xref: /openbmc/linux/fs/ubifs/file.c (revision 6ee73861)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when pdflush is doing background
41  * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
42  * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
43  * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
44  * we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_LOCK flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/namei.h>
55 
56 static int read_block(struct inode *inode, void *addr, unsigned int block,
57 		      struct ubifs_data_node *dn)
58 {
59 	struct ubifs_info *c = inode->i_sb->s_fs_info;
60 	int err, len, out_len;
61 	union ubifs_key key;
62 	unsigned int dlen;
63 
64 	data_key_init(c, &key, inode->i_ino, block);
65 	err = ubifs_tnc_lookup(c, &key, dn);
66 	if (err) {
67 		if (err == -ENOENT)
68 			/* Not found, so it must be a hole */
69 			memset(addr, 0, UBIFS_BLOCK_SIZE);
70 		return err;
71 	}
72 
73 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
74 		     ubifs_inode(inode)->creat_sqnum);
75 	len = le32_to_cpu(dn->size);
76 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
77 		goto dump;
78 
79 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
80 	out_len = UBIFS_BLOCK_SIZE;
81 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
82 			       le16_to_cpu(dn->compr_type));
83 	if (err || len != out_len)
84 		goto dump;
85 
86 	/*
87 	 * Data length can be less than a full block, even for blocks that are
88 	 * not the last in the file (e.g., as a result of making a hole and
89 	 * appending data). Ensure that the remainder is zeroed out.
90 	 */
91 	if (len < UBIFS_BLOCK_SIZE)
92 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
93 
94 	return 0;
95 
96 dump:
97 	ubifs_err("bad data node (block %u, inode %lu)",
98 		  block, inode->i_ino);
99 	dbg_dump_node(c, dn);
100 	return -EINVAL;
101 }
102 
103 static int do_readpage(struct page *page)
104 {
105 	void *addr;
106 	int err = 0, i;
107 	unsigned int block, beyond;
108 	struct ubifs_data_node *dn;
109 	struct inode *inode = page->mapping->host;
110 	loff_t i_size = i_size_read(inode);
111 
112 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
113 		inode->i_ino, page->index, i_size, page->flags);
114 	ubifs_assert(!PageChecked(page));
115 	ubifs_assert(!PagePrivate(page));
116 
117 	addr = kmap(page);
118 
119 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
120 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
121 	if (block >= beyond) {
122 		/* Reading beyond inode */
123 		SetPageChecked(page);
124 		memset(addr, 0, PAGE_CACHE_SIZE);
125 		goto out;
126 	}
127 
128 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
129 	if (!dn) {
130 		err = -ENOMEM;
131 		goto error;
132 	}
133 
134 	i = 0;
135 	while (1) {
136 		int ret;
137 
138 		if (block >= beyond) {
139 			/* Reading beyond inode */
140 			err = -ENOENT;
141 			memset(addr, 0, UBIFS_BLOCK_SIZE);
142 		} else {
143 			ret = read_block(inode, addr, block, dn);
144 			if (ret) {
145 				err = ret;
146 				if (err != -ENOENT)
147 					break;
148 			} else if (block + 1 == beyond) {
149 				int dlen = le32_to_cpu(dn->size);
150 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
151 
152 				if (ilen && ilen < dlen)
153 					memset(addr + ilen, 0, dlen - ilen);
154 			}
155 		}
156 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
157 			break;
158 		block += 1;
159 		addr += UBIFS_BLOCK_SIZE;
160 	}
161 	if (err) {
162 		if (err == -ENOENT) {
163 			/* Not found, so it must be a hole */
164 			SetPageChecked(page);
165 			dbg_gen("hole");
166 			goto out_free;
167 		}
168 		ubifs_err("cannot read page %lu of inode %lu, error %d",
169 			  page->index, inode->i_ino, err);
170 		goto error;
171 	}
172 
173 out_free:
174 	kfree(dn);
175 out:
176 	SetPageUptodate(page);
177 	ClearPageError(page);
178 	flush_dcache_page(page);
179 	kunmap(page);
180 	return 0;
181 
182 error:
183 	kfree(dn);
184 	ClearPageUptodate(page);
185 	SetPageError(page);
186 	flush_dcache_page(page);
187 	kunmap(page);
188 	return err;
189 }
190 
191 /**
192  * release_new_page_budget - release budget of a new page.
193  * @c: UBIFS file-system description object
194  *
195  * This is a helper function which releases budget corresponding to the budget
196  * of one new page of data.
197  */
198 static void release_new_page_budget(struct ubifs_info *c)
199 {
200 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
201 
202 	ubifs_release_budget(c, &req);
203 }
204 
205 /**
206  * release_existing_page_budget - release budget of an existing page.
207  * @c: UBIFS file-system description object
208  *
209  * This is a helper function which releases budget corresponding to the budget
210  * of changing one one page of data which already exists on the flash media.
211  */
212 static void release_existing_page_budget(struct ubifs_info *c)
213 {
214 	struct ubifs_budget_req req = { .dd_growth = c->page_budget};
215 
216 	ubifs_release_budget(c, &req);
217 }
218 
219 static int write_begin_slow(struct address_space *mapping,
220 			    loff_t pos, unsigned len, struct page **pagep,
221 			    unsigned flags)
222 {
223 	struct inode *inode = mapping->host;
224 	struct ubifs_info *c = inode->i_sb->s_fs_info;
225 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
226 	struct ubifs_budget_req req = { .new_page = 1 };
227 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
228 	struct page *page;
229 
230 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
231 		inode->i_ino, pos, len, inode->i_size);
232 
233 	/*
234 	 * At the slow path we have to budget before locking the page, because
235 	 * budgeting may force write-back, which would wait on locked pages and
236 	 * deadlock if we had the page locked. At this point we do not know
237 	 * anything about the page, so assume that this is a new page which is
238 	 * written to a hole. This corresponds to largest budget. Later the
239 	 * budget will be amended if this is not true.
