1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct page *page) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn; 105 struct inode *inode = page->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, page->index, i_size, page->flags); 111 ubifs_assert(c, !PageChecked(page)); 112 ubifs_assert(c, !PagePrivate(page)); 113 114 addr = kmap(page); 115 116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 SetPageChecked(page); 121 memset(addr, 0, PAGE_SIZE); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto error; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= UBIFS_BLOCKS_PER_PAGE) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 } 158 if (err) { 159 struct ubifs_info *c = inode->i_sb->s_fs_info; 160 if (err == -ENOENT) { 161 /* Not found, so it must be a hole */ 162 SetPageChecked(page); 163 dbg_gen("hole"); 164 goto out_free; 165 } 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 167 page->index, inode->i_ino, err); 168 goto error; 169 } 170 171 out_free: 172 kfree(dn); 173 out: 174 SetPageUptodate(page); 175 ClearPageError(page); 176 flush_dcache_page(page); 177 kunmap(page); 178 return 0; 179 180 error: 181 kfree(dn); 182 ClearPageUptodate(page); 183 SetPageError(page); 184 flush_dcache_page(page); 185 kunmap(page); 186 return err; 187 } 188 189 /** 190 * release_new_page_budget - release budget of a new page. 191 * @c: UBIFS file-system description object 192 * 193 * This is a helper function which releases budget corresponding to the budget 194 * of one new page of data. 195 */ 196 static void release_new_page_budget(struct ubifs_info *c) 197 { 198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 199 200 ubifs_release_budget(c, &req); 201 } 202 203 /** 204 * release_existing_page_budget - release budget of an existing page. 205 * @c: UBIFS file-system description object 206 * 207 * This is a helper function which releases budget corresponding to the budget 208 * of changing one page of data which already exists on the flash media. 209 */ 210 static void release_existing_page_budget(struct ubifs_info *c) 211 { 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 213 214 ubifs_release_budget(c, &req); 215 } 216 217 static int write_begin_slow(struct address_space *mapping, 218 loff_t pos, unsigned len, struct page **pagep) 219 { 220 struct inode *inode = mapping->host; 221 struct ubifs_info *c = inode->i_sb->s_fs_info; 222 pgoff_t index = pos >> PAGE_SHIFT; 223 struct ubifs_budget_req req = { .new_page = 1 }; 224 int err, appending = !!(pos + len > inode->i_size); 225 struct page *page; 226 227 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 228 inode->i_ino, pos, len, inode->i_size); 229 230 /* 231 * At the slow path we have to budget before locking the page, because 232 * budgeting may force write-back, which would wait on locked pages and 233 * deadlock if we had the page locked. At this point we do not know 234 * anything about the page, so assume that this is a new page which is 235 * written to a hole. This corresponds to largest budget. Later the 236 * budget will be amended if this is not true. 237 */ 238 if (appending) 239 /* We are appending data, budget for inode change */ 240 req.dirtied_ino = 1; 241 242 err = ubifs_budget_space(c, &req); 243 if (unlikely(err)) 244 return err; 245 246 page = grab_cache_page_write_begin(mapping, index); 247 if (unlikely(!page)) { 248 ubifs_release_budget(c, &req); 249 return -ENOMEM; 250 } 251 252 if (!PageUptodate(page)) { 253 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 254 SetPageChecked(page); 255 else { 256 err = do_readpage(page); 257 if (err) { 258 unlock_page(page); 259 put_page(page); 260 ubifs_release_budget(c, &req); 261 return err; 262 } 263 } 264 265 SetPageUptodate(page); 266 ClearPageError(page); 267 } 268 269 if (PagePrivate(page)) 270 /* 271 * The page is dirty, which means it was budgeted twice: 272 * o first time the budget was allocated by the task which 273 * made the page dirty and set the PG_private flag; 274 * o and then we budgeted for it for the second time at the 275 * very beginning of this function. 276 * 277 * So what we have to do is to release the page budget we 278 * allocated. 279 */ 280 release_new_page_budget(c); 281 else if (!PageChecked(page)) 282 /* 283 * We are changing a page which already exists on the media. 284 * This means that changing the page does not make the amount 285 * of indexing information larger, and this part of the budget 286 * which we have already acquired may be released. 287 */ 288 ubifs_convert_page_budget(c); 289 290 if (appending) { 291 struct ubifs_inode *ui = ubifs_inode(inode); 292 293 /* 294 * 'ubifs_write_end()' is optimized from the fast-path part of 295 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 296 * if data is appended. 297 */ 298 mutex_lock(&ui->ui_mutex); 299 if (ui->dirty) 300 /* 301 * The inode is dirty already, so we may free the 302 * budget we allocated. 303 */ 304 ubifs_release_dirty_inode_budget(c, ui); 305 } 306 307 *pagep = page; 308 return 0; 309 } 310 311 /** 312 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 313 * @c: UBIFS file-system description object 314 * @page: page to allocate budget for 315 * @ui: UBIFS inode object the page belongs to 316 * @appending: non-zero if the page is appended 317 * 318 * This is a helper function for 'ubifs_write_begin()' which allocates budget 319 * for the operation. The budget is allocated differently depending on whether 320 * this is appending, whether the page is dirty or not, and so on. This 321 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 322 * in case of success and %-ENOSPC in case of failure. 