xref: /openbmc/linux/fs/ubifs/file.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/aio.h>
54 #include <linux/mount.h>
55 #include <linux/namei.h>
56 #include <linux/slab.h>
57 
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 		      struct ubifs_data_node *dn)
60 {
61 	struct ubifs_info *c = inode->i_sb->s_fs_info;
62 	int err, len, out_len;
63 	union ubifs_key key;
64 	unsigned int dlen;
65 
66 	data_key_init(c, &key, inode->i_ino, block);
67 	err = ubifs_tnc_lookup(c, &key, dn);
68 	if (err) {
69 		if (err == -ENOENT)
70 			/* Not found, so it must be a hole */
71 			memset(addr, 0, UBIFS_BLOCK_SIZE);
72 		return err;
73 	}
74 
75 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 		     ubifs_inode(inode)->creat_sqnum);
77 	len = le32_to_cpu(dn->size);
78 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 		goto dump;
80 
81 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 	out_len = UBIFS_BLOCK_SIZE;
83 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 			       le16_to_cpu(dn->compr_type));
85 	if (err || len != out_len)
86 		goto dump;
87 
88 	/*
89 	 * Data length can be less than a full block, even for blocks that are
90 	 * not the last in the file (e.g., as a result of making a hole and
91 	 * appending data). Ensure that the remainder is zeroed out.
92 	 */
93 	if (len < UBIFS_BLOCK_SIZE)
94 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95 
96 	return 0;
97 
98 dump:
99 	ubifs_err("bad data node (block %u, inode %lu)",
100 		  block, inode->i_ino);
101 	ubifs_dump_node(c, dn);
102 	return -EINVAL;
103 }
104 
105 static int do_readpage(struct page *page)
106 {
107 	void *addr;
108 	int err = 0, i;
109 	unsigned int block, beyond;
110 	struct ubifs_data_node *dn;
111 	struct inode *inode = page->mapping->host;
112 	loff_t i_size = i_size_read(inode);
113 
114 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 		inode->i_ino, page->index, i_size, page->flags);
116 	ubifs_assert(!PageChecked(page));
117 	ubifs_assert(!PagePrivate(page));
118 
119 	addr = kmap(page);
120 
121 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 	if (block >= beyond) {
124 		/* Reading beyond inode */
125 		SetPageChecked(page);
126 		memset(addr, 0, PAGE_CACHE_SIZE);
127 		goto out;
128 	}
129 
130 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 	if (!dn) {
132 		err = -ENOMEM;
133 		goto error;
134 	}
135 
136 	i = 0;
137 	while (1) {
138 		int ret;
139 
140 		if (block >= beyond) {
141 			/* Reading beyond inode */
142 			err = -ENOENT;
143 			memset(addr, 0, UBIFS_BLOCK_SIZE);
144 		} else {
145 			ret = read_block(inode, addr, block, dn);
146 			if (ret) {
147 				err = ret;
148 				if (err != -ENOENT)
149 					break;
150 			} else if (block + 1 == beyond) {
151 				int dlen = le32_to_cpu(dn->size);
152 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153 
154 				if (ilen && ilen < dlen)
155 					memset(addr + ilen, 0, dlen - ilen);
156 			}
157 		}
158 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 			break;
160 		block += 1;
161 		addr += UBIFS_BLOCK_SIZE;
162 	}
163 	if (err) {
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err("cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep,
223 			    unsigned flags)
224 {
225 	struct inode *inode = mapping->host;
226 	struct ubifs_info *c = inode->i_sb->s_fs_info;
227 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 	struct ubifs_budget_req req = { .new_page = 1 };
229 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230 	struct page *page;
231 
232 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 		inode->i_ino, pos, len, inode->i_size);
234 
235 	/*
236 	 * At the slow path we have to budget before locking the page, because
237 	 * budgeting may force write-back, which would wait on locked pages and
238 	 * deadlock if we had the page locked. At this point we do not know
239 	 * anything about the page, so assume that this is a new page which is
240 	 * written to a hole. This corresponds to largest budget. Later the
241 	 * budget will be amended if this is not true.
242 	 */
243 	if (appending)
244 		/* We are appending data, budget for inode change */
245 		req.dirtied_ino = 1;
246 
247 	err = ubifs_budget_space(c, &req);
248 	if (unlikely(err))
249 		return err;
250 
251 	page = grab_cache_page_write_begin(mapping, index, flags);
252 	if (unlikely(!page)) {
253 		ubifs_release_budget(c, &req);
254 		return -ENOMEM;
255 	}
256 
257 	if (!PageUptodate(page)) {
258 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 			SetPageChecked(page);
260 		else {
261 			err = do_readpage(page);
262 			if (err) {
263 				unlock_page(page);
264 				page_cache_release(page);
265 				return err;
266 			}
267 		}
268 
269 		SetPageUptodate(page);
270 		ClearPageError(page);
271 	}
272 
273 	if (PagePrivate(page))
274 		/*
275 		 * The page is dirty, which means it was budgeted twice:
276 		 *   o first time the budget was allocated by the task which
277 		 *     made the page dirty and set the PG_private flag;
278 		 *   o and then we budgeted for it for the second time at the
279 		 *     very beginning of this function.
280 		 *
281 		 * So what we have to do is to release the page budget we
282 		 * allocated.
283 		 */
284 		release_new_page_budget(c);
285 	else if (!PageChecked(page))
286 		/*
287 		 * We are changing a page which already exists on the media.
288 		 * This means that changing the page does not make the amount
289 		 * of indexing information larger, and this part of the budget
290 		 * which we have already acquired may be released.
291 		 */
292 		ubifs_convert_page_budget(c);
293 
294 	if (appending) {
295 		struct ubifs_inode *ui = ubifs_inode(inode);
296 
297 		/*
298 		 * 'ubifs_write_end()' is optimized from the fast-path part of
299 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 		 * if data is appended.
301 		 */
302 		mutex_lock(&ui->ui_mutex);
303 		if (ui->dirty)
304 			/*
305 			 * The inode is dirty already, so we may free the
306 			 * budget we allocated.