240 	 */
241 	if (appending)
242 		/* We are appending data, budget for inode change */
243 		req.dirtied_ino = 1;
244 
245 	err = ubifs_budget_space(c, &req);
246 	if (unlikely(err))
247 		return err;
248 
249 	page = grab_cache_page_write_begin(mapping, index, flags);
250 	if (unlikely(!page)) {
251 		ubifs_release_budget(c, &req);
252 		return -ENOMEM;
253 	}
254 
255 	if (!PageUptodate(page)) {
256 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
257 			SetPageChecked(page);
258 		else {
259 			err = do_readpage(page);
260 			if (err) {
261 				unlock_page(page);
262 				page_cache_release(page);
263 				return err;
264 			}
265 		}
266 
267 		SetPageUptodate(page);
268 		ClearPageError(page);
269 	}
270 
271 	if (PagePrivate(page))
272 		/*
273 		 * The page is dirty, which means it was budgeted twice:
274 		 *   o first time the budget was allocated by the task which
275 		 *     made the page dirty and set the PG_private flag;
276 		 *   o and then we budgeted for it for the second time at the
277 		 *     very beginning of this function.
278 		 *
279 		 * So what we have to do is to release the page budget we
280 		 * allocated.
281 		 */
282 		release_new_page_budget(c);
283 	else if (!PageChecked(page))
284 		/*
285 		 * We are changing a page which already exists on the media.
286 		 * This means that changing the page does not make the amount
287 		 * of indexing information larger, and this part of the budget
288 		 * which we have already acquired may be released.
289 		 */
290 		ubifs_convert_page_budget(c);
291 
292 	if (appending) {
293 		struct ubifs_inode *ui = ubifs_inode(inode);
294 
295 		/*
296 		 * 'ubifs_write_end()' is optimized from the fast-path part of
297 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
298 		 * if data is appended.
299 		 */
300 		mutex_lock(&ui->ui_mutex);
301 		if (ui->dirty)
302 			/*
303 			 * The inode is dirty already, so we may free the
304 			 * budget we allocated.
305 			 */
306 			ubifs_release_dirty_inode_budget(c, ui);
307 	}
308 
309 	*pagep = page;
310 	return 0;
311 }
312 
313 /**
314  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
315  * @c: UBIFS file-system description object
316  * @page: page to allocate budget for
317  * @ui: UBIFS inode object the page belongs to
318  * @appending: non-zero if the page is appended
319  *
320  * This is a helper function for 'ubifs_write_begin()' which allocates budget
321  * for the operation. The budget is allocated differently depending on whether
322  * this is appending, whether the page is dirty or not, and so on. This
323  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
324  * in case of success and %-ENOSPC in case of failure.
325  */
326 static int allocate_budget(struct ubifs_info *c, struct page *page,
327 			   struct ubifs_inode *ui, int appending)
328 {
329 	struct ubifs_budget_req req = { .fast = 1 };
330 
331 	if (PagePrivate(page)) {
332 		if (!appending)
333 			/*
334 			 * The page is dirty and we are not appending, which
335 			 * means no budget is needed at all.
336 			 */
337 			return 0;
338 
339 		mutex_lock(&ui->ui_mutex);
340 		if (ui->dirty)
341 			/*
342 			 * The page is dirty and we are appending, so the inode
343 			 * has to be marked as dirty. However, it is already
344 			 * dirty, so we do not need any budget. We may return,
345 			 * but @ui->ui_mutex hast to be left locked because we
346 			 * should prevent write-back from flushing the inode
347 			 * and freeing the budget. The lock will be released in
348 			 * 'ubifs_write_end()'.
349 			 */
350 			return 0;
351 
352 		/*
353 		 * The page is dirty, we are appending, the inode is clean, so
354 		 * we need to budget the inode change.
355 		 */
356 		req.dirtied_ino = 1;
357 	} else {
358 		if (PageChecked(page))
359 			/*
360 			 * The page corresponds to a hole and does not
361 			 * exist on the media. So changing it makes
362 			 * make the amount of indexing information
363 			 * larger, and we have to budget for a new
364 			 * page.
365 			 */
366 			req.new_page = 1;
367 		else
368 			/*
369 			 * Not a hole, the change will not add any new
370 			 * indexing information, budget for page
371 			 * change.
372 			 */
373 			req.dirtied_page = 1;
374 
375 		if (appending) {
376 			mutex_lock(&ui->ui_mutex);
377 			if (!ui->dirty)
378 				/*
379 				 * The inode is clean but we will have to mark
380 				 * it as dirty because we are appending. This
381 				 * needs a budget.
382 				 */
383 				req.dirtied_ino = 1;
384 		}
385 	}
386 
387 	return ubifs_budget_space(c, &req);
388 }
389 
390 /*
391  * This function is called when a page of data is going to be written. Since
392  * the page of data will not necessarily go to the flash straight away, UBIFS
393  * has to reserve space on the media for it, which is done by means of
394  * budgeting.
395  *
396  * This is the hot-path of the file-system and we are trying to optimize it as
397  * much as possible. For this reasons it is split on 2 parts - slow and fast.
398  *
399  * There many budgeting cases:
400  *     o a new page is appended - we have to budget for a new page and for
401  *       changing the inode; however, if the inode is already dirty, there is
402  *       no need to budget for it;
403  *     o an existing clean page is changed - we have budget for it; if the page
404  *       does not exist on the media (a hole), we have to budget for a new
405  *       page; otherwise, we may budget for changing an existing page; the
406  *       difference between these cases is that changing an existing page does
407  *       not introduce anything new to the FS indexing information, so it does
408  *       not grow, and smaller budget is acquired in this case;
409  *     o an existing dirty page is changed - no need to budget at all, because
410  *       the page budget has been acquired by earlier, when the page has been
411  *       marked dirty.
412  *
413  * UBIFS budgeting sub-system may force write-back if it thinks there is no
414  * space to reserve. This imposes some locking restrictions and makes it
415  * impossible to take into account the above cases, and makes it impossible to
416  * optimize budgeting.
417  *
418  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
419  * there is a plenty of flash space and the budget will be acquired quickly,
420  * without forcing write-back. The slow path does not make this assumption.
