xref: /openbmc/linux/fs/ubifs/file.c (revision 1802d0be)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
56 
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 
82 	if (ubifs_crypt_is_encrypted(inode)) {
83 		err = ubifs_decrypt(inode, dn, &dlen, block);
84 		if (err)
85 			goto dump;
86 	}
87 
88 	out_len = UBIFS_BLOCK_SIZE;
89 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 			       le16_to_cpu(dn->compr_type));
91 	if (err || len != out_len)
92 		goto dump;
93 
94 	/*
95 	 * Data length can be less than a full block, even for blocks that are
96 	 * not the last in the file (e.g., as a result of making a hole and
97 	 * appending data). Ensure that the remainder is zeroed out.
98 	 */
99 	if (len < UBIFS_BLOCK_SIZE)
100 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
101 
102 	return 0;
103 
104 dump:
105 	ubifs_err(c, "bad data node (block %u, inode %lu)",
106 		  block, inode->i_ino);
107 	ubifs_dump_node(c, dn);
108 	return -EINVAL;
109 }
110 
111 static int do_readpage(struct page *page)
112 {
113 	void *addr;
114 	int err = 0, i;
115 	unsigned int block, beyond;
116 	struct ubifs_data_node *dn;
117 	struct inode *inode = page->mapping->host;
118 	struct ubifs_info *c = inode->i_sb->s_fs_info;
119 	loff_t i_size = i_size_read(inode);
120 
121 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 		inode->i_ino, page->index, i_size, page->flags);
123 	ubifs_assert(c, !PageChecked(page));
124 	ubifs_assert(c, !PagePrivate(page));
125 
126 	addr = kmap(page);
127 
128 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
129 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
130 	if (block >= beyond) {
131 		/* Reading beyond inode */
132 		SetPageChecked(page);
133 		memset(addr, 0, PAGE_SIZE);
134 		goto out;
135 	}
136 
137 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
138 	if (!dn) {
139 		err = -ENOMEM;
140 		goto error;
141 	}
142 
143 	i = 0;
144 	while (1) {
145 		int ret;
146 
147 		if (block >= beyond) {
148 			/* Reading beyond inode */
149 			err = -ENOENT;
150 			memset(addr, 0, UBIFS_BLOCK_SIZE);
151 		} else {
152 			ret = read_block(inode, addr, block, dn);
153 			if (ret) {
154 				err = ret;
155 				if (err != -ENOENT)
156 					break;
157 			} else if (block + 1 == beyond) {
158 				int dlen = le32_to_cpu(dn->size);
159 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
160 
161 				if (ilen && ilen < dlen)
162 					memset(addr + ilen, 0, dlen - ilen);
163 			}
164 		}
165 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
166 			break;
167 		block += 1;
168 		addr += UBIFS_BLOCK_SIZE;
169 	}
170 	if (err) {
171 		struct ubifs_info *c = inode->i_sb->s_fs_info;
172 		if (err == -ENOENT) {
173 			/* Not found, so it must be a hole */
174 			SetPageChecked(page);
175 			dbg_gen("hole");
176 			goto out_free;
177 		}
178 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
179 			  page->index, inode->i_ino, err);
180 		goto error;
181 	}
182 
183 out_free:
184 	kfree(dn);
185 out:
186 	SetPageUptodate(page);
187 	ClearPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return 0;
191 
192 error:
193 	kfree(dn);
194 	ClearPageUptodate(page);
195 	SetPageError(page);
196 	flush_dcache_page(page);
197 	kunmap(page);
198 	return err;
199 }
200 
201 /**
202  * release_new_page_budget - release budget of a new page.
203  * @c: UBIFS file-system description object
204  *
205  * This is a helper function which releases budget corresponding to the budget
206  * of one new page of data.
207  */
208 static void release_new_page_budget(struct ubifs_info *c)
209 {
210 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
211 
212 	ubifs_release_budget(c, &req);
213 }
214 
215 /**
216  * release_existing_page_budget - release budget of an existing page.
217  * @c: UBIFS file-system description object
218  *
219  * This is a helper function which releases budget corresponding to the budget
220  * of changing one one page of data which already exists on the flash media.
221  */
222 static void release_existing_page_budget(struct ubifs_info *c)
223 {
224 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
225 
226 	ubifs_release_budget(c, &req);
227 }
228 
229 static int write_begin_slow(struct address_space *mapping,
230 			    loff_t pos, unsigned len, struct page **pagep,
231 			    unsigned flags)
232 {
233 	struct inode *inode = mapping->host;
234 	struct ubifs_info *c = inode->i_sb->s_fs_info;
235 	pgoff_t index = pos >> PAGE_SHIFT;
236 	struct ubifs_budget_req req = { .new_page = 1 };
237 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
238 	struct page *page;
239 
240 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 		inode->i_ino, pos, len, inode->i_size);
242 
243 	/*
244 	 * At the slow path we have to budget before locking the page, because
245 	 * budgeting may force write-back, which would wait on locked pages and
246 	 * deadlock if we had the page locked. At this point we do not know
247 	 * anything about the page, so assume that this is a new page which is
248 	 * written to a hole. This corresponds to largest budget. Later the
249 	 * budget will be amended if this is not true.