307 			 */
308 			ubifs_release_dirty_inode_budget(c, ui);
309 	}
310 
311 	*pagep = page;
312 	return 0;
313 }
314 
315 /**
316  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317  * @c: UBIFS file-system description object
318  * @page: page to allocate budget for
319  * @ui: UBIFS inode object the page belongs to
320  * @appending: non-zero if the page is appended
321  *
322  * This is a helper function for 'ubifs_write_begin()' which allocates budget
323  * for the operation. The budget is allocated differently depending on whether
324  * this is appending, whether the page is dirty or not, and so on. This
325  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326  * in case of success and %-ENOSPC in case of failure.
327  */
328 static int allocate_budget(struct ubifs_info *c, struct page *page,
329 			   struct ubifs_inode *ui, int appending)
330 {
331 	struct ubifs_budget_req req = { .fast = 1 };
332 
333 	if (PagePrivate(page)) {
334 		if (!appending)
335 			/*
336 			 * The page is dirty and we are not appending, which
337 			 * means no budget is needed at all.
338 			 */
339 			return 0;
340 
341 		mutex_lock(&ui->ui_mutex);
342 		if (ui->dirty)
343 			/*
344 			 * The page is dirty and we are appending, so the inode
345 			 * has to be marked as dirty. However, it is already
346 			 * dirty, so we do not need any budget. We may return,
347 			 * but @ui->ui_mutex hast to be left locked because we
348 			 * should prevent write-back from flushing the inode
349 			 * and freeing the budget. The lock will be released in
350 			 * 'ubifs_write_end()'.
351 			 */
352 			return 0;
353 
354 		/*
355 		 * The page is dirty, we are appending, the inode is clean, so
356 		 * we need to budget the inode change.
357 		 */
358 		req.dirtied_ino = 1;
359 	} else {
360 		if (PageChecked(page))
361 			/*
362 			 * The page corresponds to a hole and does not
363 			 * exist on the media. So changing it makes
364 			 * make the amount of indexing information
365 			 * larger, and we have to budget for a new
366 			 * page.
367 			 */
368 			req.new_page = 1;
369 		else
370 			/*
371 			 * Not a hole, the change will not add any new
372 			 * indexing information, budget for page
373 			 * change.
374 			 */
375 			req.dirtied_page = 1;
376 
377 		if (appending) {
378 			mutex_lock(&ui->ui_mutex);
379 			if (!ui->dirty)
380 				/*
381 				 * The inode is clean but we will have to mark
382 				 * it as dirty because we are appending. This
383 				 * needs a budget.
384 				 */
385 				req.dirtied_ino = 1;
386 		}
387 	}
388 
389 	return ubifs_budget_space(c, &req);
390 }
391 
392 /*
393  * This function is called when a page of data is going to be written. Since
394  * the page of data will not necessarily go to the flash straight away, UBIFS
395  * has to reserve space on the media for it, which is done by means of
396  * budgeting.
397  *
398  * This is the hot-path of the file-system and we are trying to optimize it as
399  * much as possible. For this reasons it is split on 2 parts - slow and fast.
400  *
401  * There many budgeting cases:
402  *     o a new page is appended - we have to budget for a new page and for
403  *       changing the inode; however, if the inode is already dirty, there is
404  *       no need to budget for it;
405  *     o an existing clean page is changed - we have budget for it; if the page
406  *       does not exist on the media (a hole), we have to budget for a new
407  *       page; otherwise, we may budget for changing an existing page; the
408  *       difference between these cases is that changing an existing page does
409  *       not introduce anything new to the FS indexing information, so it does
410  *       not grow, and smaller budget is acquired in this case;
411  *     o an existing dirty page is changed - no need to budget at all, because
412  *       the page budget has been acquired by earlier, when the page has been
413  *       marked dirty.
414  *
415  * UBIFS budgeting sub-system may force write-back if it thinks there is no
416  * space to reserve. This imposes some locking restrictions and makes it
417  * impossible to take into account the above cases, and makes it impossible to
418  * optimize budgeting.
419  *
420  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421  * there is a plenty of flash space and the budget will be acquired quickly,
422  * without forcing write-back. The slow path does not make this assumption.
423  */
424 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
425 			     loff_t pos, unsigned len, unsigned flags,
426 			     struct page **pagep, void **fsdata)
427 {
428 	struct inode *inode = mapping->host;
429 	struct ubifs_info *c = inode->i_sb->s_fs_info;
430 	struct ubifs_inode *ui = ubifs_inode(inode);
431 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
432 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
433 	int skipped_read = 0;
434 	struct page *page;
435 
436 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
437 	ubifs_assert(!c->ro_media && !c->ro_mount);
438 
439 	if (unlikely(c->ro_error))
440 		return -EROFS;
441 
442 	/* Try out the fast-path part first */
443 	page = grab_cache_page_write_begin(mapping, index, flags);
444 	if (unlikely(!page))
445 		return -ENOMEM;
446 
447 	if (!PageUptodate(page)) {
448 		/* The page is not loaded from the flash */
449 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
450 			/*
451 			 * We change whole page so no need to load it. But we
452 			 * do not know whether this page exists on the media or
453 			 * not, so we assume the latter because it requires
454 			 * larger budget. The assumption is that it is better
455 			 * to budget a bit more than to read the page from the
456 			 * media. Thus, we are setting the @PG_checked flag
457 			 * here.
458 			 */
459 			SetPageChecked(page);
460 			skipped_read = 1;
461 		} else {
462 			err = do_readpage(page);
463 			if (err) {
464 				unlock_page(page);
465 				page_cache_release(page);
466 				return err;
467 			}
468 		}
469 
470 		SetPageUptodate(page);
471 		ClearPageError(page);
472 	}
473 
474 	err = allocate_budget(c, page, ui, appending);
475 	if (unlikely(err)) {
476 		ubifs_assert(err == -ENOSPC);
477 		/*
478 		 * If we skipped reading the page because we were going to
479 		 * write all of it, then it is not up to date.