421  */
422 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
423 			     loff_t pos, unsigned len, unsigned flags,
424 			     struct page **pagep, void **fsdata)
425 {
426 	struct inode *inode = mapping->host;
427 	struct ubifs_info *c = inode->i_sb->s_fs_info;
428 	struct ubifs_inode *ui = ubifs_inode(inode);
429 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
430 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
431 	int skipped_read = 0;
432 	struct page *page;
433 
434 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
435 
436 	if (unlikely(c->ro_media))
437 		return -EROFS;
438 
439 	/* Try out the fast-path part first */
440 	page = grab_cache_page_write_begin(mapping, index, flags);
441 	if (unlikely(!page))
442 		return -ENOMEM;
443 
444 	if (!PageUptodate(page)) {
445 		/* The page is not loaded from the flash */
446 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
447 			/*
448 			 * We change whole page so no need to load it. But we
449 			 * have to set the @PG_checked flag to make the further
450 			 * code know that the page is new. This might be not
451 			 * true, but it is better to budget more than to read
452 			 * the page from the media.
453 			 */
454 			SetPageChecked(page);
455 			skipped_read = 1;
456 		} else {
457 			err = do_readpage(page);
458 			if (err) {
459 				unlock_page(page);
460 				page_cache_release(page);
461 				return err;
462 			}
463 		}
464 
465 		SetPageUptodate(page);
466 		ClearPageError(page);
467 	}
468 
469 	err = allocate_budget(c, page, ui, appending);
470 	if (unlikely(err)) {
471 		ubifs_assert(err == -ENOSPC);
472 		/*
473 		 * If we skipped reading the page because we were going to
474 		 * write all of it, then it is not up to date.
475 		 */
476 		if (skipped_read) {
477 			ClearPageChecked(page);
478 			ClearPageUptodate(page);
479 		}
480 		/*
481 		 * Budgeting failed which means it would have to force
482 		 * write-back but didn't, because we set the @fast flag in the
483 		 * request. Write-back cannot be done now, while we have the
484 		 * page locked, because it would deadlock. Unlock and free
485 		 * everything and fall-back to slow-path.
486 		 */
487 		if (appending) {
488 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
489 			mutex_unlock(&ui->ui_mutex);
490 		}
491 		unlock_page(page);
492 		page_cache_release(page);
493 
494 		return write_begin_slow(mapping, pos, len, pagep, flags);
495 	}
496 
497 	/*
498 	 * Whee, we acquired budgeting quickly - without involving
499 	 * garbage-collection, committing or forcing write-back. We return
500 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
501 	 * otherwise. This is an optimization (slightly hacky though).
502 	 */
503 	*pagep = page;
504 	return 0;
505 
506 }
507 
508 /**
509  * cancel_budget - cancel budget.
510  * @c: UBIFS file-system description object
511  * @page: page to cancel budget for
512  * @ui: UBIFS inode object the page belongs to
513  * @appending: non-zero if the page is appended
514  *
515  * This is a helper function for a page write operation. It unlocks the
516  * @ui->ui_mutex in case of appending.
517  */
518 static void cancel_budget(struct ubifs_info *c, struct page *page,
519 			  struct ubifs_inode *ui, int appending)
520 {
521 	if (appending) {
522 		if (!ui->dirty)
523 			ubifs_release_dirty_inode_budget(c, ui);
524 		mutex_unlock(&ui->ui_mutex);
525 	}
526 	if (!PagePrivate(page)) {
527 		if (PageChecked(page))
528 			release_new_page_budget(c);
529 		else
530 			release_existing_page_budget(c);
531 	}
532 }
533 
534 static int ubifs_write_end(struct file *file, struct address_space *mapping,
535 			   loff_t pos, unsigned len, unsigned copied,
536 			   struct page *page, void *fsdata)
537 {
538 	struct inode *inode = mapping->host;
539 	struct ubifs_inode *ui = ubifs_inode(inode);
540 	struct ubifs_info *c = inode->i_sb->s_fs_info;
541 	loff_t end_pos = pos + len;
542 	int appending = !!(end_pos > inode->i_size);
543 
544 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
545 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
546 
547 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
548 		/*
549 		 * VFS copied less data to the page that it intended and
550 		 * declared in its '->write_begin()' call via the @len
551 		 * argument. If the page was not up-to-date, and @len was
552 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
553 		 * not load it from the media (for optimization reasons). This
554 		 * means that part of the page contains garbage. So read the
555 		 * page now.
556 		 */
557 		dbg_gen("copied %d instead of %d, read page and repeat",
558 			copied, len);
559 		cancel_budget(c, page, ui, appending);
560 
561 		/*
562 		 * Return 0 to force VFS to repeat the whole operation, or the
563 		 * error code if 'do_readpage()' fails.
564 		 */
565 		copied = do_readpage(page);
566 		goto out;
567 	}
568 
569 	if (!PagePrivate(page)) {
570 		SetPagePrivate(page);
571 		atomic_long_inc(&c->dirty_pg_cnt);
572 		__set_page_dirty_nobuffers(page);
573 	}
574 
575 	if (appending) {
576 		i_size_write(inode, end_pos);
577 		ui->ui_size = end_pos;
578 		/*
579 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
580 		 * inode has dirty pages), this has been done in
581 		 * '__set_page_dirty_nobuffers()'.
582 		 */
583 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
584 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
585 		mutex_unlock(&ui->ui_mutex);
586 	}
587 
588 out:
589 	unlock_page(page);
590 	page_cache_release(page);
591 	return copied;
592 }
593 
594 /**
595  * populate_page - copy data nodes into a page for bulk-read.
596  * @c: UBIFS file-system description object
597  * @page: page
598  * @bu: bulk-read information
599  * @n: next zbranch slot
600  *
601  * This function returns %0 on success and a negative error code on failure.
