1); 1167 err = do_writepage(page, offset); 1168 put_page(page); 1169 if (err) 1170 goto out_budg; 1171 /* 1172 * We could now tell 'ubifs_jnl_truncate()' not 1173 * to read the last block. 1174 */ 1175 } else { 1176 /* 1177 * We could 'kmap()' the page and pass the data 1178 * to 'ubifs_jnl_truncate()' to save it from 1179 * having to read it. 1180 */ 1181 unlock_page(page); 1182 put_page(page); 1183 } 1184 } 1185 } 1186 1187 mutex_lock(&ui->ui_mutex); 1188 ui->ui_size = inode->i_size; 1189 /* Truncation changes inode [mc]time */ 1190 inode->i_mtime = inode_set_ctime_current(inode); 1191 /* Other attributes may be changed at the same time as well */ 1192 do_attr_changes(inode, attr); 1193 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1194 mutex_unlock(&ui->ui_mutex); 1195 1196 out_budg: 1197 if (budgeted) 1198 ubifs_release_budget(c, &req); 1199 else { 1200 c->bi.nospace = c->bi.nospace_rp = 0; 1201 smp_wmb(); 1202 } 1203 return err; 1204 } 1205 1206 /** 1207 * do_setattr - change inode attributes. 1208 * @c: UBIFS file-system description object 1209 * @inode: inode to change attributes for 1210 * @attr: inode attribute changes description 1211 * 1212 * This function implements VFS '->setattr()' call for all cases except 1213 * truncations to smaller size. Returns zero in case of success and a negative 1214 * error code in case of failure. 1215 */ 1216 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1217 const struct iattr *attr) 1218 { 1219 int err, release; 1220 loff_t new_size = attr->ia_size; 1221 struct ubifs_inode *ui = ubifs_inode(inode); 1222 struct ubifs_budget_req req = { .dirtied_ino = 1, 1223 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1224 1225 err = ubifs_budget_space(c, &req); 1226 if (err) 1227 return err; 1228 1229 if (attr->ia_valid & ATTR_SIZE) { 1230 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1231 truncate_setsize(inode, new_size); 1232 } 1233 1234 mutex_lock(&ui->ui_mutex); 1235 if (attr->ia_valid & ATTR_SIZE) { 1236 /* Truncation changes inode [mc]time */ 1237 inode->i_mtime = inode_set_ctime_current(inode); 1238 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1239 ui->ui_size = inode->i_size; 1240 } 1241 1242 do_attr_changes(inode, attr); 1243 1244 release = ui->dirty; 1245 if (attr->ia_valid & ATTR_SIZE) 1246 /* 1247 * Inode length changed, so we have to make sure 1248 * @I_DIRTY_DATASYNC is set. 1249 */ 1250 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1251 else 1252 mark_inode_dirty_sync(inode); 1253 mutex_unlock(&ui->ui_mutex); 1254 1255 if (release) 1256 ubifs_release_budget(c, &req); 1257 if (IS_SYNC(inode)) 1258 err = inode->i_sb->s_op->write_inode(inode, NULL); 1259 return err; 1260 } 1261 1262 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1263 struct iattr *attr) 1264 { 1265 int err; 1266 struct inode *inode = d_inode(dentry); 1267 struct ubifs_info *c = inode->i_sb->s_fs_info; 1268 1269 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1270 inode->i_ino, inode->i_mode, attr->ia_valid); 1271 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1272 if (err) 1273 return err; 1274 1275 err = dbg_check_synced_i_size(c, inode); 1276 if (err) 1277 return err; 1278 1279 err = fscrypt_prepare_setattr(dentry, attr); 1280 if (err) 1281 return err; 1282 1283 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1284 /* Truncation to a smaller size */ 1285 err = do_truncation(c, inode, attr); 1286 else 1287 err = do_setattr(c, inode, attr); 1288 1289 return err; 1290 } 1291 1292 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1293 size_t length) 1294 { 1295 struct inode *inode = folio->mapping->host; 1296 struct ubifs_info *c = inode->i_sb->s_fs_info; 1297 1298 ubifs_assert(c, folio_test_private(folio)); 