480 		 */
481 		if (skipped_read) {
482 			ClearPageChecked(page);
483 			ClearPageUptodate(page);
484 		}
485 		/*
486 		 * Budgeting failed which means it would have to force
487 		 * write-back but didn't, because we set the @fast flag in the
488 		 * request. Write-back cannot be done now, while we have the
489 		 * page locked, because it would deadlock. Unlock and free
490 		 * everything and fall-back to slow-path.
491 		 */
492 		if (appending) {
493 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
494 			mutex_unlock(&ui->ui_mutex);
495 		}
496 		unlock_page(page);
497 		page_cache_release(page);
498 
499 		return write_begin_slow(mapping, pos, len, pagep, flags);
500 	}
501 
502 	/*
503 	 * Whee, we acquired budgeting quickly - without involving
504 	 * garbage-collection, committing or forcing write-back. We return
505 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
506 	 * otherwise. This is an optimization (slightly hacky though).
507 	 */
508 	*pagep = page;
509 	return 0;
510 
511 }
512 
513 /**
514  * cancel_budget - cancel budget.
515  * @c: UBIFS file-system description object
516  * @page: page to cancel budget for
517  * @ui: UBIFS inode object the page belongs to
518  * @appending: non-zero if the page is appended
519  *
520  * This is a helper function for a page write operation. It unlocks the
521  * @ui->ui_mutex in case of appending.
522  */
523 static void cancel_budget(struct ubifs_info *c, struct page *page,
524 			  struct ubifs_inode *ui, int appending)
525 {
526 	if (appending) {
527 		if (!ui->dirty)
528 			ubifs_release_dirty_inode_budget(c, ui);
529 		mutex_unlock(&ui->ui_mutex);
530 	}
531 	if (!PagePrivate(page)) {
532 		if (PageChecked(page))
533 			release_new_page_budget(c);
534 		else
535 			release_existing_page_budget(c);
536 	}
537 }
538 
539 static int ubifs_write_end(struct file *file, struct address_space *mapping,
540 			   loff_t pos, unsigned len, unsigned copied,
541 			   struct page *page, void *fsdata)
542 {
543 	struct inode *inode = mapping->host;
544 	struct ubifs_inode *ui = ubifs_inode(inode);
545 	struct ubifs_info *c = inode->i_sb->s_fs_info;
546 	loff_t end_pos = pos + len;
547 	int appending = !!(end_pos > inode->i_size);
548 
549 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
550 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
551 
552 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
553 		/*
554 		 * VFS copied less data to the page that it intended and
555 		 * declared in its '->write_begin()' call via the @len
556 		 * argument. If the page was not up-to-date, and @len was
557 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
558 		 * not load it from the media (for optimization reasons). This
559 		 * means that part of the page contains garbage. So read the
560 		 * page now.
561 		 */
562 		dbg_gen("copied %d instead of %d, read page and repeat",
563 			copied, len);
564 		cancel_budget(c, page, ui, appending);
565 		ClearPageChecked(page);
566 
567 		/*
568 		 * Return 0 to force VFS to repeat the whole operation, or the
569 		 * error code if 'do_readpage()' fails.
570 		 */
571 		copied = do_readpage(page);
572 		goto out;
573 	}
574 
575 	if (!PagePrivate(page)) {
576 		SetPagePrivate(page);
577 		atomic_long_inc(&c->dirty_pg_cnt);
578 		__set_page_dirty_nobuffers(page);
579 	}
580 
581 	if (appending) {
582 		i_size_write(inode, end_pos);
583 		ui->ui_size = end_pos;
584 		/*
585 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
586 		 * inode has dirty pages), this has been done in
587 		 * '__set_page_dirty_nobuffers()'.
588 		 */
589 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
590 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
591 		mutex_unlock(&ui->ui_mutex);
592 	}
593 
594 out:
595 	unlock_page(page);
596 	page_cache_release(page);
597 	return copied;
598 }
599 
600 /**
601  * populate_page - copy data nodes into a page for bulk-read.
602  * @c: UBIFS file-system description object
603  * @page: page
604  * @bu: bulk-read information
605  * @n: next zbranch slot
606  *
607  * This function returns %0 on success and a negative error code on failure.
608  */
609 static int populate_page(struct ubifs_info *c, struct page *page,
610 			 struct bu_info *bu, int *n)
611 {
612 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
613 	struct inode *inode = page->mapping->host;
614 	loff_t i_size = i_size_read(inode);
615 	unsigned int page_block;
616 	void *addr, *zaddr;
617 	pgoff_t end_index;
618 
619 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
620 		inode->i_ino, page->index, i_size, page->flags);
621 
622 	addr = zaddr = kmap(page);
623 
624 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
625 	if (!i_size || page->index > end_index) {
626 		hole = 1;
627 		memset(addr, 0, PAGE_CACHE_SIZE);
628 		goto out_hole;
629 	}
630 
631 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
632 	while (1) {
633 		int err, len, out_len, dlen;
634 
635 		if (nn >= bu->cnt) {
636 			hole = 1;
637 			memset(addr, 0, UBIFS_BLOCK_SIZE);
638 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
639 			struct ubifs_data_node *dn;
640 
641 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
642 
643 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
644 				     ubifs_inode(inode)->creat_sqnum);
645 
646 			len = le32_to_cpu(dn->size);
647 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
648 				goto out_err;
649 
650 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
651 			out_len = UBIFS_BLOCK_SIZE;
652 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
653 					       le16_to_cpu(dn->compr_type));
654 			if (err || len != out_len)
655 				goto out_err;
656 
657 			if (len < UBIFS_BLOCK_SIZE)
658 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
659 
660 			nn += 1;
661 			read = (i << UBIFS_BLOCK_SHIFT) + len;
662 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
663 			nn += 1;
664 			continue;
665 		} else {
666 			hole = 1;
667 			memset(addr, 0, UBIFS_BLOCK_SIZE);
668 		}
669 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
670 			break;
671 		addr += UBIFS_BLOCK_SIZE;
672 		page_block += 1;
673 	}
674 
675 	if (end_index == page->index) {
676 		int len = i_size & (PAGE_CACHE_SIZE - 1);
677 
678 		if (len && len < read)
679 			memset(zaddr + len, 0, read - len);
680 	}
681 
682 out_hole:
683 	if (hole) {
684 		SetPageChecked(page);
685 		dbg_gen("hole");
686 	}
687 
688 	SetPageUptodate(page);
689 	ClearPageError(page);
690 	flush_dcache_page(page);
691 	kunmap(page);
692 	*n = nn;
693 	return 0;
694 
695 out_err:
696 	ClearPageUptodate(page);
697 	SetPageError(page);
698 	flush_dcache_page(page);
699 	kunmap(page);
700 	ubifs_err("bad data node (block %u, inode %lu)",
701 		  page_block, inode->i_ino);
702 	return -EINVAL;
703 }
704 
705 /**
706  * ubifs_do_bulk_read - do bulk-read.