602  */
603 static int populate_page(struct ubifs_info *c, struct page *page,
604 			 struct bu_info *bu, int *n)
605 {
606 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
607 	struct inode *inode = page->mapping->host;
608 	loff_t i_size = i_size_read(inode);
609 	unsigned int page_block;
610 	void *addr, *zaddr;
611 	pgoff_t end_index;
612 
613 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
614 		inode->i_ino, page->index, i_size, page->flags);
615 
616 	addr = zaddr = kmap(page);
617 
618 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
619 	if (!i_size || page->index > end_index) {
620 		hole = 1;
621 		memset(addr, 0, PAGE_CACHE_SIZE);
622 		goto out_hole;
623 	}
624 
625 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
626 	while (1) {
627 		int err, len, out_len, dlen;
628 
629 		if (nn >= bu->cnt) {
630 			hole = 1;
631 			memset(addr, 0, UBIFS_BLOCK_SIZE);
632 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
633 			struct ubifs_data_node *dn;
634 
635 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
636 
637 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
638 				     ubifs_inode(inode)->creat_sqnum);
639 
640 			len = le32_to_cpu(dn->size);
641 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
642 				goto out_err;
643 
644 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
645 			out_len = UBIFS_BLOCK_SIZE;
646 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
647 					       le16_to_cpu(dn->compr_type));
648 			if (err || len != out_len)
649 				goto out_err;
650 
651 			if (len < UBIFS_BLOCK_SIZE)
652 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
653 
654 			nn += 1;
655 			read = (i << UBIFS_BLOCK_SHIFT) + len;
656 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
657 			nn += 1;
658 			continue;
659 		} else {
660 			hole = 1;
661 			memset(addr, 0, UBIFS_BLOCK_SIZE);
662 		}
663 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
664 			break;
665 		addr += UBIFS_BLOCK_SIZE;
666 		page_block += 1;
667 	}
668 
669 	if (end_index == page->index) {
670 		int len = i_size & (PAGE_CACHE_SIZE - 1);
671 
672 		if (len && len < read)
673 			memset(zaddr + len, 0, read - len);
674 	}
675 
676 out_hole:
677 	if (hole) {
678 		SetPageChecked(page);
679 		dbg_gen("hole");
680 	}
681 
682 	SetPageUptodate(page);
683 	ClearPageError(page);
684 	flush_dcache_page(page);
685 	kunmap(page);
686 	*n = nn;
687 	return 0;
688 
689 out_err:
690 	ClearPageUptodate(page);
691 	SetPageError(page);
692 	flush_dcache_page(page);
693 	kunmap(page);
694 	ubifs_err("bad data node (block %u, inode %lu)",
695 		  page_block, inode->i_ino);
696 	return -EINVAL;
697 }
698 
699 /**
700  * ubifs_do_bulk_read - do bulk-read.
701  * @c: UBIFS file-system description object
702  * @bu: bulk-read information
703  * @page1: first page to read
704  *
705  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
706  */
707 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
708 			      struct page *page1)
709 {
710 	pgoff_t offset = page1->index, end_index;
711 	struct address_space *mapping = page1->mapping;
712 	struct inode *inode = mapping->host;
713 	struct ubifs_inode *ui = ubifs_inode(inode);
714 	int err, page_idx, page_cnt, ret = 0, n = 0;
715 	int allocate = bu->buf ? 0 : 1;
716 	loff_t isize;
717 
718 	err = ubifs_tnc_get_bu_keys(c, bu);
719 	if (err)
720 		goto out_warn;
721 
722 	if (bu->eof) {
723 		/* Turn off bulk-read at the end of the file */
724 		ui->read_in_a_row = 1;
725 		ui->bulk_read = 0;
726 	}
727 
728 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
729 	if (!page_cnt) {
730 		/*
731 		 * This happens when there are multiple blocks per page and the
732 		 * blocks for the first page we are looking for, are not
733 		 * together. If all the pages were like this, bulk-read would
734 		 * reduce performance, so we turn it off for a while.
735 		 */
736 		goto out_bu_off;
737 	}
738 
739 	if (bu->cnt) {
740 		if (allocate) {
741 			/*
742 			 * Allocate bulk-read buffer depending on how many data
743 			 * nodes we are going to read.
744 			 */
745 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
746 				      bu->zbranch[bu->cnt - 1].len -
747 				      bu->zbranch[0].offs;
748 			ubifs_assert(bu->buf_len > 0);
749 			ubifs_assert(bu->buf_len <= c->leb_size);
750 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
751 			if (!bu->buf)
752 				goto out_bu_off;
753 		}
754 
755 		err = ubifs_tnc_bulk_read(c, bu);
756 		if (err)
757 			goto out_warn;
758 	}
759 
760 	err = populate_page(c, page1, bu, &n);
761 	if (err)
762 		goto out_warn;
763 
764 	unlock_page(page1);
765 	ret = 1;
766 
767 	isize = i_size_read(inode);
768 	if (isize == 0)
769 		goto out_free;
770 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
771 
772 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
773 		pgoff_t page_offset = offset + page_idx;
774 		struct page *page;
775 
776 		if (page_offset > end_index)
777 			break;
778 		page = find_or_create_page(mapping, page_offset,
779 					   GFP_NOFS | __GFP_COLD);
780 		if (!page)
781 			break;
782 		if (!PageUptodate(page))
783 			err = populate_page(c, page, bu, &n);
784 		unlock_page(page);
785 		page_cache_release(page);
786 		if (err)
787 			break;
788 	}
789 
790 	ui->last_page_read = offset + page_idx - 1;
791 
792 out_free:
793 	if (allocate)
794 		kfree(bu->buf);
795 	return ret;
796 
797 out_warn:
798 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
799 	goto out_free;
800 
801 out_bu_off:
802 	ui->read_in_a_row = ui->bulk_read = 0;
803 	goto out_free;
804 }
805 
806 /**
807  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
808  * @page: page from which to start bulk-read.
809  *
810  * Some flash media are capable of reading sequentially at faster rates. UBIFS
811  * bulk-read facility is designed to take advantage of that, by reading in one
812  * go consecutive data nodes that are also located consecutively in the same
813  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
814  */
815 static int ubifs_bulk_read(struct page *page)
816 {
817 	struct inode *inode = page->mapping->host;
818 	struct ubifs_info *c = inode->i_sb->s_fs_info;
819 	struct ubifs_inode *ui = ubifs_inode(inode);
820 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
821 	struct bu_info *bu;
822 	int err = 0, allocated = 0;
823 
824 	ui->last_page_read = index;
825 	if (!c->bulk_read)
826 		return 0;
827 
828 	/*
829 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
830 	 * so don't bother if we cannot lock the mutex.