250 	 */
251 	if (appending)
252 		/* We are appending data, budget for inode change */
253 		req.dirtied_ino = 1;
254 
255 	err = ubifs_budget_space(c, &req);
256 	if (unlikely(err))
257 		return err;
258 
259 	page = grab_cache_page_write_begin(mapping, index, flags);
260 	if (unlikely(!page)) {
261 		ubifs_release_budget(c, &req);
262 		return -ENOMEM;
263 	}
264 
265 	if (!PageUptodate(page)) {
266 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
267 			SetPageChecked(page);
268 		else {
269 			err = do_readpage(page);
270 			if (err) {
271 				unlock_page(page);
272 				put_page(page);
273 				ubifs_release_budget(c, &req);
274 				return err;
275 			}
276 		}
277 
278 		SetPageUptodate(page);
279 		ClearPageError(page);
280 	}
281 
282 	if (PagePrivate(page))
283 		/*
284 		 * The page is dirty, which means it was budgeted twice:
285 		 *   o first time the budget was allocated by the task which
286 		 *     made the page dirty and set the PG_private flag;
287 		 *   o and then we budgeted for it for the second time at the
288 		 *     very beginning of this function.
289 		 *
290 		 * So what we have to do is to release the page budget we
291 		 * allocated.
292 		 */
293 		release_new_page_budget(c);
294 	else if (!PageChecked(page))
295 		/*
296 		 * We are changing a page which already exists on the media.
297 		 * This means that changing the page does not make the amount
298 		 * of indexing information larger, and this part of the budget
299 		 * which we have already acquired may be released.
300 		 */
301 		ubifs_convert_page_budget(c);
302 
303 	if (appending) {
304 		struct ubifs_inode *ui = ubifs_inode(inode);
305 
306 		/*
307 		 * 'ubifs_write_end()' is optimized from the fast-path part of
308 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 		 * if data is appended.
310 		 */
311 		mutex_lock(&ui->ui_mutex);
312 		if (ui->dirty)
313 			/*
314 			 * The inode is dirty already, so we may free the
315 			 * budget we allocated.
316 			 */
317 			ubifs_release_dirty_inode_budget(c, ui);
318 	}
319 
320 	*pagep = page;
321 	return 0;
322 }
323 
324 /**
325  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326  * @c: UBIFS file-system description object
327  * @page: page to allocate budget for
328  * @ui: UBIFS inode object the page belongs to
329  * @appending: non-zero if the page is appended
330  *
331  * This is a helper function for 'ubifs_write_begin()' which allocates budget
332  * for the operation. The budget is allocated differently depending on whether
333  * this is appending, whether the page is dirty or not, and so on. This
334  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335  * in case of success and %-ENOSPC in case of failure.
336  */
337 static int allocate_budget(struct ubifs_info *c, struct page *page,
338 			   struct ubifs_inode *ui, int appending)
339 {
340 	struct ubifs_budget_req req = { .fast = 1 };
341 
342 	if (PagePrivate(page)) {
343 		if (!appending)
344 			/*
345 			 * The page is dirty and we are not appending, which
346 			 * means no budget is needed at all.
347 			 */
348 			return 0;
349 
350 		mutex_lock(&ui->ui_mutex);
351 		if (ui->dirty)
352 			/*
353 			 * The page is dirty and we are appending, so the inode
354 			 * has to be marked as dirty. However, it is already
355 			 * dirty, so we do not need any budget. We may return,
356 			 * but @ui->ui_mutex hast to be left locked because we
357 			 * should prevent write-back from flushing the inode
358 			 * and freeing the budget. The lock will be released in
359 			 * 'ubifs_write_end()'.
360 			 */
361 			return 0;
362 
363 		/*
364 		 * The page is dirty, we are appending, the inode is clean, so
365 		 * we need to budget the inode change.
366 		 */
367 		req.dirtied_ino = 1;
368 	} else {
369 		if (PageChecked(page))
370 			/*
371 			 * The page corresponds to a hole and does not
372 			 * exist on the media. So changing it makes
373 			 * make the amount of indexing information
374 			 * larger, and we have to budget for a new
375 			 * page.
376 			 */
377 			req.new_page = 1;
378 		else
379 			/*
380 			 * Not a hole, the change will not add any new
381 			 * indexing information, budget for page
382 			 * change.