323 */ 324 static int allocate_budget(struct ubifs_info *c, struct page *page, 325 struct ubifs_inode *ui, int appending) 326 { 327 struct ubifs_budget_req req = { .fast = 1 }; 328 329 if (PagePrivate(page)) { 330 if (!appending) 331 /* 332 * The page is dirty and we are not appending, which 333 * means no budget is needed at all. 334 */ 335 return 0; 336 337 mutex_lock(&ui->ui_mutex); 338 if (ui->dirty) 339 /* 340 * The page is dirty and we are appending, so the inode 341 * has to be marked as dirty. However, it is already 342 * dirty, so we do not need any budget. We may return, 343 * but @ui->ui_mutex hast to be left locked because we 344 * should prevent write-back from flushing the inode 345 * and freeing the budget. The lock will be released in 346 * 'ubifs_write_end()'. 347 */ 348 return 0; 349 350 /* 351 * The page is dirty, we are appending, the inode is clean, so 352 * we need to budget the inode change. 353 */ 354 req.dirtied_ino = 1; 355 } else { 356 if (PageChecked(page)) 357 /* 358 * The page corresponds to a hole and does not 359 * exist on the media. So changing it makes 360 * make the amount of indexing information 361 * larger, and we have to budget for a new 362 * page. 363 */ 364 req.new_page = 1; 365 else 366 /* 367 * Not a hole, the change will not add any new 368 * indexing information, budget for page 369 * change. 370 */ 371 req.dirtied_page = 1; 372 373 if (appending) { 374 mutex_lock(&ui->ui_mutex); 375 if (!ui->dirty) 376 /* 377 * The inode is clean but we will have to mark 378 * it as dirty because we are appending. This 379 * needs a budget. 380 */ 381 req.dirtied_ino = 1; 382 } 383 } 384 385 return ubifs_budget_space(c, &req); 386 } 387 388 /* 389 * This function is called when a page of data is going to be written. Since 390 * the page of data will not necessarily go to the flash straight away, UBIFS 391 * has to reserve space on the media for it, which is done by means of 392 * budgeting. 393 * 394 * This is the hot-path of the file-system and we are trying to optimize it as 395 * much as possible. For this reasons it is split on 2 parts - slow and fast. 396 * 397 * There many budgeting cases: 398 * o a new page is appended - we have to budget for a new page and for 399 * changing the inode; however, if the inode is already dirty, there is 400 * no need to budget for it; 401 * o an existing clean page is changed - we have budget for it; if the page 402 * does not exist on the media (a hole), we have to budget for a new 403 * page; otherwise, we may budget for changing an existing page; the 404 * difference between these cases is that changing an existing page does 405 * not introduce anything new to the FS indexing information, so it does 406 * not grow, and smaller budget is acquired in this case; 407 * o an existing dirty page is changed - no need to budget at all, because 408 * the page budget has been acquired by earlier, when the page has been 409 * marked dirty. 410 * 411 * UBIFS budgeting sub-system may force write-back if it thinks there is no 412 * space to reserve. This imposes some locking restrictions and makes it 413 * impossible to take into account the above cases, and makes it impossible to 414 * optimize budgeting. 415 * 416 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 417 * there is a plenty of flash space and the budget will be acquired quickly, 418 * without forcing write-back. The slow path does not make this assumption. 419 */ 420 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 421 loff_t pos, unsigned len, 422 struct page **pagep, void **fsdata) 423 { 424 struct inode *inode = mapping->host; 425 struct ubifs_info *c = inode->i_sb->s_fs_info; 426 struct ubifs_inode *ui = ubifs_inode(inode); 427 pgoff_t index = pos >> PAGE_SHIFT; 428 int err, appending = !!(pos + len > inode->i_size); 429 int skipped_read = 0; 430 struct page *page; 431 432 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 433 ubifs_assert(c, !c->ro_media && !c->ro_mount); 434 435 if (unlikely(c->ro_error)) 436 return -EROFS; 437 438 /* Try out the fast-path part first */ 439 page = grab_cache_page_write_begin(mapping, index); 440 if (unlikely(!page)) 441 return -ENOMEM; 442 443 if (!PageUptodate(page)) { 444 /* The page is not loaded from the flash */ 445 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 446 /* 447 * We change whole page so no need to load it. But we 448 * do not know whether this page exists on the media or 449 * not, so we assume the latter because it requires 450 * larger budget. The assumption is that it is better 451 * to budget a bit more than to read the page from the 452 * media. Thus, we are setting the @PG_checked flag 453 * here. 454 */ 455 SetPageChecked(page); 456 skipped_read = 1; 457 } else { 458 err = do_readpage(page); 459 if (err) { 460 unlock_page(page); 461 put_page(page); 462 return err; 463 } 464 } 465 466 SetPageUptodate(page); 467 ClearPageError(page); 468 } 469 470 err = allocate_budget(c, page, ui, appending); 471 if (unlikely(err)) { 472 ubifs_assert(c, err == -ENOSPC); 473 /* 474 * If we skipped reading the page because we were going to 475 * write all of it, then it is not up to date. 476 */ 477 if (skipped_read) { 478 ClearPageChecked(page); 479 ClearPageUptodate(page); 480 } 481 /* 482 * Budgeting failed which means it would have to force 483 * write-back but didn't, because we set the @fast flag in the 484 * request. Write-back cannot be done now, while we have the 485 * page locked, because it would deadlock. Unlock and free 486 * everything and fall-back to slow-path. 487 */ 488 if (appending) { 489 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 490 mutex_unlock(&ui->ui_mutex); 491 } 492 unlock_page(page); 493 put_page(page); 494 495 return write_begin_slow(mapping, pos, len, pagep); 496 } 497 498 /* 499 * Whee, we acquired budgeting quickly - without involving 500 * garbage-collection, committing or forcing write-back. We return 501 * with @ui->ui_mutex locked if we are appending pages, and unlocked 502 * otherwise. This is an optimization (slightly hacky though). 503 */ 504 *pagep = page; 505 return 0; 506 507 } 508 509 /** 510 * cancel_budget - cancel budget. 