707  * @c: UBIFS file-system description object
708  * @bu: bulk-read information
709  * @page1: first page to read
710  *
711  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
712  */
713 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
714 			      struct page *page1)
715 {
716 	pgoff_t offset = page1->index, end_index;
717 	struct address_space *mapping = page1->mapping;
718 	struct inode *inode = mapping->host;
719 	struct ubifs_inode *ui = ubifs_inode(inode);
720 	int err, page_idx, page_cnt, ret = 0, n = 0;
721 	int allocate = bu->buf ? 0 : 1;
722 	loff_t isize;
723 
724 	err = ubifs_tnc_get_bu_keys(c, bu);
725 	if (err)
726 		goto out_warn;
727 
728 	if (bu->eof) {
729 		/* Turn off bulk-read at the end of the file */
730 		ui->read_in_a_row = 1;
731 		ui->bulk_read = 0;
732 	}
733 
734 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
735 	if (!page_cnt) {
736 		/*
737 		 * This happens when there are multiple blocks per page and the
738 		 * blocks for the first page we are looking for, are not
739 		 * together. If all the pages were like this, bulk-read would
740 		 * reduce performance, so we turn it off for a while.
741 		 */
742 		goto out_bu_off;
743 	}
744 
745 	if (bu->cnt) {
746 		if (allocate) {
747 			/*
748 			 * Allocate bulk-read buffer depending on how many data
749 			 * nodes we are going to read.
750 			 */
751 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
752 				      bu->zbranch[bu->cnt - 1].len -
753 				      bu->zbranch[0].offs;
754 			ubifs_assert(bu->buf_len > 0);
755 			ubifs_assert(bu->buf_len <= c->leb_size);
756 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
757 			if (!bu->buf)
758 				goto out_bu_off;
759 		}
760 
761 		err = ubifs_tnc_bulk_read(c, bu);
762 		if (err)
763 			goto out_warn;
764 	}
765 
766 	err = populate_page(c, page1, bu, &n);
767 	if (err)
768 		goto out_warn;
769 
770 	unlock_page(page1);
771 	ret = 1;
772 
773 	isize = i_size_read(inode);
774 	if (isize == 0)
775 		goto out_free;
776 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
777 
778 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
779 		pgoff_t page_offset = offset + page_idx;
780 		struct page *page;
781 
782 		if (page_offset > end_index)
783 			break;
784 		page = find_or_create_page(mapping, page_offset,
785 					   GFP_NOFS | __GFP_COLD);
786 		if (!page)
787 			break;
788 		if (!PageUptodate(page))
789 			err = populate_page(c, page, bu, &n);
790 		unlock_page(page);
791 		page_cache_release(page);
792 		if (err)
793 			break;
794 	}
795 
796 	ui->last_page_read = offset + page_idx - 1;
797 
798 out_free:
799 	if (allocate)
800 		kfree(bu->buf);
801 	return ret;
802 
803 out_warn:
804 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
805 	goto out_free;
806 
807 out_bu_off:
808 	ui->read_in_a_row = ui->bulk_read = 0;
809 	goto out_free;
810 }
811 
812 /**
813  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814  * @page: page from which to start bulk-read.
815  *
816  * Some flash media are capable of reading sequentially at faster rates. UBIFS
817  * bulk-read facility is designed to take advantage of that, by reading in one
818  * go consecutive data nodes that are also located consecutively in the same
819  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
820  */
821 static int ubifs_bulk_read(struct page *page)
822 {
823 	struct inode *inode = page->mapping->host;
824 	struct ubifs_info *c = inode->i_sb->s_fs_info;
825 	struct ubifs_inode *ui = ubifs_inode(inode);
826 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
827 	struct bu_info *bu;
828 	int err = 0, allocated = 0;
829 
830 	ui->last_page_read = index;
831 	if (!c->bulk_read)
832 		return 0;
833 
834 	/*
835 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
836 	 * so don't bother if we cannot lock the mutex.
837 	 */
838 	if (!mutex_trylock(&ui->ui_mutex))
839 		return 0;
840 
841 	if (index != last_page_read + 1) {
842 		/* Turn off bulk-read if we stop reading sequentially */
843 		ui->read_in_a_row = 1;
844 		if (ui->bulk_read)
845 			ui->bulk_read = 0;
846 		goto out_unlock;
847 	}
848 
849 	if (!ui->bulk_read) {
850 		ui->read_in_a_row += 1;
851 		if (ui->read_in_a_row < 3)
852 			goto out_unlock;
853 		/* Three reads in a row, so switch on bulk-read */
854 		ui->bulk_read = 1;
855 	}
856 
857 	/*
858 	 * If possible, try to use pre-allocated bulk-read information, which
859 	 * is protected by @c->bu_mutex.