383 			 */
384 			req.dirtied_page = 1;
385 
386 		if (appending) {
387 			mutex_lock(&ui->ui_mutex);
388 			if (!ui->dirty)
389 				/*
390 				 * The inode is clean but we will have to mark
391 				 * it as dirty because we are appending. This
392 				 * needs a budget.
393 				 */
394 				req.dirtied_ino = 1;
395 		}
396 	}
397 
398 	return ubifs_budget_space(c, &req);
399 }
400 
401 /*
402  * This function is called when a page of data is going to be written. Since
403  * the page of data will not necessarily go to the flash straight away, UBIFS
404  * has to reserve space on the media for it, which is done by means of
405  * budgeting.
406  *
407  * This is the hot-path of the file-system and we are trying to optimize it as
408  * much as possible. For this reasons it is split on 2 parts - slow and fast.
409  *
410  * There many budgeting cases:
411  *     o a new page is appended - we have to budget for a new page and for
412  *       changing the inode; however, if the inode is already dirty, there is
413  *       no need to budget for it;
414  *     o an existing clean page is changed - we have budget for it; if the page
415  *       does not exist on the media (a hole), we have to budget for a new
416  *       page; otherwise, we may budget for changing an existing page; the
417  *       difference between these cases is that changing an existing page does
418  *       not introduce anything new to the FS indexing information, so it does
419  *       not grow, and smaller budget is acquired in this case;
420  *     o an existing dirty page is changed - no need to budget at all, because
421  *       the page budget has been acquired by earlier, when the page has been
422  *       marked dirty.
423  *
424  * UBIFS budgeting sub-system may force write-back if it thinks there is no
425  * space to reserve. This imposes some locking restrictions and makes it
426  * impossible to take into account the above cases, and makes it impossible to
427  * optimize budgeting.
428  *
429  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430  * there is a plenty of flash space and the budget will be acquired quickly,
431  * without forcing write-back. The slow path does not make this assumption.
432  */
433 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
434 			     loff_t pos, unsigned len, unsigned flags,
435 			     struct page **pagep, void **fsdata)
436 {
437 	struct inode *inode = mapping->host;
438 	struct ubifs_info *c = inode->i_sb->s_fs_info;
439 	struct ubifs_inode *ui = ubifs_inode(inode);
440 	pgoff_t index = pos >> PAGE_SHIFT;
441 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
442 	int skipped_read = 0;
443 	struct page *page;
444 
445 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
446 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
447 
448 	if (unlikely(c->ro_error))
449 		return -EROFS;
450 
451 	/* Try out the fast-path part first */
452 	page = grab_cache_page_write_begin(mapping, index, flags);
453 	if (unlikely(!page))
454 		return -ENOMEM;
455 
456 	if (!PageUptodate(page)) {
457 		/* The page is not loaded from the flash */
458 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
459 			/*
460 			 * We change whole page so no need to load it. But we
461 			 * do not know whether this page exists on the media or
462 			 * not, so we assume the latter because it requires
463 			 * larger budget. The assumption is that it is better
464 			 * to budget a bit more than to read the page from the
465 			 * media. Thus, we are setting the @PG_checked flag
466 			 * here.
467 			 */
468 			SetPageChecked(page);
469 			skipped_read = 1;
470 		} else {
471 			err = do_readpage(page);
472 			if (err) {
473 				unlock_page(page);
474 				put_page(page);
475 				return err;
476 			}
477 		}
478 
479 		SetPageUptodate(page);
480 		ClearPageError(page);
481 	}
482 
483 	err = allocate_budget(c, page, ui, appending);
484 	if (unlikely(err)) {
485 		ubifs_assert(c, err == -ENOSPC);
486 		/*
487 		 * If we skipped reading the page because we were going to
488 		 * write all of it, then it is not up to date.
489 		 */
490 		if (skipped_read) {
491 			ClearPageChecked(page);
492 			ClearPageUptodate(page);
493 		}
494 		/*
495 		 * Budgeting failed which means it would have to force
496 		 * write-back but didn't, because we set the @fast flag in the
497 		 * request. Write-back cannot be done now, while we have the
498 		 * page locked, because it would deadlock. Unlock and free
499 		 * everything and fall-back to slow-path.
500 		 */
501 		if (appending) {
502 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
503 			mutex_unlock(&ui->ui_mutex);
504 		}
505 		unlock_page(page);
506 		put_page(page);
507 
508 		return write_begin_slow(mapping, pos, len, pagep, flags);
509 	}
510 
511 	/*
512 	 * Whee, we acquired budgeting quickly - without involving
513 	 * garbage-collection, committing or forcing write-back. We return
514 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 	 * otherwise. This is an optimization (slightly hacky though).
516 	 */
517 	*pagep = page;
518 	return 0;
519 
520 }
521 
522 /**
523  * cancel_budget - cancel budget.