1299 if (offset || length < folio_size(folio)) 1300 /* Partial folio remains dirty */ 1301 return; 1302 1303 if (folio_test_checked(folio)) 1304 release_new_page_budget(c); 1305 else 1306 release_existing_page_budget(c); 1307 1308 atomic_long_dec(&c->dirty_pg_cnt); 1309 folio_detach_private(folio); 1310 folio_clear_checked(folio); 1311 } 1312 1313 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1314 { 1315 struct inode *inode = file->f_mapping->host; 1316 struct ubifs_info *c = inode->i_sb->s_fs_info; 1317 int err; 1318 1319 dbg_gen("syncing inode %lu", inode->i_ino); 1320 1321 if (c->ro_mount) 1322 /* 1323 * For some really strange reasons VFS does not filter out 1324 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1325 */ 1326 return 0; 1327 1328 err = file_write_and_wait_range(file, start, end); 1329 if (err) 1330 return err; 1331 inode_lock(inode); 1332 1333 /* Synchronize the inode unless this is a 'datasync()' call. */ 1334 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1335 err = inode->i_sb->s_op->write_inode(inode, NULL); 1336 if (err) 1337 goto out; 1338 } 1339 1340 /* 1341 * Nodes related to this inode may still sit in a write-buffer. Flush 1342 * them. 1343 */ 1344 err = ubifs_sync_wbufs_by_inode(c, inode); 1345 out: 1346 inode_unlock(inode); 1347 return err; 1348 } 1349 1350 /** 1351 * mctime_update_needed - check if mtime or ctime update is needed. 1352 * @inode: the inode to do the check for 1353 * @now: current time 1354 * 1355 * This helper function checks if the inode mtime/ctime should be updated or 1356 * not. If current values of the time-stamps are within the UBIFS inode time 1357 * granularity, they are not updated. This is an optimization. 1358 */ 1359 static inline int mctime_update_needed(const struct inode *inode, 1360 const struct timespec64 *now) 1361 { 1362 struct timespec64 ctime = inode_get_ctime(inode); 1363 1364 if (!timespec64_equal(&inode->i_mtime, now) || 1365 !timespec64_equal(&ctime, now)) 1366 return 1; 1367 return 0; 1368 } 1369 1370 /** 1371 * ubifs_update_time - update time of inode. 1372 * @inode: inode to update 1373 * 1374 * This function updates time of the inode. 1375 */ 1376 int ubifs_update_time(struct inode *inode, int flags) 1377 { 1378 struct ubifs_inode *ui = ubifs_inode(inode); 1379 struct ubifs_info *c = inode->i_sb->s_fs_info; 1380 struct ubifs_budget_req req = { .dirtied_ino = 1, 1381 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1382 int err, release; 1383 1384 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) { 1385 generic_update_time(inode, flags); 1386 return 0; 1387 } 1388 1389 err = ubifs_budget_space(c, &req); 1390 if (err) 1391 return err; 1392 1393 mutex_lock(&ui->ui_mutex); 1394 inode_update_timestamps(inode, flags); 1395 release = ui->dirty; 1396 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1397 mutex_unlock(&ui->ui_mutex); 1398 if (release) 1399 ubifs_release_budget(c, &req); 1400 return 0; 1401 } 1402 1403 /** 1404 * update_mctime - update mtime and ctime of an inode. 1405 * @inode: inode to update 1406 * 1407 * This function updates mtime and ctime of the inode if it is not equivalent to 1408 * current time. Returns zero in case of success and a negative error code in 1409 * case of failure. 