860 	 */
861 	if (mutex_trylock(&c->bu_mutex))
862 		bu = &c->bu;
863 	else {
864 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
865 		if (!bu)
866 			goto out_unlock;
867 
868 		bu->buf = NULL;
869 		allocated = 1;
870 	}
871 
872 	bu->buf_len = c->max_bu_buf_len;
873 	data_key_init(c, &bu->key, inode->i_ino,
874 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
875 	err = ubifs_do_bulk_read(c, bu, page);
876 
877 	if (!allocated)
878 		mutex_unlock(&c->bu_mutex);
879 	else
880 		kfree(bu);
881 
882 out_unlock:
883 	mutex_unlock(&ui->ui_mutex);
884 	return err;
885 }
886 
887 static int ubifs_readpage(struct file *file, struct page *page)
888 {
889 	if (ubifs_bulk_read(page))
890 		return 0;
891 	do_readpage(page);
892 	unlock_page(page);
893 	return 0;
894 }
895 
896 static int do_writepage(struct page *page, int len)
897 {
898 	int err = 0, i, blen;
899 	unsigned int block;
900 	void *addr;
901 	union ubifs_key key;
902 	struct inode *inode = page->mapping->host;
903 	struct ubifs_info *c = inode->i_sb->s_fs_info;
904 
905 #ifdef UBIFS_DEBUG
906 	spin_lock(&ui->ui_lock);
907 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
908 	spin_unlock(&ui->ui_lock);
909 #endif
910 
911 	/* Update radix tree tags */
912 	set_page_writeback(page);
913 
914 	addr = kmap(page);
915 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
916 	i = 0;
917 	while (len) {
918 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
919 		data_key_init(c, &key, inode->i_ino, block);
920 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
921 		if (err)
922 			break;
923 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
924 			break;
925 		block += 1;
926 		addr += blen;
927 		len -= blen;
928 	}
929 	if (err) {
930 		SetPageError(page);
931 		ubifs_err("cannot write page %lu of inode %lu, error %d",
932 			  page->index, inode->i_ino, err);
933 		ubifs_ro_mode(c, err);
934 	}
935 
936 	ubifs_assert(PagePrivate(page));
937 	if (PageChecked(page))
938 		release_new_page_budget(c);
939 	else
940 		release_existing_page_budget(c);
941 
942 	atomic_long_dec(&c->dirty_pg_cnt);
943 	ClearPagePrivate(page);
944 	ClearPageChecked(page);
945 
946 	kunmap(page);
947 	unlock_page(page);
948 	end_page_writeback(page);
949 	return err;
950 }
951 
952 /*
953  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
954  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
955  * situation when a we have an inode with size 0, then a megabyte of data is
956  * appended to the inode, then write-back starts and flushes some amount of the
957  * dirty pages, the journal becomes full, commit happens and finishes, and then
958  * an unclean reboot happens. When the file system is mounted next time, the
959  * inode size would still be 0, but there would be many pages which are beyond
960  * the inode size, they would be indexed and consume flash space. Because the
961  * journal has been committed, the replay would not be able to detect this
962  * situation and correct the inode size. This means UBIFS would have to scan
963  * whole index and correct all inode sizes, which is long an unacceptable.
964  *
965  * To prevent situations like this, UBIFS writes pages back only if they are
966  * within the last synchronized inode size, i.e. the size which has been
967  * written to the flash media last time. Otherwise, UBIFS forces inode
968  * write-back, thus making sure the on-flash inode contains current inode size,
969  * and then keeps writing pages back.
970  *
971  * Some locking issues explanation. 'ubifs_writepage()' first is called with
972  * the page locked, and it locks @ui_mutex. However, write-back does take inode
973  * @i_mutex, which means other VFS operations may be run on this inode at the
974  * same time. And the problematic one is truncation to smaller size, from where
975  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
976  * then drops the truncated pages. And while dropping the pages, it takes the
977  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
978  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
979  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
980  *
981  * XXX(truncate): with the new truncate sequence this is not true anymore,
982  * and the calls to truncate_setsize can be move around freely.  They should
983  * be moved to the very end of the truncate sequence.
984  *
985  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
986  * inode size. How do we do this if @inode->i_size may became smaller while we
987  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
988  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
989  * internally and updates it under @ui_mutex.
990  *
991  * Q: why we do not worry that if we race with truncation, we may end up with a
992  * situation when the inode is truncated while we are in the middle of
993  * 'do_writepage()', so we do write beyond inode size?
994  * A: If we are in the middle of 'do_writepage()', truncation would be locked
995  * on the page lock and it would not write the truncated inode node to the
996  * journal before we have finished.
997  */
998 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
999 {
1000 	struct inode *inode = page->mapping->host;
1001 	struct ubifs_inode *ui = ubifs_inode(inode);
1002 	loff_t i_size =  i_size_read(inode), synced_i_size;
1003 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1004 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1005 	void *kaddr;
1006 
1007 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1008 		inode->i_ino, page->index, page->flags);
1009 	ubifs_assert(PagePrivate(page));
1010 
1011 	/* Is the page fully outside @i_size? (truncate in progress) */
1012 	if (page->index > end_index || (page->index == end_index && !len)) {
1013 		err = 0;
1014 		goto out_unlock;
1015 	}
1016 
1017 	spin_lock(&ui->ui_lock);
1018 	synced_i_size = ui->synced_i_size;
1019 	spin_unlock(&ui->ui_lock);
1020 
1021 	/* Is the page fully inside @i_size? */
1022 	if (page->index < end_index) {
1023 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1024 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1025 			if (err)
1026 				goto out_unlock;
1027 			/*
1028 			 * The inode has been written, but the write-buffer has
1029 			 * not been synchronized, so in case of an unclean
1030 			 * reboot we may end up with some pages beyond inode
1031 			 * size, but they would be in the journal (because
1032 			 * commit flushes write buffers) and recovery would deal
1033 			 * with this.
1034 			 */
1035 		}
1036 		return do_writepage(page, PAGE_CACHE_SIZE);
1037 	}
1038 
1039 	/*
1040 	 * The page straddles @i_size. It must be zeroed out on each and every
1041 	 * writepage invocation because it may be mmapped. "A file is mapped
1042 	 * in multiples of the page size. For a file that is not a multiple of
1043 	 * the page size, the remaining memory is zeroed when mapped, and
1044 	 * writes to that region are not written out to the file."