511 * @c: UBIFS file-system description object 512 * @page: page to cancel budget for 513 * @ui: UBIFS inode object the page belongs to 514 * @appending: non-zero if the page is appended 515 * 516 * This is a helper function for a page write operation. It unlocks the 517 * @ui->ui_mutex in case of appending. 518 */ 519 static void cancel_budget(struct ubifs_info *c, struct page *page, 520 struct ubifs_inode *ui, int appending) 521 { 522 if (appending) { 523 if (!ui->dirty) 524 ubifs_release_dirty_inode_budget(c, ui); 525 mutex_unlock(&ui->ui_mutex); 526 } 527 if (!PagePrivate(page)) { 528 if (PageChecked(page)) 529 release_new_page_budget(c); 530 else 531 release_existing_page_budget(c); 532 } 533 } 534 535 static int ubifs_write_end(struct file *file, struct address_space *mapping, 536 loff_t pos, unsigned len, unsigned copied, 537 struct page *page, void *fsdata) 538 { 539 struct inode *inode = mapping->host; 540 struct ubifs_inode *ui = ubifs_inode(inode); 541 struct ubifs_info *c = inode->i_sb->s_fs_info; 542 loff_t end_pos = pos + len; 543 int appending = !!(end_pos > inode->i_size); 544 545 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 546 inode->i_ino, pos, page->index, len, copied, inode->i_size); 547 548 if (unlikely(copied < len && len == PAGE_SIZE)) { 549 /* 550 * VFS copied less data to the page that it intended and 551 * declared in its '->write_begin()' call via the @len 552 * argument. If the page was not up-to-date, and @len was 553 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 554 * not load it from the media (for optimization reasons). This 555 * means that part of the page contains garbage. So read the 556 * page now. 557 */ 558 dbg_gen("copied %d instead of %d, read page and repeat", 559 copied, len); 560 cancel_budget(c, page, ui, appending); 561 ClearPageChecked(page); 562 563 /* 564 * Return 0 to force VFS to repeat the whole operation, or the 565 * error code if 'do_readpage()' fails. 566 */ 567 copied = do_readpage(page); 568 goto out; 569 } 570 571 if (!PagePrivate(page)) { 572 attach_page_private(page, (void *)1); 573 atomic_long_inc(&c->dirty_pg_cnt); 574 __set_page_dirty_nobuffers(page); 575 } 576 577 if (appending) { 578 i_size_write(inode, end_pos); 579 ui->ui_size = end_pos; 580 /* 581 * Note, we do not set @I_DIRTY_PAGES (which means that the 582 * inode has dirty pages), this has been done in 583 * '__set_page_dirty_nobuffers()'. 584 */ 585 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 586 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 587 mutex_unlock(&ui->ui_mutex); 588 } 589 590 out: 591 unlock_page(page); 592 put_page(page); 593 return copied; 594 } 595 596 /** 597 * populate_page - copy data nodes into a page for bulk-read. 598 * @c: UBIFS file-system description object 599 * @page: page 600 * @bu: bulk-read information 601 * @n: next zbranch slot 602 * 603 * This function returns %0 on success and a negative error code on failure. 604 */ 605 static int populate_page(struct ubifs_info *c, struct page *page, 606 struct bu_info *bu, int *n) 607 { 608 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 609 struct inode *inode = page->mapping->host; 610 loff_t i_size = i_size_read(inode); 611 unsigned int page_block; 612 void *addr, *zaddr; 613 pgoff_t end_index; 614 615 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 616 inode->i_ino, page->index, i_size, page->flags); 617 618 addr = zaddr = kmap(page); 619 620 end_index = (i_size - 1) >> PAGE_SHIFT; 621 if (!i_size || page->index > end_index) { 622 hole = 1; 623 memset(addr, 0, PAGE_SIZE); 624 goto out_hole; 625 } 626 627 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 628 while (1) { 629 int err, len, out_len, dlen; 630 631 if (nn >= bu->cnt) { 632 hole = 1; 633 memset(addr, 0, UBIFS_BLOCK_SIZE); 634 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 635 struct ubifs_data_node *dn; 636 637 dn = bu->buf + (bu->zbranch[nn].offs - offs); 638 639 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 640 ubifs_inode(inode)->creat_sqnum); 641 642 len = le32_to_cpu(dn->size); 643 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 644 goto out_err; 645 646 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 647 out_len = UBIFS_BLOCK_SIZE; 648 649 if (IS_ENCRYPTED(inode)) { 650 err = ubifs_decrypt(inode, dn, &dlen, page_block); 651 if (err) 652 goto out_err; 653 } 654 655 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 656 le16_to_cpu(dn->compr_type)); 657 if (err || len != out_len) 658 goto out_err; 659 660 if (len < UBIFS_BLOCK_SIZE) 661 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 662 663 nn += 1; 664 read = (i << UBIFS_BLOCK_SHIFT) + len; 665 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 666 nn += 1; 667 continue; 668 } else { 669 hole = 1; 670 memset(addr, 0, UBIFS_BLOCK_SIZE); 671 } 672 if (++i >= UBIFS_BLOCKS_PER_PAGE) 673 break; 674 addr += UBIFS_BLOCK_SIZE; 675 page_block += 1; 676 } 677 678 if (end_index == page->index) { 679 int len = i_size & (PAGE_SIZE - 1); 680 681 if (len && len < read) 682 memset(zaddr + len, 0, read - len); 683 } 684 685 out_hole: 686 if (hole) { 687 SetPageChecked(page); 688 dbg_gen("hole"); 689 } 690 691 SetPageUptodate(page); 692 ClearPageError(page); 693 flush_dcache_page(page); 694 kunmap(page); 695 *n = nn; 696 return 0; 697 698 out_err: 699 ClearPageUptodate(page); 700 SetPageError(page); 701 flush_dcache_page(page); 702 kunmap(page); 703 ubifs_err(c, "bad data node (block %u, inode %lu)", 704 page_block, inode->i_ino); 705 return -EINVAL; 706 } 707 708 /** 709 * ubifs_do_bulk_read - do bulk-read. 710 * @c: UBIFS file-system description object 711 * @bu: bulk-read information 712 * @page1: first page to read 713 * 714 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 715 */ 716 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 717 struct page *page1) 718 { 719 pgoff_t offset = page1->index, end_index; 720 struct address_space *mapping = page1->mapping; 721 struct inode *inode = mapping->host; 722 struct ubifs_inode *ui = ubifs_inode(inode); 723 int err, page_idx, page_cnt, ret = 0, n = 0; 724 int allocate = bu->buf ? 