831 	 */
832 	if (!mutex_trylock(&ui->ui_mutex))
833 		return 0;
834 
835 	if (index != last_page_read + 1) {
836 		/* Turn off bulk-read if we stop reading sequentially */
837 		ui->read_in_a_row = 1;
838 		if (ui->bulk_read)
839 			ui->bulk_read = 0;
840 		goto out_unlock;
841 	}
842 
843 	if (!ui->bulk_read) {
844 		ui->read_in_a_row += 1;
845 		if (ui->read_in_a_row < 3)
846 			goto out_unlock;
847 		/* Three reads in a row, so switch on bulk-read */
848 		ui->bulk_read = 1;
849 	}
850 
851 	/*
852 	 * If possible, try to use pre-allocated bulk-read information, which
853 	 * is protected by @c->bu_mutex.
854 	 */
855 	if (mutex_trylock(&c->bu_mutex))
856 		bu = &c->bu;
857 	else {
858 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
859 		if (!bu)
860 			goto out_unlock;
861 
862 		bu->buf = NULL;
863 		allocated = 1;
864 	}
865 
866 	bu->buf_len = c->max_bu_buf_len;
867 	data_key_init(c, &bu->key, inode->i_ino,
868 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
869 	err = ubifs_do_bulk_read(c, bu, page);
870 
871 	if (!allocated)
872 		mutex_unlock(&c->bu_mutex);
873 	else
874 		kfree(bu);
875 
876 out_unlock:
877 	mutex_unlock(&ui->ui_mutex);
878 	return err;
879 }
880 
881 static int ubifs_readpage(struct file *file, struct page *page)
882 {
883 	if (ubifs_bulk_read(page))
884 		return 0;
885 	do_readpage(page);
886 	unlock_page(page);
887 	return 0;
888 }
889 
890 static int do_writepage(struct page *page, int len)
891 {
892 	int err = 0, i, blen;
893 	unsigned int block;
894 	void *addr;
895 	union ubifs_key key;
896 	struct inode *inode = page->mapping->host;
897 	struct ubifs_info *c = inode->i_sb->s_fs_info;
898 
899 #ifdef UBIFS_DEBUG
900 	spin_lock(&ui->ui_lock);
901 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
902 	spin_unlock(&ui->ui_lock);
903 #endif
904 
905 	/* Update radix tree tags */
906 	set_page_writeback(page);
907 
908 	addr = kmap(page);
909 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
910 	i = 0;
911 	while (len) {
912 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
913 		data_key_init(c, &key, inode->i_ino, block);
914 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
915 		if (err)
916 			break;
917 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
918 			break;
919 		block += 1;
920 		addr += blen;
921 		len -= blen;
922 	}
923 	if (err) {
924 		SetPageError(page);
925 		ubifs_err("cannot write page %lu of inode %lu, error %d",
926 			  page->index, inode->i_ino, err);
927 		ubifs_ro_mode(c, err);
928 	}
929 
930 	ubifs_assert(PagePrivate(page));
931 	if (PageChecked(page))
932 		release_new_page_budget(c);
933 	else
934 		release_existing_page_budget(c);
935 
936 	atomic_long_dec(&c->dirty_pg_cnt);
937 	ClearPagePrivate(page);
938 	ClearPageChecked(page);
939 
940 	kunmap(page);
941 	unlock_page(page);
942 	end_page_writeback(page);
943 	return err;
944 }
945 
946 /*
947  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
948  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
949  * situation when a we have an inode with size 0, then a megabyte of data is
950  * appended to the inode, then write-back starts and flushes some amount of the
951  * dirty pages, the journal becomes full, commit happens and finishes, and then
952  * an unclean reboot happens. When the file system is mounted next time, the
953  * inode size would still be 0, but there would be many pages which are beyond
954  * the inode size, they would be indexed and consume flash space. Because the
955  * journal has been committed, the replay would not be able to detect this
956  * situation and correct the inode size. This means UBIFS would have to scan
957  * whole index and correct all inode sizes, which is long an unacceptable.
958  *
959  * To prevent situations like this, UBIFS writes pages back only if they are
960  * within the last synchronized inode size, i.e. the size which has been
961  * written to the flash media last time. Otherwise, UBIFS forces inode
962  * write-back, thus making sure the on-flash inode contains current inode size,
963  * and then keeps writing pages back.
964  *
965  * Some locking issues explanation. 'ubifs_writepage()' first is called with
966  * the page locked, and it locks @ui_mutex. However, write-back does take inode
967  * @i_mutex, which means other VFS operations may be run on this inode at the
968  * same time. And the problematic one is truncation to smaller size, from where
969  * we have to call 'vmtruncate()', which first changes @inode->i_size, then
970  * drops the truncated pages. And while dropping the pages, it takes the page
971  * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
972  * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
973  * means that @inode->i_size is changed while @ui_mutex is unlocked.
974  *
975  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
976  * inode size. How do we do this if @inode->i_size may became smaller while we
977  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
978  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
979  * internally and updates it under @ui_mutex.
980  *
981  * Q: why we do not worry that if we race with truncation, we may end up with a
982  * situation when the inode is truncated while we are in the middle of
983  * 'do_writepage()', so we do write beyond inode size?
984  * A: If we are in the middle of 'do_writepage()', truncation would be locked
985  * on the page lock and it would not write the truncated inode node to the
986  * journal before we have finished.
987  */
988 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
989 {
990 	struct inode *inode = page->mapping->host;
991 	struct ubifs_inode *ui = ubifs_inode(inode);
992 	loff_t i_size =  i_size_read(inode), synced_i_size;
993 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
994 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
995 	void *kaddr;
996 
997 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
998 		inode->i_ino, page->index, page->flags);
999 	ubifs_assert(PagePrivate(page));
1000 
1001 	/* Is the page fully outside @i_size? (truncate in progress) */
1002 	if (page->index > end_index || (page->index == end_index && !len)) {
1003 		err = 0;
1004 		goto out_unlock;
1005 	}
1006 
1007 	spin_lock(&ui->ui_lock);
1008 	synced_i_size = ui->synced_i_size;
1009 	spin_unlock(&ui->ui_lock);
1010 
1011 	/* Is the page fully inside @i_size? */
1012 	if (page->index < end_index) {
1013 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1014 			err = inode->i_sb->s_op->write_inode(inode, 1);
1015 			if (err)
1016 				goto out_unlock;
1017 			/*
1018 			 * The inode has been written, but the write-buffer has
1019 			 * not been synchronized, so in case of an unclean
1020 			 * reboot we may end up with some pages beyond inode
1021 			 * size, but they would be in the journal (because
1022 			 * commit flushes write buffers) and recovery would deal
1023 			 * with this.