1410 */ 1411 static int update_mctime(struct inode *inode) 1412 { 1413 struct timespec64 now = current_time(inode); 1414 struct ubifs_inode *ui = ubifs_inode(inode); 1415 struct ubifs_info *c = inode->i_sb->s_fs_info; 1416 1417 if (mctime_update_needed(inode, &now)) { 1418 int err, release; 1419 struct ubifs_budget_req req = { .dirtied_ino = 1, 1420 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1421 1422 err = ubifs_budget_space(c, &req); 1423 if (err) 1424 return err; 1425 1426 mutex_lock(&ui->ui_mutex); 1427 inode->i_mtime = inode_set_ctime_current(inode); 1428 release = ui->dirty; 1429 mark_inode_dirty_sync(inode); 1430 mutex_unlock(&ui->ui_mutex); 1431 if (release) 1432 ubifs_release_budget(c, &req); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1439 { 1440 int err = update_mctime(file_inode(iocb->ki_filp)); 1441 if (err) 1442 return err; 1443 1444 return generic_file_write_iter(iocb, from); 1445 } 1446 1447 static bool ubifs_dirty_folio(struct address_space *mapping, 1448 struct folio *folio) 1449 { 1450 bool ret; 1451 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1452 1453 ret = filemap_dirty_folio(mapping, folio); 1454 /* 1455 * An attempt to dirty a page without budgeting for it - should not 1456 * happen. 1457 */ 1458 ubifs_assert(c, ret == false); 1459 return ret; 1460 } 1461 1462 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1463 { 1464 struct inode *inode = folio->mapping->host; 1465 struct ubifs_info *c = inode->i_sb->s_fs_info; 1466 1467 if (folio_test_writeback(folio)) 1468 return false; 1469 1470 /* 1471 * Page is private but not dirty, weird? There is one condition 1472 * making it happened. ubifs_writepage skipped the page because 1473 * page index beyonds isize (for example. truncated by other 1474 * process named A), then the page is invalidated by fadvise64 1475 * syscall before being truncated by process A. 1476 */ 1477 ubifs_assert(c, folio_test_private(folio)); 1478 if (folio_test_checked(folio)) 1479 release_new_page_budget(c); 1480 else 1481 release_existing_page_budget(c); 1482 1483 atomic_long_dec(&c->dirty_pg_cnt); 1484 folio_detach_private(folio); 1485 folio_clear_checked(folio); 1486 return true; 1487 } 1488 1489 /* 1490 * mmap()d file has taken write protection fault and is being made writable. 1491 * UBIFS must ensure page is budgeted for. 1492 */ 1493 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1494 { 1495 struct page *page = vmf->page; 1496 struct inode *inode = file_inode(vmf->vma->vm_file); 1497 struct ubifs_info *c = inode->i_sb->s_fs_info; 1498 struct timespec64 now = current_time(inode); 1499 struct ubifs_budget_req req = { .new_page = 1 }; 1500 int err, update_time; 1501 1502 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1503 i_size_read(inode)); 1504 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1505 1506 if (unlikely(c->ro_error)) 1507 return VM_FAULT_SIGBUS; /* -EROFS */ 1508 1509 /* 1510 * We have not locked @page so far so we may budget for changing the 1511 * page. Note, we cannot do this after we locked the page, because 1512 * budgeting may cause write-back which would cause deadlock. 1513 * 1514 * At the moment we do not know whether the page is dirty or not, so we 1515 * assume that it is not and budget for a new page. We could look at 1516 * the @PG_private flag and figure this out, but we may race with write 1517 * back and the page state may change by the time we lock it, so this 1518 * would need additional care. We do not bother with this at the 1519 * moment, although it might be good idea to do. Instead, we allocate 1520 * budget for a new page and amend it later on if the page was in fact 1521 * dirty. 1522 * 1523 * The budgeting-related logic of this function is similar to what we 1524 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1525 * for more comments. 1526 */ 1527 update_time = mctime_update_needed(inode, &now); 1528 if (update_time) 1529 /* 1530 * We have to change inode time stamp which requires extra 1531 * budgeting. 