524  * @c: UBIFS file-system description object
525  * @page: page to cancel budget for
526  * @ui: UBIFS inode object the page belongs to
527  * @appending: non-zero if the page is appended
528  *
529  * This is a helper function for a page write operation. It unlocks the
530  * @ui->ui_mutex in case of appending.
531  */
532 static void cancel_budget(struct ubifs_info *c, struct page *page,
533 			  struct ubifs_inode *ui, int appending)
534 {
535 	if (appending) {
536 		if (!ui->dirty)
537 			ubifs_release_dirty_inode_budget(c, ui);
538 		mutex_unlock(&ui->ui_mutex);
539 	}
540 	if (!PagePrivate(page)) {
541 		if (PageChecked(page))
542 			release_new_page_budget(c);
543 		else
544 			release_existing_page_budget(c);
545 	}
546 }
547 
548 static int ubifs_write_end(struct file *file, struct address_space *mapping,
549 			   loff_t pos, unsigned len, unsigned copied,
550 			   struct page *page, void *fsdata)
551 {
552 	struct inode *inode = mapping->host;
553 	struct ubifs_inode *ui = ubifs_inode(inode);
554 	struct ubifs_info *c = inode->i_sb->s_fs_info;
555 	loff_t end_pos = pos + len;
556 	int appending = !!(end_pos > inode->i_size);
557 
558 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
560 
561 	if (unlikely(copied < len && len == PAGE_SIZE)) {
562 		/*
563 		 * VFS copied less data to the page that it intended and
564 		 * declared in its '->write_begin()' call via the @len
565 		 * argument. If the page was not up-to-date, and @len was
566 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 		 * not load it from the media (for optimization reasons). This
568 		 * means that part of the page contains garbage. So read the
569 		 * page now.
570 		 */
571 		dbg_gen("copied %d instead of %d, read page and repeat",
572 			copied, len);
573 		cancel_budget(c, page, ui, appending);
574 		ClearPageChecked(page);
575 
576 		/*
577 		 * Return 0 to force VFS to repeat the whole operation, or the
578 		 * error code if 'do_readpage()' fails.
579 		 */
580 		copied = do_readpage(page);
581 		goto out;
582 	}
583 
584 	if (!PagePrivate(page)) {
585 		SetPagePrivate(page);
586 		atomic_long_inc(&c->dirty_pg_cnt);
587 		__set_page_dirty_nobuffers(page);
588 	}
589 
590 	if (appending) {
591 		i_size_write(inode, end_pos);
592 		ui->ui_size = end_pos;
593 		/*
594 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 		 * inode has dirty pages), this has been done in
596 		 * '__set_page_dirty_nobuffers()'.
597 		 */
598 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
599 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
600 		mutex_unlock(&ui->ui_mutex);
601 	}
602 
603 out:
604 	unlock_page(page);
605 	put_page(page);
606 	return copied;
607 }
608 
609 /**
610  * populate_page - copy data nodes into a page for bulk-read.
611  * @c: UBIFS file-system description object
612  * @page: page
613  * @bu: bulk-read information
614  * @n: next zbranch slot
615  *
616  * This function returns %0 on success and a negative error code on failure.
617  */
618 static int populate_page(struct ubifs_info *c, struct page *page,
619 			 struct bu_info *bu, int *n)
620 {
621 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
622 	struct inode *inode = page->mapping->host;
623 	loff_t i_size = i_size_read(inode);
624 	unsigned int page_block;
625 	void *addr, *zaddr;
626 	pgoff_t end_index;
627 
628 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 		inode->i_ino, page->index, i_size, page->flags);
630 
631 	addr = zaddr = kmap(page);
632 
633 	end_index = (i_size - 1) >> PAGE_SHIFT;
634 	if (!i_size || page->index > end_index) {
635 		hole = 1;
636 		memset(addr, 0, PAGE_SIZE);
637 		goto out_hole;
638 	}
639 
640 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
641 	while (1) {
642 		int err, len, out_len, dlen;
643 
644 		if (nn >= bu->cnt) {
645 			hole = 1;
646 			memset(addr, 0, UBIFS_BLOCK_SIZE);
647 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
648 			struct ubifs_data_node *dn;
649 
650 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
651 
652 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
653 				     ubifs_inode(inode)->creat_sqnum);
654 
655 			len = le32_to_cpu(dn->size);
656 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
657 				goto out_err;
658 
659 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
660 			out_len = UBIFS_BLOCK_SIZE;
661 
662 			if (ubifs_crypt_is_encrypted(inode)) {
663 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
664 				if (err)
665 					goto out_err;
666 			}
667 
668 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
669 					       le16_to_cpu(dn->compr_type));
670 			if (err || len != out_len)
671 				goto out_err;
672 
673 			if (len < UBIFS_BLOCK_SIZE)
674 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
675 
676 			nn += 1;
677 			read = (i << UBIFS_BLOCK_SHIFT) + len;
678 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
679 			nn += 1;
680 			continue;
681 		} else {
682 			hole = 1;
683 			memset(addr, 0, UBIFS_BLOCK_SIZE);
684 		}
685 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
686 			break;
687 		addr += UBIFS_BLOCK_SIZE;
688 		page_block += 1;
689 	}
690 
691 	if (end_index == page->index) {
692 		int len = i_size & (PAGE_SIZE - 1);
693 
694 		if (len && len < read)
695 			memset(zaddr + len, 0, read - len);
696 	}
697 
698 out_hole:
699 	if (hole) {
700 		SetPageChecked(page);
701 		dbg_gen("hole");
702 	}
703 
704 	SetPageUptodate(page);
705 	ClearPageError(page);
706 	flush_dcache_page(page);
707 	kunmap(page);
708 	*n = nn;
709 	return 0;
710 
711 out_err:
712 	ClearPageUptodate(page);
713 	SetPageError(page);
714 	flush_dcache_page(page);
715 	kunmap(page);
716 	ubifs_err(c, "bad data node (block %u, inode %lu)",
717 		  page_block, inode->i_ino);
718 	return -EINVAL;
719 }
720 
721 /**
722  * ubifs_do_bulk_read - do bulk-read.