0 : 1; 725 loff_t isize; 726 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 727 728 err = ubifs_tnc_get_bu_keys(c, bu); 729 if (err) 730 goto out_warn; 731 732 if (bu->eof) { 733 /* Turn off bulk-read at the end of the file */ 734 ui->read_in_a_row = 1; 735 ui->bulk_read = 0; 736 } 737 738 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 739 if (!page_cnt) { 740 /* 741 * This happens when there are multiple blocks per page and the 742 * blocks for the first page we are looking for, are not 743 * together. If all the pages were like this, bulk-read would 744 * reduce performance, so we turn it off for a while. 745 */ 746 goto out_bu_off; 747 } 748 749 if (bu->cnt) { 750 if (allocate) { 751 /* 752 * Allocate bulk-read buffer depending on how many data 753 * nodes we are going to read. 754 */ 755 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 756 bu->zbranch[bu->cnt - 1].len - 757 bu->zbranch[0].offs; 758 ubifs_assert(c, bu->buf_len > 0); 759 ubifs_assert(c, bu->buf_len <= c->leb_size); 760 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 761 if (!bu->buf) 762 goto out_bu_off; 763 } 764 765 err = ubifs_tnc_bulk_read(c, bu); 766 if (err) 767 goto out_warn; 768 } 769 770 err = populate_page(c, page1, bu, &n); 771 if (err) 772 goto out_warn; 773 774 unlock_page(page1); 775 ret = 1; 776 777 isize = i_size_read(inode); 778 if (isize == 0) 779 goto out_free; 780 end_index = ((isize - 1) >> PAGE_SHIFT); 781 782 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 783 pgoff_t page_offset = offset + page_idx; 784 struct page *page; 785 786 if (page_offset > end_index) 787 break; 788 page = pagecache_get_page(mapping, page_offset, 789 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 790 ra_gfp_mask); 791 if (!page) 792 break; 793 if (!PageUptodate(page)) 794 err = populate_page(c, page, bu, &n); 795 unlock_page(page); 796 put_page(page); 797 if (err) 798 break; 799 } 800 801 ui->last_page_read = offset + page_idx - 1; 802 803 out_free: 804 if (allocate) 805 kfree(bu->buf); 806 return ret; 807 808 out_warn: 809 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 810 goto out_free; 811 812 out_bu_off: 813 ui->read_in_a_row = ui->bulk_read = 0; 814 goto out_free; 815 } 816 817 /** 818 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 819 * @page: page from which to start bulk-read. 820 * 821 * Some flash media are capable of reading sequentially at faster rates. UBIFS 822 * bulk-read facility is designed to take advantage of that, by reading in one 823 * go consecutive data nodes that are also located consecutively in the same 824 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 825 */ 826 static int ubifs_bulk_read(struct page *page) 827 { 828 struct inode *inode = page->mapping->host; 829 struct ubifs_info *c = inode->i_sb->s_fs_info; 830 struct ubifs_inode *ui = ubifs_inode(inode); 831 pgoff_t index = page->index, last_page_read = ui->last_page_read; 832 struct bu_info *bu; 833 int err = 0, allocated = 0; 834 835 ui->last_page_read = index; 836 if (!c->bulk_read) 837 return 0; 838 839 /* 840 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 841 * so don't bother if we cannot lock the mutex. 842 */ 843 if (!mutex_trylock(&ui->ui_mutex)) 844 return 0; 845 846 if (index != last_page_read + 1) { 847 /* Turn off bulk-read if we stop reading sequentially */ 848 ui->read_in_a_row = 1; 849 if (ui->bulk_read) 850 ui->bulk_read = 0; 851 goto out_unlock; 852 } 853 854 if (!ui->bulk_read) { 855 ui->read_in_a_row += 1; 856 if (ui->read_in_a_row < 3) 857 goto out_unlock; 858 /* Three reads in a row, so switch on bulk-read */ 859 ui->bulk_read = 1; 860 } 861 862 /* 863 * If possible, try to use pre-allocated bulk-read information, which 864 * is protected by @c->bu_mutex. 865 */ 866 if (mutex_trylock(&c->bu_mutex)) 867 bu = &c->bu; 868 else { 869 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 870 if (!bu) 871 goto out_unlock; 872 873 bu->buf = NULL; 874 allocated = 1; 875 } 876 877 bu->buf_len = c->max_bu_buf_len; 878 data_key_init(c, &bu->key, inode->i_ino, 879 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 880 err = ubifs_do_bulk_read(c, bu, page); 881 882 if (!allocated) 883 mutex_unlock(&c->bu_mutex); 884 else 885 kfree(bu); 886 887 out_unlock: 888 mutex_unlock(&ui->ui_mutex); 889 return err; 890 } 891 892 static int ubifs_read_folio(struct file *file, struct folio *folio) 893 { 894 struct page *page = &folio->page; 895 896 if (ubifs_bulk_read(page)) 897 return 0; 898 do_readpage(page); 899 folio_unlock(folio); 900 return 0; 901 } 902 903 static int do_writepage(struct page *page, int len) 904 { 905 int err = 0, i, blen; 906 unsigned int block; 907 void *addr; 908 union ubifs_key key; 909 struct inode *inode = page->mapping->host; 910 struct ubifs_info *c = inode->i_sb->s_fs_info; 911 912 #ifdef UBIFS_DEBUG 913 struct ubifs_inode *ui = ubifs_inode(inode); 914 spin_lock(&ui->ui_lock); 915 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT); 916 spin_unlock(&ui->ui_lock); 917 #endif 918 919 /* Update radix tree tags */ 920 set_page_writeback(page); 921 922 addr = kmap(page); 923 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 924 i = 0; 925 while (len) { 926 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 927 data_key_init(c, &key, inode->i_ino, block); 928 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 929 if (err) 930 break; 931 if (++i >= UBIFS_BLOCKS_PER_PAGE) 932 break; 933 block += 1; 934 addr += blen; 935 len -= blen; 936 } 937 if (err) { 938 SetPageError(page); 939 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 940 page->index, inode->i_ino, err); 941 ubifs_ro_mode(c, err); 942 } 943 944 ubifs_assert(c, PagePrivate(page)); 945 if (PageChecked(page)) 946 