1024 			 */
1025 		}
1026 		return do_writepage(page, PAGE_CACHE_SIZE);
1027 	}
1028 
1029 	/*
1030 	 * The page straddles @i_size. It must be zeroed out on each and every
1031 	 * writepage invocation because it may be mmapped. "A file is mapped
1032 	 * in multiples of the page size. For a file that is not a multiple of
1033 	 * the page size, the remaining memory is zeroed when mapped, and
1034 	 * writes to that region are not written out to the file."
1035 	 */
1036 	kaddr = kmap_atomic(page, KM_USER0);
1037 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1038 	flush_dcache_page(page);
1039 	kunmap_atomic(kaddr, KM_USER0);
1040 
1041 	if (i_size > synced_i_size) {
1042 		err = inode->i_sb->s_op->write_inode(inode, 1);
1043 		if (err)
1044 			goto out_unlock;
1045 	}
1046 
1047 	return do_writepage(page, len);
1048 
1049 out_unlock:
1050 	unlock_page(page);
1051 	return err;
1052 }
1053 
1054 /**
1055  * do_attr_changes - change inode attributes.
1056  * @inode: inode to change attributes for
1057  * @attr: describes attributes to change
1058  */
1059 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1060 {
1061 	if (attr->ia_valid & ATTR_UID)
1062 		inode->i_uid = attr->ia_uid;
1063 	if (attr->ia_valid & ATTR_GID)
1064 		inode->i_gid = attr->ia_gid;
1065 	if (attr->ia_valid & ATTR_ATIME)
1066 		inode->i_atime = timespec_trunc(attr->ia_atime,
1067 						inode->i_sb->s_time_gran);
1068 	if (attr->ia_valid & ATTR_MTIME)
1069 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1070 						inode->i_sb->s_time_gran);
1071 	if (attr->ia_valid & ATTR_CTIME)
1072 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1073 						inode->i_sb->s_time_gran);
1074 	if (attr->ia_valid & ATTR_MODE) {
1075 		umode_t mode = attr->ia_mode;
1076 
1077 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1078 			mode &= ~S_ISGID;
1079 		inode->i_mode = mode;
1080 	}
1081 }
1082 
1083 /**
1084  * do_truncation - truncate an inode.
1085  * @c: UBIFS file-system description object
1086  * @inode: inode to truncate
1087  * @attr: inode attribute changes description
1088  *
1089  * This function implements VFS '->setattr()' call when the inode is truncated
1090  * to a smaller size. Returns zero in case of success and a negative error code
1091  * in case of failure.
1092  */
1093 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1094 			 const struct iattr *attr)
1095 {
1096 	int err;
1097 	struct ubifs_budget_req req;
1098 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1099 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1100 	struct ubifs_inode *ui = ubifs_inode(inode);
1101 
1102 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1103 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1104 
1105 	/*
1106 	 * If this is truncation to a smaller size, and we do not truncate on a
1107 	 * block boundary, budget for changing one data block, because the last
1108 	 * block will be re-written.
1109 	 */
1110 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1111 		req.dirtied_page = 1;
1112 
1113 	req.dirtied_ino = 1;
1114 	/* A funny way to budget for truncation node */
1115 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1116 	err = ubifs_budget_space(c, &req);
1117 	if (err) {
1118 		/*
1119 		 * Treat truncations to zero as deletion and always allow them,
1120 		 * just like we do for '->unlink()'.
1121 		 */
1122 		if (new_size || err != -ENOSPC)
1123 			return err;
1124 		budgeted = 0;
1125 	}
1126 
1127 	err = vmtruncate(inode, new_size);
1128 	if (err)
1129 		goto out_budg;
1130 
1131 	if (offset) {
1132 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1133 		struct page *page;
1134 
1135 		page = find_lock_page(inode->i_mapping, index);
1136 		if (page) {
1137 			if (PageDirty(page)) {
1138 				/*
1139 				 * 'ubifs_jnl_truncate()' will try to truncate
1140 				 * the last data node, but it contains
1141 				 * out-of-date data because the page is dirty.
1142 				 * Write the page now, so that
1143 				 * 'ubifs_jnl_truncate()' will see an already
1144 				 * truncated (and up to date) data node.
1145 				 */
1146 				ubifs_assert(PagePrivate(page));
1147 
1148 				clear_page_dirty_for_io(page);
1149 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1150 					offset = new_size &
1151 						 (PAGE_CACHE_SIZE - 1);
1152 				err = do_writepage(page, offset);
1153 				page_cache_release(page);
1154 				if (err)
1155 					goto out_budg;
1156 				/*
1157 				 * We could now tell 'ubifs_jnl_truncate()' not
1158 				 * to read the last block.
1159 				 */
1160 			} else {
1161 				/*
1162 				 * We could 'kmap()' the page and pass the data
1163 				 * to 'ubifs_jnl_truncate()' to save it from
1164 				 * having to read it.
1165 				 */
1166 				unlock_page(page);
1167 				page_cache_release(page);
1168 			}
1169 		}
1170 	}
1171 
1172 	mutex_lock(&ui->ui_mutex);
1173 	ui->ui_size = inode->i_size;
1174 	/* Truncation changes inode [mc]time */
1175 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1176 	/* Other attributes may be changed at the same time as well */
1177 	do_attr_changes(inode, attr);
1178 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1179 	mutex_unlock(&ui->ui_mutex);
1180 
1181 out_budg:
1182 	if (budgeted)
1183 		ubifs_release_budget(c, &req);
1184 	else {
1185 		c->nospace = c->nospace_rp = 0;
1186 		smp_wmb();
1187 	}
1188 	return err;
1189 }
1190 
1191 /**
1192  * do_setattr - change inode attributes.
1193  * @c: UBIFS file-system description object
1194  * @inode: inode to change attributes for
1195  * @attr: inode attribute changes description
1196  *
1197  * This function implements VFS '->setattr()' call for all cases except
1198  * truncations to smaller size. Returns zero in case of success and a negative
1199  * error code in case of failure.