723  * @c: UBIFS file-system description object
724  * @bu: bulk-read information
725  * @page1: first page to read
726  *
727  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
728  */
729 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
730 			      struct page *page1)
731 {
732 	pgoff_t offset = page1->index, end_index;
733 	struct address_space *mapping = page1->mapping;
734 	struct inode *inode = mapping->host;
735 	struct ubifs_inode *ui = ubifs_inode(inode);
736 	int err, page_idx, page_cnt, ret = 0, n = 0;
737 	int allocate = bu->buf ? 0 : 1;
738 	loff_t isize;
739 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
740 
741 	err = ubifs_tnc_get_bu_keys(c, bu);
742 	if (err)
743 		goto out_warn;
744 
745 	if (bu->eof) {
746 		/* Turn off bulk-read at the end of the file */
747 		ui->read_in_a_row = 1;
748 		ui->bulk_read = 0;
749 	}
750 
751 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
752 	if (!page_cnt) {
753 		/*
754 		 * This happens when there are multiple blocks per page and the
755 		 * blocks for the first page we are looking for, are not
756 		 * together. If all the pages were like this, bulk-read would
757 		 * reduce performance, so we turn it off for a while.
758 		 */
759 		goto out_bu_off;
760 	}
761 
762 	if (bu->cnt) {
763 		if (allocate) {
764 			/*
765 			 * Allocate bulk-read buffer depending on how many data
766 			 * nodes we are going to read.
767 			 */
768 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
769 				      bu->zbranch[bu->cnt - 1].len -
770 				      bu->zbranch[0].offs;
771 			ubifs_assert(c, bu->buf_len > 0);
772 			ubifs_assert(c, bu->buf_len <= c->leb_size);
773 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
774 			if (!bu->buf)
775 				goto out_bu_off;
776 		}
777 
778 		err = ubifs_tnc_bulk_read(c, bu);
779 		if (err)
780 			goto out_warn;
781 	}
782 
783 	err = populate_page(c, page1, bu, &n);
784 	if (err)
785 		goto out_warn;
786 
787 	unlock_page(page1);
788 	ret = 1;
789 
790 	isize = i_size_read(inode);
791 	if (isize == 0)
792 		goto out_free;
793 	end_index = ((isize - 1) >> PAGE_SHIFT);
794 
795 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
796 		pgoff_t page_offset = offset + page_idx;
797 		struct page *page;
798 
799 		if (page_offset > end_index)
800 			break;
801 		page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
802 		if (!page)
803 			break;
804 		if (!PageUptodate(page))
805 			err = populate_page(c, page, bu, &n);
806 		unlock_page(page);
807 		put_page(page);
808 		if (err)
809 			break;
810 	}
811 
812 	ui->last_page_read = offset + page_idx - 1;
813 
814 out_free:
815 	if (allocate)
816 		kfree(bu->buf);
817 	return ret;
818 
819 out_warn:
820 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
821 	goto out_free;
822 
823 out_bu_off:
824 	ui->read_in_a_row = ui->bulk_read = 0;
825 	goto out_free;
826 }
827 
828 /**
829  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
830  * @page: page from which to start bulk-read.