release_new_page_budget(c); 947 else 948 release_existing_page_budget(c); 949 950 atomic_long_dec(&c->dirty_pg_cnt); 951 detach_page_private(page); 952 ClearPageChecked(page); 953 954 kunmap(page); 955 unlock_page(page); 956 end_page_writeback(page); 957 return err; 958 } 959 960 /* 961 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 962 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 963 * situation when a we have an inode with size 0, then a megabyte of data is 964 * appended to the inode, then write-back starts and flushes some amount of the 965 * dirty pages, the journal becomes full, commit happens and finishes, and then 966 * an unclean reboot happens. When the file system is mounted next time, the 967 * inode size would still be 0, but there would be many pages which are beyond 968 * the inode size, they would be indexed and consume flash space. Because the 969 * journal has been committed, the replay would not be able to detect this 970 * situation and correct the inode size. This means UBIFS would have to scan 971 * whole index and correct all inode sizes, which is long an unacceptable. 972 * 973 * To prevent situations like this, UBIFS writes pages back only if they are 974 * within the last synchronized inode size, i.e. the size which has been 975 * written to the flash media last time. Otherwise, UBIFS forces inode 976 * write-back, thus making sure the on-flash inode contains current inode size, 977 * and then keeps writing pages back. 978 * 979 * Some locking issues explanation. 'ubifs_writepage()' first is called with 980 * the page locked, and it locks @ui_mutex. However, write-back does take inode 981 * @i_mutex, which means other VFS operations may be run on this inode at the 982 * same time. And the problematic one is truncation to smaller size, from where 983 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 984 * then drops the truncated pages. And while dropping the pages, it takes the 985 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 986 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 987 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 988 * 989 * XXX(truncate): with the new truncate sequence this is not true anymore, 990 * and the calls to truncate_setsize can be move around freely. They should 991 * be moved to the very end of the truncate sequence. 992 * 993 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 994 * inode size. How do we do this if @inode->i_size may became smaller while we 995 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 996 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 997 * internally and updates it under @ui_mutex. 998 * 999 * Q: why we do not worry that if we race with truncation, we may end up with a 1000 * situation when the inode is truncated while we are in the middle of 1001 * 'do_writepage()', so we do write beyond inode size? 1002 * A: If we are in the middle of 'do_writepage()', truncation would be locked 1003 * on the page lock and it would not write the truncated inode node to the 1004 * journal before we have finished. 1005 */ 1006 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1007 { 1008 struct inode *inode = page->mapping->host; 1009 struct ubifs_info *c = inode->i_sb->s_fs_info; 1010 struct ubifs_inode *ui = ubifs_inode(inode); 1011 loff_t i_size = i_size_read(inode), synced_i_size; 1012 pgoff_t end_index = i_size >> PAGE_SHIFT; 1013 int err, len = i_size & (PAGE_SIZE - 1); 1014 void *kaddr; 1015 1016 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1017 inode->i_ino, page->index, page->flags); 1018 ubifs_assert(c, PagePrivate(page)); 1019 1020 /* Is the page fully outside @i_size? (truncate in progress) */ 1021 if (page->index > end_index || (page->index == end_index && !len)) { 1022 err = 0; 1023 goto out_unlock; 1024 } 1025 1026 spin_lock(&ui->ui_lock); 1027 synced_i_size = ui->synced_i_size; 1028 spin_unlock(&ui->ui_lock); 1029 1030 /* Is the page fully inside @i_size? */ 1031 if (page->index < end_index) { 1032 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1033 err = inode->i_sb->s_op->write_inode(inode, NULL); 1034 if (err) 1035 goto out_redirty; 1036 /* 1037 * The inode has been written, but the write-buffer has 1038 * not been synchronized, so in case of an unclean 1039 * reboot we may end up with some pages beyond inode 1040 * size, but they would be in the journal (because 1041 * commit flushes write buffers) and recovery would deal 1042 * with this. 1043 */ 1044 } 1045 return do_writepage(page, PAGE_SIZE); 1046 } 1047 1048 /* 1049 * The page straddles @i_size. It must be zeroed out on each and every 1050 * writepage invocation because it may be mmapped. "A file is mapped 1051 * in multiples of the page size. For a file that is not a multiple of 1052 * the page size, the remaining memory is zeroed when mapped, and 1053 * writes to that region are not written out to the file." 1054 */ 1055 kaddr = kmap_atomic(page); 1056 memset(kaddr + len, 0, PAGE_SIZE - len); 1057 flush_dcache_page(page); 1058 kunmap_atomic(kaddr); 1059 1060 if (i_size > synced_i_size) { 1061 err = inode->i_sb->s_op->write_inode(inode, NULL); 1062 if (err) 1063 goto out_redirty; 1064 } 1065 1066 return do_writepage(page, len); 1067 out_redirty: 1068 /* 1069 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because 1070 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1071 * there is no need to do space budget for dirty inode. 1072 */ 1073 redirty_page_for_writepage(wbc, page); 1074 out_unlock: 1075 unlock_page(page); 1076 return err; 1077 } 1078 1079 /** 1080 * do_attr_changes - change inode attributes. 