1045 	 */
1046 	kaddr = kmap_atomic(page);
1047 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1048 	flush_dcache_page(page);
1049 	kunmap_atomic(kaddr);
1050 
1051 	if (i_size > synced_i_size) {
1052 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1053 		if (err)
1054 			goto out_unlock;
1055 	}
1056 
1057 	return do_writepage(page, len);
1058 
1059 out_unlock:
1060 	unlock_page(page);
1061 	return err;
1062 }
1063 
1064 /**
1065  * do_attr_changes - change inode attributes.
1066  * @inode: inode to change attributes for
1067  * @attr: describes attributes to change
1068  */
1069 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1070 {
1071 	if (attr->ia_valid & ATTR_UID)
1072 		inode->i_uid = attr->ia_uid;
1073 	if (attr->ia_valid & ATTR_GID)
1074 		inode->i_gid = attr->ia_gid;
1075 	if (attr->ia_valid & ATTR_ATIME)
1076 		inode->i_atime = timespec_trunc(attr->ia_atime,
1077 						inode->i_sb->s_time_gran);
1078 	if (attr->ia_valid & ATTR_MTIME)
1079 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1080 						inode->i_sb->s_time_gran);
1081 	if (attr->ia_valid & ATTR_CTIME)
1082 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1083 						inode->i_sb->s_time_gran);
1084 	if (attr->ia_valid & ATTR_MODE) {
1085 		umode_t mode = attr->ia_mode;
1086 
1087 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1088 			mode &= ~S_ISGID;
1089 		inode->i_mode = mode;
1090 	}
1091 }
1092 
1093 /**
1094  * do_truncation - truncate an inode.
1095  * @c: UBIFS file-system description object
1096  * @inode: inode to truncate
1097  * @attr: inode attribute changes description
1098  *
1099  * This function implements VFS '->setattr()' call when the inode is truncated
1100  * to a smaller size. Returns zero in case of success and a negative error code
1101  * in case of failure.
1102  */
1103 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1104 			 const struct iattr *attr)
1105 {
1106 	int err;
1107 	struct ubifs_budget_req req;
1108 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1109 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1110 	struct ubifs_inode *ui = ubifs_inode(inode);
1111 
1112 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1113 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1114 
1115 	/*
1116 	 * If this is truncation to a smaller size, and we do not truncate on a
1117 	 * block boundary, budget for changing one data block, because the last
1118 	 * block will be re-written.
1119 	 */
1120 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1121 		req.dirtied_page = 1;
1122 
1123 	req.dirtied_ino = 1;
1124 	/* A funny way to budget for truncation node */
1125 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1126 	err = ubifs_budget_space(c, &req);
1127 	if (err) {
1128 		/*
1129 		 * Treat truncations to zero as deletion and always allow them,
1130 		 * just like we do for '->unlink()'.
1131 		 */
1132 		if (new_size || err != -ENOSPC)
1133 			return err;
1134 		budgeted = 0;
1135 	}
1136 
1137 	truncate_setsize(inode, new_size);
1138 
1139 	if (offset) {
1140 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1141 		struct page *page;
1142 
1143 		page = find_lock_page(inode->i_mapping, index);
1144 		if (page) {
1145 			if (PageDirty(page)) {
1146 				/*
1147 				 * 'ubifs_jnl_truncate()' will try to truncate
1148 				 * the last data node, but it contains
1149 				 * out-of-date data because the page is dirty.
1150 				 * Write the page now, so that
1151 				 * 'ubifs_jnl_truncate()' will see an already
1152 				 * truncated (and up to date) data node.
1153 				 */
1154 				ubifs_assert(PagePrivate(page));
1155 
1156 				clear_page_dirty_for_io(page);
1157 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1158 					offset = new_size &
1159 						 (PAGE_CACHE_SIZE - 1);
1160 				err = do_writepage(page, offset);
1161 				page_cache_release(page);
1162 				if (err)
1163 					goto out_budg;
1164 				/*
1165 				 * We could now tell 'ubifs_jnl_truncate()' not
1166 				 * to read the last block.
1167 				 */
1168 			} else {
1169 				/*
1170 				 * We could 'kmap()' the page and pass the data
1171 				 * to 'ubifs_jnl_truncate()' to save it from
1172 				 * having to read it.
1173 				 */
1174 				unlock_page(page);
1175 				page_cache_release(page);
1176 			}
1177 		}
1178 	}
1179 
1180 	mutex_lock(&ui->ui_mutex);
1181 	ui->ui_size = inode->i_size;
1182 	/* Truncation changes inode [mc]time */
1183 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1184 	/* Other attributes may be changed at the same time as well */
1185 	do_attr_changes(inode, attr);
1186 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1187 	mutex_unlock(&ui->ui_mutex);
1188 
1189 out_budg:
1190 	if (budgeted)
1191 		ubifs_release_budget(c, &req);
1192 	else {
1193 		c->bi.nospace = c->bi.nospace_rp = 0;
1194 		smp_wmb();
1195 	}
1196 	return err;
1197 }
1198 
1199 /**
1200  * do_setattr - change inode attributes.
1201  * @c: UBIFS file-system description object
1202  * @inode: inode to change attributes for
1203  * @attr: inode attribute changes description
1204  *
1205  * This function implements VFS '->setattr()' call for all cases except
1206  * truncations to smaller size. Returns zero in case of success and a negative
1207  * error code in case of failure.
1208  */
1209 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1210 		      const struct iattr *attr)
1211 {
1212 	int err, release;
1213 	loff_t new_size = attr->ia_size;
1214 	struct ubifs_inode *ui = ubifs_inode(inode);
1215 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1216 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1217 
1218 	err = ubifs_budget_space(c, &req);
1219 	if (err)
1220 		return err;
1221 
1222 	if (attr->ia_valid & ATTR_SIZE) {
1223 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1224 		truncate_setsize(inode, new_size);
1225 	}
1226 
1227 	mutex_lock(&ui->ui_mutex);
1228 	if (attr->ia_valid & ATTR_SIZE) {
1229 		/* Truncation changes inode [mc]time */
1230 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1231 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1232 		ui->ui_size = inode->i_size;
1233 	}
1234 
1235 	do_attr_changes(inode, attr);
1236 
1237 	release = ui->dirty;
1238 	if (attr->ia_valid & ATTR_SIZE)
1239 		/*
1240 		 * Inode length changed, so we have to make sure
1241 		 * @I_DIRTY_DATASYNC is set.