831  *
832  * Some flash media are capable of reading sequentially at faster rates. UBIFS
833  * bulk-read facility is designed to take advantage of that, by reading in one
834  * go consecutive data nodes that are also located consecutively in the same
835  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
836  */
837 static int ubifs_bulk_read(struct page *page)
838 {
839 	struct inode *inode = page->mapping->host;
840 	struct ubifs_info *c = inode->i_sb->s_fs_info;
841 	struct ubifs_inode *ui = ubifs_inode(inode);
842 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
843 	struct bu_info *bu;
844 	int err = 0, allocated = 0;
845 
846 	ui->last_page_read = index;
847 	if (!c->bulk_read)
848 		return 0;
849 
850 	/*
851 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
852 	 * so don't bother if we cannot lock the mutex.
853 	 */
854 	if (!mutex_trylock(&ui->ui_mutex))
855 		return 0;
856 
857 	if (index != last_page_read + 1) {
858 		/* Turn off bulk-read if we stop reading sequentially */
859 		ui->read_in_a_row = 1;
860 		if (ui->bulk_read)
861 			ui->bulk_read = 0;
862 		goto out_unlock;
863 	}
864 
865 	if (!ui->bulk_read) {
866 		ui->read_in_a_row += 1;
867 		if (ui->read_in_a_row < 3)
868 			goto out_unlock;
869 		/* Three reads in a row, so switch on bulk-read */
870 		ui->bulk_read = 1;
871 	}
872 
873 	/*
874 	 * If possible, try to use pre-allocated bulk-read information, which
875 	 * is protected by @c->bu_mutex.
876 	 */
877 	if (mutex_trylock(&c->bu_mutex))
878 		bu = &c->bu;
879 	else {
880 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
881 		if (!bu)
882 			goto out_unlock;
883 
884 		bu->buf = NULL;
885 		allocated = 1;
886 	}
887 
888 	bu->buf_len = c->max_bu_buf_len;
889 	data_key_init(c, &bu->key, inode->i_ino,
890 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
891 	err = ubifs_do_bulk_read(c, bu, page);
892 
893 	if (!allocated)
894 		mutex_unlock(&c->bu_mutex);
895 	else
896 		kfree(bu);
897 
898 out_unlock:
899 	mutex_unlock(&ui->ui_mutex);
900 	return err;
901 }
902 
903 static int ubifs_readpage(struct file *file, struct page *page)
904 {
905 	if (ubifs_bulk_read(page))
906 		return 0;
907 	do_readpage(page);
908 	unlock_page(page);
909 	return 0;
910 }
911 
912 static int do_writepage(struct page *page, int len)
913 {
914 	int err = 0, i, blen;
915 	unsigned int block;
916 	void *addr;
917 	union ubifs_key key;
918 	struct inode *inode = page->mapping->host;
919 	struct ubifs_info *c = inode->i_sb->s_fs_info;
920 
921 #ifdef UBIFS_DEBUG
922 	struct ubifs_inode *ui = ubifs_inode(inode);
923 	spin_lock(&ui->ui_lock);
924 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
925 	spin_unlock(&ui->ui_lock);
926 #endif
927 
928 	/* Update radix tree tags */
929 	set_page_writeback(page);
930 
931 	addr = kmap(page);
932 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
933 	i = 0;
934 	while (len) {
935 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
936 		data_key_init(c, &key, inode->i_ino, block);
937 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
938 		if (err)
939 			break;
940 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
941 			break;
942 		block += 1;
943 		addr += blen;
944 		len -= blen;
945 	}
946 	if (err) {
947 		SetPageError(page);
948 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
949 			  page->index, inode->i_ino, err);
950 		ubifs_ro_mode(c, err);
951 	}
952 
953 	ubifs_assert(c, PagePrivate(page));
954 	if (PageChecked(page))
955 		release_new_page_budget(c);
956 	else
957 		release_existing_page_budget(c);
958 
959 	atomic_long_dec(&c->dirty_pg_cnt);
960 	ClearPagePrivate(page);
961 	ClearPageChecked(page);
962 
963 	kunmap(page);
964 	unlock_page(page);
965 	end_page_writeback(page);
966 	return err;
967 }
968 
969 /*
970  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
971  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
972  * situation when a we have an inode with size 0, then a megabyte of data is
973  * appended to the inode, then write-back starts and flushes some amount of the
974  * dirty pages, the journal becomes full, commit happens and finishes, and then
975  * an unclean reboot happens. When the file system is mounted next time, the
976  * inode size would still be 0, but there would be many pages which are beyond
977  * the inode size, they would be indexed and consume flash space. Because the
978  * journal has been committed, the replay would not be able to detect this
979  * situation and correct the inode size. This means UBIFS would have to scan
980  * whole index and correct all inode sizes, which is long an unacceptable.
981  *
982  * To prevent situations like this, UBIFS writes pages back only if they are
983  * within the last synchronized inode size, i.e. the size which has been
984  * written to the flash media last time. Otherwise, UBIFS forces inode
985  * write-back, thus making sure the on-flash inode contains current inode size,
986  * and then keeps writing pages back.