1081 * @inode: inode to change attributes for 1082 * @attr: describes attributes to change 1083 */ 1084 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1085 { 1086 if (attr->ia_valid & ATTR_UID) 1087 inode->i_uid = attr->ia_uid; 1088 if (attr->ia_valid & ATTR_GID) 1089 inode->i_gid = attr->ia_gid; 1090 if (attr->ia_valid & ATTR_ATIME) 1091 inode->i_atime = attr->ia_atime; 1092 if (attr->ia_valid & ATTR_MTIME) 1093 inode->i_mtime = attr->ia_mtime; 1094 if (attr->ia_valid & ATTR_CTIME) 1095 inode->i_ctime = attr->ia_ctime; 1096 if (attr->ia_valid & ATTR_MODE) { 1097 umode_t mode = attr->ia_mode; 1098 1099 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1100 mode &= ~S_ISGID; 1101 inode->i_mode = mode; 1102 } 1103 } 1104 1105 /** 1106 * do_truncation - truncate an inode. 1107 * @c: UBIFS file-system description object 1108 * @inode: inode to truncate 1109 * @attr: inode attribute changes description 1110 * 1111 * This function implements VFS '->setattr()' call when the inode is truncated 1112 * to a smaller size. Returns zero in case of success and a negative error code 1113 * in case of failure. 1114 */ 1115 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1116 const struct iattr *attr) 1117 { 1118 int err; 1119 struct ubifs_budget_req req; 1120 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1121 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1122 struct ubifs_inode *ui = ubifs_inode(inode); 1123 1124 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1125 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1126 1127 /* 1128 * If this is truncation to a smaller size, and we do not truncate on a 1129 * block boundary, budget for changing one data block, because the last 1130 * block will be re-written. 1131 */ 1132 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1133 req.dirtied_page = 1; 1134 1135 req.dirtied_ino = 1; 1136 /* A funny way to budget for truncation node */ 1137 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1138 err = ubifs_budget_space(c, &req); 1139 if (err) { 1140 /* 1141 * Treat truncations to zero as deletion and always allow them, 1142 * just like we do for '->unlink()'. 1143 */ 1144 if (new_size || err != -ENOSPC) 1145 return err; 1146 budgeted = 0; 1147 } 1148 1149 truncate_setsize(inode, new_size); 1150 1151 if (offset) { 1152 pgoff_t index = new_size >> PAGE_SHIFT; 1153 struct page *page; 1154 1155 page = find_lock_page(inode->i_mapping, index); 1156 if (page) { 1157 if (PageDirty(page)) { 1158 /* 1159 * 'ubifs_jnl_truncate()' will try to truncate 1160 * the last data node, but it contains 1161 * out-of-date data because the page is dirty. 1162 * Write the page now, so that 1163 * 'ubifs_jnl_truncate()' will see an already 1164 * truncated (and up to date) data node. 1165 */ 1166 ubifs_assert(c, PagePrivate(page)); 1167 1168 clear_page_dirty_for_io(page); 1169 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1170 offset = new_size & 1171 (PAGE_SIZE - 1); 1172 err = do_writepage(page, offset); 1173 put_page(page); 1174 if (err) 1175 goto out_budg; 1176 /* 1177 * We could now tell 'ubifs_jnl_truncate()' not 1178 * to read the last block. 1179 */ 1180 } else { 1181 /* 1182 * We could 'kmap()' the page and pass the data 1183 * to 'ubifs_jnl_truncate()' to save it from 1184 * having to read it. 1185 */ 1186 unlock_page(page); 1187 put_page(page); 1188 } 1189 } 1190 } 1191 1192 mutex_lock(&ui->ui_mutex); 1193 ui->ui_size = inode->i_size; 1194 /* Truncation changes inode [mc]time */ 1195 inode->i_mtime = inode->i_ctime = current_time(inode); 1196 /* Other attributes may be changed at the same time as well */ 1197 do_attr_changes(inode, attr); 1198 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1199 mutex_unlock(&ui->ui_mutex); 1200 1201 out_budg: 1202 if (budgeted) 1203 ubifs_release_budget(c, &req); 1204 else { 1205 c->bi.nospace = c->bi.nospace_rp = 0; 1206 smp_wmb(); 1207 } 1208 return err; 1209 } 1210 1211 /** 1212 * do_setattr - change inode attributes. 1213 * @c: UBIFS file-system description object 1214 * @inode: inode to change attributes for 1215 * @attr: inode attribute changes description 1216 * 1217 * This function implements VFS '->setattr()' call for all cases except 1218 * truncations to smaller size. Returns zero in case of success and a negative 1219 * error code in case of failure. 1220 */ 1221 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1222 const struct iattr *attr) 1223 { 1224 int err, release; 1225 loff_t new_size = attr->ia_size; 1226 struct ubifs_inode *ui = ubifs_inode(inode); 1227 struct ubifs_budget_req req = { .dirtied_ino = 1, 1228 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1229 1230 err = ubifs_budget_space(c, &req); 1231 if (err) 1232 return err; 1233 1234 if (attr->ia_valid & ATTR_SIZE) { 1235 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1236 truncate_setsize(inode, new_size); 1237 } 1238 1239 mutex_lock(&ui->ui_mutex); 1240 if (attr->ia_valid & ATTR_SIZE) { 1241 /* Truncation changes inode [mc]time */ 1242 inode->i_mtime = inode->i_ctime = current_time(inode); 1243 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1244 ui->ui_size = inode->i_size; 1245 } 1246 1247 do_attr_changes(inode, attr); 1248 1249 release = ui->dirty; 1250 if (attr->ia_valid & ATTR_SIZE) 1251 /* 1252 * Inode length changed, so we have to make sure 1253 * @I_DIRTY_DATASYNC is set. 1254 */ 1255 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1256 else 1257 mark_inode_dirty_sync(inode); 1258 mutex_unlock(&ui->ui_mutex); 1259 1260 if (release) 1261 ubifs_release_budget(c, &req); 1262 if (IS_SYNC(inode)) 1263 err = inode->i_sb->s_op->write_inode(inode, NULL); 1264 return err; 1265 } 1266 1267 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1268 struct iattr *attr) 1269 { 1270 int err; 1271 struct inode *inode = d_inode(dentry); 1272 struct ubifs_info *c = inode->i_sb->s_fs_info; 1273 1274 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1275 inode->i_ino, inode->i_mode, attr->ia_valid); 1276 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1277 if (err) 1278 return err; 1279 1280 err = dbg_check_synced_i_size(c, inode); 1281 if (err) 1282 return err; 1283 1284 err = fscrypt_prepare_setattr(dentry, attr); 