1242 		 */
1243 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1244 	else
1245 		mark_inode_dirty_sync(inode);
1246 	mutex_unlock(&ui->ui_mutex);
1247 
1248 	if (release)
1249 		ubifs_release_budget(c, &req);
1250 	if (IS_SYNC(inode))
1251 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1252 	return err;
1253 }
1254 
1255 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1256 {
1257 	int err;
1258 	struct inode *inode = dentry->d_inode;
1259 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1260 
1261 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1262 		inode->i_ino, inode->i_mode, attr->ia_valid);
1263 	err = inode_change_ok(inode, attr);
1264 	if (err)
1265 		return err;
1266 
1267 	err = dbg_check_synced_i_size(c, inode);
1268 	if (err)
1269 		return err;
1270 
1271 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1272 		/* Truncation to a smaller size */
1273 		err = do_truncation(c, inode, attr);
1274 	else
1275 		err = do_setattr(c, inode, attr);
1276 
1277 	return err;
1278 }
1279 
1280 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1281 				 unsigned int length)
1282 {
1283 	struct inode *inode = page->mapping->host;
1284 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1285 
1286 	ubifs_assert(PagePrivate(page));
1287 	if (offset || length < PAGE_CACHE_SIZE)
1288 		/* Partial page remains dirty */
1289 		return;
1290 
1291 	if (PageChecked(page))
1292 		release_new_page_budget(c);
1293 	else
1294 		release_existing_page_budget(c);
1295 
1296 	atomic_long_dec(&c->dirty_pg_cnt);
1297 	ClearPagePrivate(page);
1298 	ClearPageChecked(page);
1299 }
1300 
1301 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1302 {
1303 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1304 
1305 	nd_set_link(nd, ui->data);
1306 	return NULL;
1307 }
1308 
1309 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1310 {
1311 	struct inode *inode = file->f_mapping->host;
1312 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1313 	int err;
1314 
1315 	dbg_gen("syncing inode %lu", inode->i_ino);
1316 
1317 	if (c->ro_mount)
1318 		/*
1319 		 * For some really strange reasons VFS does not filter out
1320 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1321 		 */
1322 		return 0;
1323 
1324 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1325 	if (err)
1326 		return err;
1327 	mutex_lock(&inode->i_mutex);
1328 
1329 	/* Synchronize the inode unless this is a 'datasync()' call. */
1330 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1331 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1332 		if (err)
1333 			goto out;
1334 	}
1335 
1336 	/*
1337 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1338 	 * them.
1339 	 */
1340 	err = ubifs_sync_wbufs_by_inode(c, inode);
1341 out:
1342 	mutex_unlock(&inode->i_mutex);
1343 	return err;
1344 }
1345 
1346 /**
1347  * mctime_update_needed - check if mtime or ctime update is needed.
1348  * @inode: the inode to do the check for
1349  * @now: current time
1350  *
1351  * This helper function checks if the inode mtime/ctime should be updated or
1352  * not. If current values of the time-stamps are within the UBIFS inode time
1353  * granularity, they are not updated. This is an optimization.
1354  */
1355 static inline int mctime_update_needed(const struct inode *inode,
1356 				       const struct timespec *now)
1357 {
1358 	if (!timespec_equal(&inode->i_mtime, now) ||
1359 	    !timespec_equal(&inode->i_ctime, now))
1360 		return 1;
1361 	return 0;
1362 }
1363 
1364 /**
1365  * update_ctime - update mtime and ctime of an inode.
1366  * @c: UBIFS file-system description object
1367  * @inode: inode to update
1368  *
1369  * This function updates mtime and ctime of the inode if it is not equivalent to
1370  * current time. Returns zero in case of success and a negative error code in
1371  * case of failure.
1372  */
1373 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1374 {
1375 	struct timespec now = ubifs_current_time(inode);
1376 	struct ubifs_inode *ui = ubifs_inode(inode);
1377 
1378 	if (mctime_update_needed(inode, &now)) {
1379 		int err, release;
1380 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1381 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382 
1383 		err = ubifs_budget_space(c, &req);
1384 		if (err)
1385 			return err;
1386 
1387 		mutex_lock(&ui->ui_mutex);
1388 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1389 		release = ui->dirty;
1390 		mark_inode_dirty_sync(inode);
1391 		mutex_unlock(&ui->ui_mutex);
1392 		if (release)
1393 			ubifs_release_budget(c, &req);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1400 			       unsigned long nr_segs, loff_t pos)
1401 {
1402 	int err;
1403 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1404 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1405 
1406 	err = update_mctime(c, inode);
1407 	if (err)
1408 		return err;
1409 
1410 	return generic_file_aio_write(iocb, iov, nr_segs, pos);
1411 }
1412 
1413 static int ubifs_set_page_dirty(struct page *page)
1414 {
1415 	int ret;
1416 
1417 	ret = __set_page_dirty_nobuffers(page);
1418 	/*
1419 	 * An attempt to dirty a page without budgeting for it - should not
1420 	 * happen.
1421 	 */
1422 	ubifs_assert(ret == 0);
1423 	return ret;
1424 }
1425 
1426 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1427 {
1428 	/*
1429 	 * An attempt to release a dirty page without budgeting for it - should
1430 	 * not happen.
1431 	 */
1432 	if (PageWriteback(page))
1433 		return 0;
1434 	ubifs_assert(PagePrivate(page));
1435 	ubifs_assert(0);
1436 	ClearPagePrivate(page);
1437 	ClearPageChecked(page);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * mmap()d file has taken write protection fault and is being made writable.
1443  * UBIFS must ensure page is budgeted for.