1200  */
1201 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1202 		      const struct iattr *attr)
1203 {
1204 	int err, release;
1205 	loff_t new_size = attr->ia_size;
1206 	struct ubifs_inode *ui = ubifs_inode(inode);
1207 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1208 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1209 
1210 	err = ubifs_budget_space(c, &req);
1211 	if (err)
1212 		return err;
1213 
1214 	if (attr->ia_valid & ATTR_SIZE) {
1215 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1216 		err = vmtruncate(inode, new_size);
1217 		if (err)
1218 			goto out;
1219 	}
1220 
1221 	mutex_lock(&ui->ui_mutex);
1222 	if (attr->ia_valid & ATTR_SIZE) {
1223 		/* Truncation changes inode [mc]time */
1224 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1225 		/* 'vmtruncate()' changed @i_size, update @ui_size */
1226 		ui->ui_size = inode->i_size;
1227 	}
1228 
1229 	do_attr_changes(inode, attr);
1230 
1231 	release = ui->dirty;
1232 	if (attr->ia_valid & ATTR_SIZE)
1233 		/*
1234 		 * Inode length changed, so we have to make sure
1235 		 * @I_DIRTY_DATASYNC is set.
1236 		 */
1237 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1238 	else
1239 		mark_inode_dirty_sync(inode);
1240 	mutex_unlock(&ui->ui_mutex);
1241 
1242 	if (release)
1243 		ubifs_release_budget(c, &req);
1244 	if (IS_SYNC(inode))
1245 		err = inode->i_sb->s_op->write_inode(inode, 1);
1246 	return err;
1247 
1248 out:
1249 	ubifs_release_budget(c, &req);
1250 	return err;
1251 }
1252 
1253 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1254 {
1255 	int err;
1256 	struct inode *inode = dentry->d_inode;
1257 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1258 
1259 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1260 		inode->i_ino, inode->i_mode, attr->ia_valid);
1261 	err = inode_change_ok(inode, attr);
1262 	if (err)
1263 		return err;
1264 
1265 	err = dbg_check_synced_i_size(inode);
1266 	if (err)
1267 		return err;
1268 
1269 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1270 		/* Truncation to a smaller size */
1271 		err = do_truncation(c, inode, attr);
1272 	else
1273 		err = do_setattr(c, inode, attr);
1274 
1275 	return err;
1276 }
1277 
1278 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1279 {
1280 	struct inode *inode = page->mapping->host;
1281 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1282 
1283 	ubifs_assert(PagePrivate(page));
1284 	if (offset)
1285 		/* Partial page remains dirty */
1286 		return;
1287 
1288 	if (PageChecked(page))
1289 		release_new_page_budget(c);
1290 	else
1291 		release_existing_page_budget(c);
1292 
1293 	atomic_long_dec(&c->dirty_pg_cnt);
1294 	ClearPagePrivate(page);
1295 	ClearPageChecked(page);
1296 }
1297 
1298 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1299 {
1300 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1301 
1302 	nd_set_link(nd, ui->data);
1303 	return NULL;
1304 }
1305 
1306 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1307 {
1308 	struct inode *inode = dentry->d_inode;
1309 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1310 	int err;
1311 
1312 	dbg_gen("syncing inode %lu", inode->i_ino);
1313 
1314 	/*
1315 	 * VFS has already synchronized dirty pages for this inode. Synchronize
1316 	 * the inode unless this is a 'datasync()' call.
1317 	 */
1318 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1319 		err = inode->i_sb->s_op->write_inode(inode, 1);
1320 		if (err)
1321 			return err;
1322 	}
1323 
1324 	/*
1325 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1326 	 * them.
1327 	 */
1328 	err = ubifs_sync_wbufs_by_inode(c, inode);
1329 	if (err)
1330 		return err;
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * mctime_update_needed - check if mtime or ctime update is needed.
1337  * @inode: the inode to do the check for
1338  * @now: current time
1339  *
1340  * This helper function checks if the inode mtime/ctime should be updated or
1341  * not. If current values of the time-stamps are within the UBIFS inode time
1342  * granularity, they are not updated. This is an optimization.
1343  */
1344 static inline int mctime_update_needed(const struct inode *inode,
1345 				       const struct timespec *now)
1346 {
1347 	if (!timespec_equal(&inode->i_mtime, now) ||
1348 	    !timespec_equal(&inode->i_ctime, now))
1349 		return 1;
1350 	return 0;
1351 }
1352 
1353 /**
1354  * update_ctime - update mtime and ctime of an inode.
1355  * @c: UBIFS file-system description object
1356  * @inode: inode to update
1357  *
1358  * This function updates mtime and ctime of the inode if it is not equivalent to
1359  * current time. Returns zero in case of success and a negative error code in
1360  * case of failure.
1361  */
1362 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1363 {
1364 	struct timespec now = ubifs_current_time(inode);
1365 	struct ubifs_inode *ui = ubifs_inode(inode);
1366 
1367 	if (mctime_update_needed(inode, &now)) {
1368 		int err, release;
1369 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1370 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1371 
1372 		err = ubifs_budget_space(c, &req);
1373 		if (err)
1374 			return err;
1375 
1376 		mutex_lock(&ui->ui_mutex);
1377 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1378 		release = ui->dirty;
1379 		mark_inode_dirty_sync(inode);
1380 		mutex_unlock(&ui->ui_mutex);
1381 		if (release)
1382 			ubifs_release_budget(c, &req);
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1389 			       unsigned long nr_segs, loff_t pos)
1390 {
1391 	int err;
1392 	ssize_t ret;
1393 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1394 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1395 
1396 	err = update_mctime(c, inode);
1397 	if (err)
1398 		return err;
1399 
1400 	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1401 	if (ret < 0)
1402 		return ret;
1403 
1404 	if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1405 		err = ubifs_sync_wbufs_by_inode(c, inode);
1406 		if (err)
1407 			return err;
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 static int ubifs_set_page_dirty(struct page *page)
1414 {
1415 	int ret;
1416 
1417 	ret = __set_page_dirty_nobuffers(page);
1418 	/*
1419 	 * An attempt to dirty a page without budgeting for it - should not
1420 	 * happen.
1421 	 */
1422 	ubifs_assert(ret == 0);
1423 	return ret;
1424 }
1425 
1426 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1427 {
1428 	/*
1429 	 * An attempt to release a dirty page without budgeting for it - should
1430 	 * not happen.