1285 if (err) 1286 return err; 1287 1288 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1289 /* Truncation to a smaller size */ 1290 err = do_truncation(c, inode, attr); 1291 else 1292 err = do_setattr(c, inode, attr); 1293 1294 return err; 1295 } 1296 1297 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1298 size_t length) 1299 { 1300 struct inode *inode = folio->mapping->host; 1301 struct ubifs_info *c = inode->i_sb->s_fs_info; 1302 1303 ubifs_assert(c, folio_test_private(folio)); 1304 if (offset || length < folio_size(folio)) 1305 /* Partial folio remains dirty */ 1306 return; 1307 1308 if (folio_test_checked(folio)) 1309 release_new_page_budget(c); 1310 else 1311 release_existing_page_budget(c); 1312 1313 atomic_long_dec(&c->dirty_pg_cnt); 1314 folio_detach_private(folio); 1315 folio_clear_checked(folio); 1316 } 1317 1318 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1319 { 1320 struct inode *inode = file->f_mapping->host; 1321 struct ubifs_info *c = inode->i_sb->s_fs_info; 1322 int err; 1323 1324 dbg_gen("syncing inode %lu", inode->i_ino); 1325 1326 if (c->ro_mount) 1327 /* 1328 * For some really strange reasons VFS does not filter out 1329 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1330 */ 1331 return 0; 1332 1333 err = file_write_and_wait_range(file, start, end); 1334 if (err) 1335 return err; 1336 inode_lock(inode); 1337 1338 /* Synchronize the inode unless this is a 'datasync()' call. */ 1339 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1340 err = inode->i_sb->s_op->write_inode(inode, NULL); 1341 if (err) 1342 goto out; 1343 } 1344 1345 /* 1346 * Nodes related to this inode may still sit in a write-buffer. Flush 1347 * them. 1348 */ 1349 err = ubifs_sync_wbufs_by_inode(c, inode); 1350 out: 1351 inode_unlock(inode); 1352 return err; 1353 } 1354 1355 /** 1356 * mctime_update_needed - check if mtime or ctime update is needed. 1357 * @inode: the inode to do the check for 1358 * @now: current time 1359 * 1360 * This helper function checks if the inode mtime/ctime should be updated or 1361 * not. If current values of the time-stamps are within the UBIFS inode time 1362 * granularity, they are not updated. This is an optimization. 1363 */ 1364 static inline int mctime_update_needed(const struct inode *inode, 1365 const struct timespec64 *now) 1366 { 1367 if (!timespec64_equal(&inode->i_mtime, now) || 1368 !timespec64_equal(&inode->i_ctime, now)) 1369 return 1; 1370 return 0; 1371 } 1372 1373 /** 1374 * ubifs_update_time - update time of inode. 1375 * @inode: inode to update 1376 * 1377 * This function updates time of the inode. 1378 */ 1379 int ubifs_update_time(struct inode *inode, struct timespec64 *time, 1380 int flags) 1381 { 1382 struct ubifs_inode *ui = ubifs_inode(inode); 1383 struct ubifs_info *c = inode->i_sb->s_fs_info; 1384 struct ubifs_budget_req req = { .dirtied_ino = 1, 1385 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1386 int err, release; 1387 1388 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1389 return generic_update_time(inode, time, flags); 1390 1391 err = ubifs_budget_space(c, &req); 1392 if (err) 1393 return err; 1394 1395 mutex_lock(&ui->ui_mutex); 1396 if (flags & S_ATIME) 1397 inode->i_atime = *time; 1398 if (flags & S_CTIME) 1399 inode->i_ctime = *time; 1400 if (flags & S_MTIME) 1401 inode->i_mtime = *time; 1402 1403 release = ui->dirty; 1404 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1405 mutex_unlock(&ui->ui_mutex); 1406 if (release) 1407 ubifs_release_budget(c, &req); 1408 return 0; 1409 } 1410 1411 /** 1412 * update_mctime - update mtime and ctime of an inode. 1413 * @inode: inode to update 1414 * 1415 * This function updates mtime and ctime of the inode if it is not equivalent to 1416 * current time. Returns zero in case of success and a negative error code in 1417 * case of failure. 1418 */ 1419 static int update_mctime(struct inode *inode) 1420 { 1421 struct timespec64 now = current_time(inode); 1422 struct ubifs_inode *ui = ubifs_inode(inode); 1423 struct ubifs_info *c = inode->i_sb->s_fs_info; 1424 1425 if (mctime_update_needed(inode, &now)) { 1426 int err, release; 1427 struct ubifs_budget_req req = { .dirtied_ino = 1, 1428 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1429 1430 err = ubifs_budget_space(c, &req); 1431 if (err) 1432 return err; 1433 1434 mutex_lock(&ui->ui_mutex); 1435 inode->i_mtime = inode->i_ctime = current_time(inode); 1436 release = ui->dirty; 1437 mark_inode_dirty_sync(inode); 1438 mutex_unlock(&ui->ui_mutex); 1439 if (release) 1440 ubifs_release_budget(c, &req); 1441 } 1442 1443 return 0; 1444 } 1445 1446 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1447 { 1448 int err = update_mctime(file_inode(iocb->ki_filp)); 1449 if (err) 1450 return err; 1451 1452 return generic_file_write_iter(iocb, from); 1453 } 1454 1455 static bool ubifs_dirty_folio(struct address_space *mapping, 1456 struct folio *folio) 1457 { 1458 bool ret; 1459 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1460 1461 ret = filemap_dirty_folio(mapping, folio); 1462 /* 1463 * An attempt to dirty a page without budgeting for it - should not 1464 * happen. 1465 */ 1466 ubifs_assert(c, ret == false); 1467 return ret; 1468 } 1469 1470 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1471 { 1472 struct inode *inode = folio->mapping->host; 1473 struct ubifs_info *c = inode->i_sb->s_fs_info; 1474 1475 if (folio_test_writeback(folio)) 1476 return false; 1477 1478 /* 1479 * Page is private but not dirty, weird? There is one condition 1480 * making it happened. ubifs_writepage skipped the page because 1481 * page index beyonds isize (for example. truncated by other 1482 * process named A), then the page is invalidated by fadvise64 1483 * syscall before being truncated by process A. 1484 */ 1485 ubifs_assert(c, folio_test_private(folio)); 1486 if (folio_test_checked(folio)) 1487 release_new_page_budget(c); 1488 else 1489 release_existing_page_budget(c); 1490 1491 atomic_long_dec(&c->dirty_pg_cnt); 1492 folio_detach_private(folio); 1493 folio_clear_checked(folio); 1494 return true; 1495 } 1496 1497 /* 1498 * mmap()d file has taken write protection fault and is being made writable. 