987  *
988  * Some locking issues explanation. 'ubifs_writepage()' first is called with
989  * the page locked, and it locks @ui_mutex. However, write-back does take inode
990  * @i_mutex, which means other VFS operations may be run on this inode at the
991  * same time. And the problematic one is truncation to smaller size, from where
992  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
993  * then drops the truncated pages. And while dropping the pages, it takes the
994  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
995  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
996  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
997  *
998  * XXX(truncate): with the new truncate sequence this is not true anymore,
999  * and the calls to truncate_setsize can be move around freely.  They should
1000  * be moved to the very end of the truncate sequence.
1001  *
1002  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1003  * inode size. How do we do this if @inode->i_size may became smaller while we
1004  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1005  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1006  * internally and updates it under @ui_mutex.
1007  *
1008  * Q: why we do not worry that if we race with truncation, we may end up with a
1009  * situation when the inode is truncated while we are in the middle of
1010  * 'do_writepage()', so we do write beyond inode size?
1011  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1012  * on the page lock and it would not write the truncated inode node to the
1013  * journal before we have finished.
1014  */
1015 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1016 {
1017 	struct inode *inode = page->mapping->host;
1018 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1019 	struct ubifs_inode *ui = ubifs_inode(inode);
1020 	loff_t i_size =  i_size_read(inode), synced_i_size;
1021 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1022 	int err, len = i_size & (PAGE_SIZE - 1);
1023 	void *kaddr;
1024 
1025 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1026 		inode->i_ino, page->index, page->flags);
1027 	ubifs_assert(c, PagePrivate(page));
1028 
1029 	/* Is the page fully outside @i_size? (truncate in progress) */
1030 	if (page->index > end_index || (page->index == end_index && !len)) {
1031 		err = 0;
1032 		goto out_unlock;
1033 	}
1034 
1035 	spin_lock(&ui->ui_lock);
1036 	synced_i_size = ui->synced_i_size;
1037 	spin_unlock(&ui->ui_lock);
1038 
1039 	/* Is the page fully inside @i_size? */
1040 	if (page->index < end_index) {
1041 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1042 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1043 			if (err)
1044 				goto out_unlock;
1045 			/*
1046 			 * The inode has been written, but the write-buffer has
1047 			 * not been synchronized, so in case of an unclean
1048 			 * reboot we may end up with some pages beyond inode
1049 			 * size, but they would be in the journal (because
1050 			 * commit flushes write buffers) and recovery would deal
1051 			 * with this.
1052 			 */
1053 		}
1054 		return do_writepage(page, PAGE_SIZE);
1055 	}
1056 
1057 	/*
1058 	 * The page straddles @i_size. It must be zeroed out on each and every
1059 	 * writepage invocation because it may be mmapped. "A file is mapped
1060 	 * in multiples of the page size. For a file that is not a multiple of
1061 	 * the page size, the remaining memory is zeroed when mapped, and
1062 	 * writes to that region are not written out to the file."
1063 	 */
1064 	kaddr = kmap_atomic(page);
1065 	memset(kaddr + len, 0, PAGE_SIZE - len);
1066 	flush_dcache_page(page);
1067 	kunmap_atomic(kaddr);
1068 
1069 	if (i_size > synced_i_size) {
1070 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1071 		if (err)
1072 			goto out_unlock;
1073 	}
1074 
1075 	return do_writepage(page, len);
1076 
1077 out_unlock:
1078 	unlock_page(page);
1079 	return err;
1080 }
1081 
1082 /**
1083  * do_attr_changes - change inode attributes.
1084  * @inode: inode to change attributes for
1085  * @attr: describes attributes to change
1086  */
1087 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1088 {
1089 	if (attr->ia_valid & ATTR_UID)
1090 		inode->i_uid = attr->ia_uid;
1091 	if (attr->ia_valid & ATTR_GID)
1092 		inode->i_gid = attr->ia_gid;
1093 	if (attr->ia_valid & ATTR_ATIME)
1094 		inode->i_atime = timespec64_trunc(attr->ia_atime,
1095 						  inode->i_sb->s_time_gran);
1096 	if (attr->ia_valid & ATTR_MTIME)
1097 		inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1098 						  inode->i_sb->s_time_gran);
1099 	if (attr->ia_valid & ATTR_CTIME)
1100 		inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1101 						  inode->i_sb->s_time_gran);
1102 	if (attr->ia_valid & ATTR_MODE) {
1103 		umode_t mode = attr->ia_mode;
1104 
1105 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1106 			mode &= ~S_ISGID;
1107 		inode->i_mode = mode;
1108 	}
1109 }
1110 
1111 /**
1112  * do_truncation - truncate an inode.