1431 	 */
1432 	if (PageWriteback(page))
1433 		return 0;
1434 	ubifs_assert(PagePrivate(page));
1435 	ubifs_assert(0);
1436 	ClearPagePrivate(page);
1437 	ClearPageChecked(page);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * mmap()d file has taken write protection fault and is being made
1443  * writable. UBIFS must ensure page is budgeted for.
1444  */
1445 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1446 {
1447 	struct page *page = vmf->page;
1448 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1449 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1450 	struct timespec now = ubifs_current_time(inode);
1451 	struct ubifs_budget_req req = { .new_page = 1 };
1452 	int err, update_time;
1453 
1454 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1455 		i_size_read(inode));
1456 	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1457 
1458 	if (unlikely(c->ro_media))
1459 		return VM_FAULT_SIGBUS; /* -EROFS */
1460 
1461 	/*
1462 	 * We have not locked @page so far so we may budget for changing the
1463 	 * page. Note, we cannot do this after we locked the page, because
1464 	 * budgeting may cause write-back which would cause deadlock.
1465 	 *
1466 	 * At the moment we do not know whether the page is dirty or not, so we
1467 	 * assume that it is not and budget for a new page. We could look at
1468 	 * the @PG_private flag and figure this out, but we may race with write
1469 	 * back and the page state may change by the time we lock it, so this
1470 	 * would need additional care. We do not bother with this at the
1471 	 * moment, although it might be good idea to do. Instead, we allocate
1472 	 * budget for a new page and amend it later on if the page was in fact
1473 	 * dirty.
1474 	 *
1475 	 * The budgeting-related logic of this function is similar to what we
1476 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1477 	 * for more comments.
1478 	 */
1479 	update_time = mctime_update_needed(inode, &now);
1480 	if (update_time)
1481 		/*
1482 		 * We have to change inode time stamp which requires extra
1483 		 * budgeting.
1484 		 */
1485 		req.dirtied_ino = 1;
1486 
1487 	err = ubifs_budget_space(c, &req);
1488 	if (unlikely(err)) {
1489 		if (err == -ENOSPC)
1490 			ubifs_warn("out of space for mmapped file "
1491 				   "(inode number %lu)", inode->i_ino);
1492 		return VM_FAULT_SIGBUS;
1493 	}
1494 
1495 	lock_page(page);
1496 	if (unlikely(page->mapping != inode->i_mapping ||
1497 		     page_offset(page) > i_size_read(inode))) {
1498 		/* Page got truncated out from underneath us */
1499 		err = -EINVAL;
1500 		goto out_unlock;
1501 	}
1502 
1503 	if (PagePrivate(page))
1504 		release_new_page_budget(c);
1505 	else {
1506 		if (!PageChecked(page))
1507 			ubifs_convert_page_budget(c);
1508 		SetPagePrivate(page);
1509 		atomic_long_inc(&c->dirty_pg_cnt);
1510 		__set_page_dirty_nobuffers(page);
1511 	}
1512 
1513 	if (update_time) {
1514 		int release;
1515 		struct ubifs_inode *ui = ubifs_inode(inode);
1516 
1517 		mutex_lock(&ui->ui_mutex);
1518 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1519 		release = ui->dirty;
1520 		mark_inode_dirty_sync(inode);
1521 		mutex_unlock(&ui->ui_mutex);
1522 		if (release)
1523 			ubifs_release_dirty_inode_budget(c, ui);
1524 	}
1525 
1526 	unlock_page(page);
1527 	return 0;
1528 
1529 out_unlock:
1530 	unlock_page(page);
1531 	ubifs_release_budget(c, &req);
1532 	if (err)
1533 		err = VM_FAULT_SIGBUS;
1534 	return err;
1535 }
1536 
1537 static const struct vm_operations_struct ubifs_file_vm_ops = {
1538 	.fault        = filemap_fault,
1539 	.page_mkwrite = ubifs_vm_page_mkwrite,
1540 };
1541 
1542 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1543 {
1544 	int err;
1545 
1546 	/* 'generic_file_mmap()' takes care of NOMMU case */
1547 	err = generic_file_mmap(file, vma);
1548 	if (err)
1549 		return err;
1550 	vma->vm_ops = &ubifs_file_vm_ops;
1551 	return 0;
1552 }
1553 
1554 const struct address_space_operations ubifs_file_address_operations = {
1555 	.readpage       = ubifs_readpage,
1556 	.writepage      = ubifs_writepage,
1557 	.write_begin    = ubifs_write_begin,
1558 	.write_end      = ubifs_write_end,
1559 	.invalidatepage = ubifs_invalidatepage,
1560 	.set_page_dirty = ubifs_set_page_dirty,
1561 	.releasepage    = ubifs_releasepage,
1562 };
1563 
1564 const struct inode_operations ubifs_file_inode_operations = {
1565 	.setattr     = ubifs_setattr,
1566 	.getattr     = ubifs_getattr,
1567 #ifdef CONFIG_UBIFS_FS_XATTR
1568 	.setxattr    = ubifs_setxattr,
1569 	.getxattr    = ubifs_getxattr,
1570 	.listxattr   = ubifs_listxattr,
1571 	.removexattr = ubifs_removexattr,
1572 #endif
1573 };
1574 
1575 const struct inode_operations ubifs_symlink_inode_operations = {
1576 	.readlink    = generic_readlink,
1577 	.follow_link = ubifs_follow_link,
1578 	.setattr     = ubifs_setattr,
1579 	.getattr     = ubifs_getattr,
1580 };
1581 
1582 const struct file_operations ubifs_file_operations = {
1583 	.llseek         = generic_file_llseek,
1584 	.read           = do_sync_read,
1585 	.write          = do_sync_write,
1586 	.aio_read       = generic_file_aio_read,
1587 	.aio_write      = ubifs_aio_write,
1588 	.mmap           = ubifs_file_mmap,
1589 	.fsync          = ubifs_fsync,
1590 	.unlocked_ioctl = ubifs_ioctl,
1591 	.splice_read	= generic_file_splice_read,
1592 	.splice_write	= generic_file_splice_write,
1593 #ifdef CONFIG_COMPAT
1594 	.compat_ioctl   = ubifs_compat_ioctl,
1595 #endif
1596 };
1597