1499 * UBIFS must ensure page is budgeted for. 1500 */ 1501 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1502 { 1503 struct page *page = vmf->page; 1504 struct inode *inode = file_inode(vmf->vma->vm_file); 1505 struct ubifs_info *c = inode->i_sb->s_fs_info; 1506 struct timespec64 now = current_time(inode); 1507 struct ubifs_budget_req req = { .new_page = 1 }; 1508 int err, update_time; 1509 1510 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1511 i_size_read(inode)); 1512 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1513 1514 if (unlikely(c->ro_error)) 1515 return VM_FAULT_SIGBUS; /* -EROFS */ 1516 1517 /* 1518 * We have not locked @page so far so we may budget for changing the 1519 * page. Note, we cannot do this after we locked the page, because 1520 * budgeting may cause write-back which would cause deadlock. 1521 * 1522 * At the moment we do not know whether the page is dirty or not, so we 1523 * assume that it is not and budget for a new page. We could look at 1524 * the @PG_private flag and figure this out, but we may race with write 1525 * back and the page state may change by the time we lock it, so this 1526 * would need additional care. We do not bother with this at the 1527 * moment, although it might be good idea to do. Instead, we allocate 1528 * budget for a new page and amend it later on if the page was in fact 1529 * dirty. 1530 * 1531 * The budgeting-related logic of this function is similar to what we 1532 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1533 * for more comments. 1534 */ 1535 update_time = mctime_update_needed(inode, &now); 1536 if (update_time) 1537 /* 1538 * We have to change inode time stamp which requires extra 1539 * budgeting. 1540 */ 1541 req.dirtied_ino = 1; 1542 1543 err = ubifs_budget_space(c, &req); 1544 if (unlikely(err)) { 1545 if (err == -ENOSPC) 1546 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1547 inode->i_ino); 1548 return VM_FAULT_SIGBUS; 1549 } 1550 1551 lock_page(page); 1552 if (unlikely(page->mapping != inode->i_mapping || 1553 page_offset(page) > i_size_read(inode))) { 1554 /* Page got truncated out from underneath us */ 1555 goto sigbus; 1556 } 1557 1558 if (PagePrivate(page)) 1559 release_new_page_budget(c); 1560 else { 1561 if (!PageChecked(page)) 1562 ubifs_convert_page_budget(c); 1563 attach_page_private(page, (void *)1); 1564 atomic_long_inc(&c->dirty_pg_cnt); 1565 __set_page_dirty_nobuffers(page); 1566 } 1567 1568 if (update_time) { 1569 int release; 1570 struct ubifs_inode *ui = ubifs_inode(inode); 1571 1572 mutex_lock(&ui->ui_mutex); 1573 inode->i_mtime = inode->i_ctime = current_time(inode); 1574 release = ui->dirty; 1575 mark_inode_dirty_sync(inode); 1576 mutex_unlock(&ui->ui_mutex); 1577 if (release) 1578 ubifs_release_dirty_inode_budget(c, ui); 1579 } 1580 1581 wait_for_stable_page(page); 1582 return VM_FAULT_LOCKED; 1583 1584 sigbus: 1585 unlock_page(page); 1586 ubifs_release_budget(c, &req); 1587 return VM_FAULT_SIGBUS; 1588 } 1589 1590 static const struct vm_operations_struct ubifs_file_vm_ops = { 1591 .fault = filemap_fault, 1592 .map_pages = filemap_map_pages, 1593 .page_mkwrite = ubifs_vm_page_mkwrite, 1594 }; 1595 1596 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1597 { 1598 int err; 1599 1600 err = generic_file_mmap(file, vma); 1601 if (err) 1602 return err; 1603 vma->vm_ops = &ubifs_file_vm_ops; 1604 1605 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1606 file_accessed(file); 1607 1608 return 0; 1609 } 1610 1611 static const char *ubifs_get_link(struct dentry *dentry, 1612 struct inode *inode, 1613 struct delayed_call *done) 1614 { 1615 struct ubifs_inode *ui = ubifs_inode(inode); 1616 1617 if (!IS_ENCRYPTED(inode)) 1618 return ui->data; 1619 1620 if (!dentry) 1621 return ERR_PTR(-ECHILD); 1622 1623 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1624 } 1625 1626 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1627 const struct path *path, struct kstat *stat, 1628 u32 request_mask, unsigned int query_flags) 1629 { 1630 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1631 1632 if (IS_ENCRYPTED(d_inode(path->dentry))) 1633 return fscrypt_symlink_getattr(path, stat); 1634 return 0; 1635 } 1636 1637 const struct address_space_operations ubifs_file_address_operations = { 1638 .read_folio = ubifs_read_folio, 1639 .writepage = ubifs_writepage, 1640 .write_begin = ubifs_write_begin, 1641 .write_end = ubifs_write_end, 1642 .invalidate_folio = ubifs_invalidate_folio, 1643 .dirty_folio = ubifs_dirty_folio, 1644 .migrate_folio = filemap_migrate_folio, 1645 .release_folio = ubifs_release_folio, 1646 }; 1647 1648 const struct inode_operations ubifs_file_inode_operations = { 1649 .setattr = ubifs_setattr, 1650 .getattr = ubifs_getattr, 1651 .listxattr = ubifs_listxattr, 1652 .update_time = ubifs_update_time, 1653 .fileattr_get = ubifs_fileattr_get, 1654 .fileattr_set = ubifs_fileattr_set, 1655 }; 1656 1657 const struct inode_operations ubifs_symlink_inode_operations = { 1658 .get_link = ubifs_get_link, 1659 .setattr = ubifs_setattr, 1660 .getattr = ubifs_symlink_getattr, 1661 .listxattr = ubifs_listxattr, 1662 .update_time = ubifs_update_time, 1663 }; 1664 1665 const struct file_operations ubifs_file_operations = { 1666 .llseek = generic_file_llseek, 1667 .read_iter = generic_file_read_iter, 1668 .write_iter = ubifs_write_iter, 1669 .mmap = ubifs_file_mmap, 1670 .fsync = ubifs_fsync, 1671 .unlocked_ioctl = ubifs_ioctl, 1672 .splice_read = generic_file_splice_read, 1673 .splice_write = iter_file_splice_write, 1674 .open = fscrypt_file_open, 1675 #ifdef CONFIG_COMPAT 1676 .compat_ioctl = ubifs_compat_ioctl, 1677 #endif 1678 }; 1679