1444  */
1445 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1446 				 struct vm_fault *vmf)
1447 {
1448 	struct page *page = vmf->page;
1449 	struct inode *inode = file_inode(vma->vm_file);
1450 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1451 	struct timespec now = ubifs_current_time(inode);
1452 	struct ubifs_budget_req req = { .new_page = 1 };
1453 	int err, update_time;
1454 
1455 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1456 		i_size_read(inode));
1457 	ubifs_assert(!c->ro_media && !c->ro_mount);
1458 
1459 	if (unlikely(c->ro_error))
1460 		return VM_FAULT_SIGBUS; /* -EROFS */
1461 
1462 	/*
1463 	 * We have not locked @page so far so we may budget for changing the
1464 	 * page. Note, we cannot do this after we locked the page, because
1465 	 * budgeting may cause write-back which would cause deadlock.
1466 	 *
1467 	 * At the moment we do not know whether the page is dirty or not, so we
1468 	 * assume that it is not and budget for a new page. We could look at
1469 	 * the @PG_private flag and figure this out, but we may race with write
1470 	 * back and the page state may change by the time we lock it, so this
1471 	 * would need additional care. We do not bother with this at the
1472 	 * moment, although it might be good idea to do. Instead, we allocate
1473 	 * budget for a new page and amend it later on if the page was in fact
1474 	 * dirty.
1475 	 *
1476 	 * The budgeting-related logic of this function is similar to what we
1477 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1478 	 * for more comments.
1479 	 */
1480 	update_time = mctime_update_needed(inode, &now);
1481 	if (update_time)
1482 		/*
1483 		 * We have to change inode time stamp which requires extra
1484 		 * budgeting.
1485 		 */
1486 		req.dirtied_ino = 1;
1487 
1488 	err = ubifs_budget_space(c, &req);
1489 	if (unlikely(err)) {
1490 		if (err == -ENOSPC)
1491 			ubifs_warn("out of space for mmapped file (inode number %lu)",
1492 				   inode->i_ino);
1493 		return VM_FAULT_SIGBUS;
1494 	}
1495 
1496 	lock_page(page);
1497 	if (unlikely(page->mapping != inode->i_mapping ||
1498 		     page_offset(page) > i_size_read(inode))) {
1499 		/* Page got truncated out from underneath us */
1500 		err = -EINVAL;
1501 		goto out_unlock;
1502 	}
1503 
1504 	if (PagePrivate(page))
1505 		release_new_page_budget(c);
1506 	else {
1507 		if (!PageChecked(page))
1508 			ubifs_convert_page_budget(c);
1509 		SetPagePrivate(page);
1510 		atomic_long_inc(&c->dirty_pg_cnt);
1511 		__set_page_dirty_nobuffers(page);
1512 	}
1513 
1514 	if (update_time) {
1515 		int release;
1516 		struct ubifs_inode *ui = ubifs_inode(inode);
1517 
1518 		mutex_lock(&ui->ui_mutex);
1519 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1520 		release = ui->dirty;
1521 		mark_inode_dirty_sync(inode);
1522 		mutex_unlock(&ui->ui_mutex);
1523 		if (release)
1524 			ubifs_release_dirty_inode_budget(c, ui);
1525 	}
1526 
1527 	wait_for_stable_page(page);
1528 	unlock_page(page);
1529 	return 0;
1530 
1531 out_unlock:
1532 	unlock_page(page);
1533 	ubifs_release_budget(c, &req);
1534 	if (err)
1535 		err = VM_FAULT_SIGBUS;
1536 	return err;
1537 }
1538 
1539 static const struct vm_operations_struct ubifs_file_vm_ops = {
1540 	.fault        = filemap_fault,
1541 	.map_pages = filemap_map_pages,
1542 	.page_mkwrite = ubifs_vm_page_mkwrite,
1543 	.remap_pages = generic_file_remap_pages,
1544 };
1545 
1546 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1547 {
1548 	int err;
1549 
1550 	err = generic_file_mmap(file, vma);
1551 	if (err)
1552 		return err;
1553 	vma->vm_ops = &ubifs_file_vm_ops;
1554 	return 0;
1555 }
1556 
1557 const struct address_space_operations ubifs_file_address_operations = {
1558 	.readpage       = ubifs_readpage,
1559 	.writepage      = ubifs_writepage,
1560 	.write_begin    = ubifs_write_begin,
1561 	.write_end      = ubifs_write_end,
1562 	.invalidatepage = ubifs_invalidatepage,
1563 	.set_page_dirty = ubifs_set_page_dirty,
1564 	.releasepage    = ubifs_releasepage,
1565 };
1566 
1567 const struct inode_operations ubifs_file_inode_operations = {
1568 	.setattr     = ubifs_setattr,
1569 	.getattr     = ubifs_getattr,
1570 	.setxattr    = ubifs_setxattr,
1571 	.getxattr    = ubifs_getxattr,
1572 	.listxattr   = ubifs_listxattr,
1573 	.removexattr = ubifs_removexattr,
1574 };
1575 
1576 const struct inode_operations ubifs_symlink_inode_operations = {
1577 	.readlink    = generic_readlink,
1578 	.follow_link = ubifs_follow_link,
1579 	.setattr     = ubifs_setattr,
1580 	.getattr     = ubifs_getattr,
1581 };
1582 
1583 const struct file_operations ubifs_file_operations = {
1584 	.llseek         = generic_file_llseek,
1585 	.read           = do_sync_read,
1586 	.write          = do_sync_write,
1587 	.aio_read       = generic_file_aio_read,
1588 	.aio_write      = ubifs_aio_write,
1589 	.mmap           = ubifs_file_mmap,
1590 	.fsync          = ubifs_fsync,
1591 	.unlocked_ioctl = ubifs_ioctl,
1592 	.splice_read	= generic_file_splice_read,
1593 	.splice_write	= generic_file_splice_write,
1594 #ifdef CONFIG_COMPAT
1595 	.compat_ioctl   = ubifs_compat_ioctl,
1596 #endif
1597 };
1598