1532 */ 1533 req.dirtied_ino = 1; 1534 1535 err = ubifs_budget_space(c, &req); 1536 if (unlikely(err)) { 1537 if (err == -ENOSPC) 1538 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1539 inode->i_ino); 1540 return VM_FAULT_SIGBUS; 1541 } 1542 1543 lock_page(page); 1544 if (unlikely(page->mapping != inode->i_mapping || 1545 page_offset(page) > i_size_read(inode))) { 1546 /* Page got truncated out from underneath us */ 1547 goto sigbus; 1548 } 1549 1550 if (PagePrivate(page)) 1551 release_new_page_budget(c); 1552 else { 1553 if (!PageChecked(page)) 1554 ubifs_convert_page_budget(c); 1555 attach_page_private(page, (void *)1); 1556 atomic_long_inc(&c->dirty_pg_cnt); 1557 __set_page_dirty_nobuffers(page); 1558 } 1559 1560 if (update_time) { 1561 int release; 1562 struct ubifs_inode *ui = ubifs_inode(inode); 1563 1564 mutex_lock(&ui->ui_mutex); 1565 inode->i_mtime = inode_set_ctime_current(inode); 1566 release = ui->dirty; 1567 mark_inode_dirty_sync(inode); 1568 mutex_unlock(&ui->ui_mutex); 1569 if (release) 1570 ubifs_release_dirty_inode_budget(c, ui); 1571 } 1572 1573 wait_for_stable_page(page); 1574 return VM_FAULT_LOCKED; 1575 1576 sigbus: 1577 unlock_page(page); 1578 ubifs_release_budget(c, &req); 1579 return VM_FAULT_SIGBUS; 1580 } 1581 1582 static const struct vm_operations_struct ubifs_file_vm_ops = { 1583 .fault = filemap_fault, 1584 .map_pages = filemap_map_pages, 1585 .page_mkwrite = ubifs_vm_page_mkwrite, 1586 }; 1587 1588 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1589 { 1590 int err; 1591 1592 err = generic_file_mmap(file, vma); 1593 if (err) 1594 return err; 1595 vma->vm_ops = &ubifs_file_vm_ops; 1596 1597 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1598 file_accessed(file); 1599 1600 return 0; 1601 } 1602 1603 static const char *ubifs_get_link(struct dentry *dentry, 1604 struct inode *inode, 1605 struct delayed_call *done) 1606 { 1607 struct ubifs_inode *ui = ubifs_inode(inode); 1608 1609 if (!IS_ENCRYPTED(inode)) 1610 return ui->data; 1611 1612 if (!dentry) 1613 return ERR_PTR(-ECHILD); 1614 1615 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1616 } 1617 1618 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1619 const struct path *path, struct kstat *stat, 1620 u32 request_mask, unsigned int query_flags) 1621 { 1622 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1623 1624 if (IS_ENCRYPTED(d_inode(path->dentry))) 1625 return fscrypt_symlink_getattr(path, stat); 1626 return 0; 1627 } 1628 1629 const struct address_space_operations ubifs_file_address_operations = { 1630 .read_folio = ubifs_read_folio, 1631 .writepage = ubifs_writepage, 1632 .write_begin = ubifs_write_begin, 1633 .write_end = ubifs_write_end, 1634 .invalidate_folio = ubifs_invalidate_folio, 1635 .dirty_folio = ubifs_dirty_folio, 1636 .migrate_folio = filemap_migrate_folio, 1637 .release_folio = ubifs_release_folio, 1638 }; 1639 1640 const struct inode_operations ubifs_file_inode_operations = { 1641 .setattr = ubifs_setattr, 1642 .getattr = ubifs_getattr, 1643 .listxattr = ubifs_listxattr, 1644 .update_time = ubifs_update_time, 1645 .fileattr_get = ubifs_fileattr_get, 1646 .fileattr_set = ubifs_fileattr_set, 1647 }; 1648 1649 const struct inode_operations ubifs_symlink_inode_operations = { 1650 .get_link = ubifs_get_link, 1651 .setattr = ubifs_setattr, 1652 .getattr = ubifs_symlink_getattr, 1653 .listxattr = ubifs_listxattr, 1654 .update_time = ubifs_update_time, 1655 }; 1656 1657 const struct file_operations ubifs_file_operations = { 1658 .llseek = generic_file_llseek, 1659 .read_iter = generic_file_read_iter, 1660 .write_iter = ubifs_write_iter, 1661 .mmap = ubifs_file_mmap, 1662 .fsync = ubifs_fsync, 1663 .unlocked_ioctl = ubifs_ioctl, 1664 .splice_read = filemap_splice_read, 1665 .splice_write = iter_file_splice_write, 1666 .open = fscrypt_file_open, 1667 #ifdef CONFIG_COMPAT 1668 .compat_ioctl = ubifs_compat_ioctl, 1669 #endif 1670 }; 1671