1113  * @c: UBIFS file-system description object
1114  * @inode: inode to truncate
1115  * @attr: inode attribute changes description
1116  *
1117  * This function implements VFS '->setattr()' call when the inode is truncated
1118  * to a smaller size. Returns zero in case of success and a negative error code
1119  * in case of failure.
1120  */
1121 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1122 			 const struct iattr *attr)
1123 {
1124 	int err;
1125 	struct ubifs_budget_req req;
1126 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1127 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1128 	struct ubifs_inode *ui = ubifs_inode(inode);
1129 
1130 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1131 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1132 
1133 	/*
1134 	 * If this is truncation to a smaller size, and we do not truncate on a
1135 	 * block boundary, budget for changing one data block, because the last
1136 	 * block will be re-written.
1137 	 */
1138 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1139 		req.dirtied_page = 1;
1140 
1141 	req.dirtied_ino = 1;
1142 	/* A funny way to budget for truncation node */
1143 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1144 	err = ubifs_budget_space(c, &req);
1145 	if (err) {
1146 		/*
1147 		 * Treat truncations to zero as deletion and always allow them,
1148 		 * just like we do for '->unlink()'.
1149 		 */
1150 		if (new_size || err != -ENOSPC)
1151 			return err;
1152 		budgeted = 0;
1153 	}
1154 
1155 	truncate_setsize(inode, new_size);
1156 
1157 	if (offset) {
1158 		pgoff_t index = new_size >> PAGE_SHIFT;
1159 		struct page *page;
1160 
1161 		page = find_lock_page(inode->i_mapping, index);
1162 		if (page) {
1163 			if (PageDirty(page)) {
1164 				/*
1165 				 * 'ubifs_jnl_truncate()' will try to truncate
1166 				 * the last data node, but it contains
1167 				 * out-of-date data because the page is dirty.
1168 				 * Write the page now, so that
1169 				 * 'ubifs_jnl_truncate()' will see an already
1170 				 * truncated (and up to date) data node.
1171 				 */
1172 				ubifs_assert(c, PagePrivate(page));
1173 
1174 				clear_page_dirty_for_io(page);
1175 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1176 					offset = new_size &
1177 						 (PAGE_SIZE - 1);
1178 				err = do_writepage(page, offset);
1179 				put_page(page);
1180 				if (err)
1181 					goto out_budg;
1182 				/*
1183 				 * We could now tell 'ubifs_jnl_truncate()' not
1184 				 * to read the last block.
1185 				 */
1186 			} else {
1187 				/*
1188 				 * We could 'kmap()' the page and pass the data
1189 				 * to 'ubifs_jnl_truncate()' to save it from
1190 				 * having to read it.
1191 				 */
1192 				unlock_page(page);
1193 				put_page(page);
1194 			}
1195 		}
1196 	}
1197 
1198 	mutex_lock(&ui->ui_mutex);
1199 	ui->ui_size = inode->i_size;
1200 	/* Truncation changes inode [mc]time */
1201 	inode->i_mtime = inode->i_ctime = current_time(inode);
1202 	/* Other attributes may be changed at the same time as well */
1203 	do_attr_changes(inode, attr);
1204 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1205 	mutex_unlock(&ui->ui_mutex);
1206 
1207 out_budg:
1208 	if (budgeted)
1209 		ubifs_release_budget(c, &req);
1210 	else {
1211 		c->bi.nospace = c->bi.nospace_rp = 0;
1212 		smp_wmb();
1213 	}
1214 	return err;
1215 }
1216 
1217 /**
1218  * do_setattr - change inode attributes.
1219  * @c: UBIFS file-system description object
1220  * @inode: inode to change attributes for
1221  * @attr: inode attribute changes description
1222  *
1223  * This function implements VFS '->setattr()' call for all cases except
1224  * truncations to smaller size. Returns zero in case of success and a negative
1225  * error code in case of failure.
1226  */
1227 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1228 		      const struct iattr *attr)
1229 {
1230 	int err, release;
1231 	loff_t new_size = attr->ia_size;
1232 	struct ubifs_inode *ui = ubifs_inode(inode);
1233 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1234 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1235 
1236 	err = ubifs_budget_space(c, &req);
1237 	if (err)
1238 		return err;
1239 
1240 	if (attr->ia_valid & ATTR_SIZE) {
1241 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1242 		truncate_setsize(inode, new_size);
1243 	}
1244 
1245 	mutex_lock(&ui->ui_mutex);
1246 	if (attr->ia_valid & ATTR_SIZE) {
1247 		/* Truncation changes inode [mc]time */
1248 		inode->i_mtime = inode->i_ctime = current_time(inode);
1249 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1250 		ui->ui_size = inode->i_size;
1251 	}
1252 
1253 	do_attr_changes(inode, attr);
1254 
1255 	release = ui->dirty;
1256 	if (attr->ia_valid & ATTR_SIZE)
1257 		/*
1258 		 * Inode length changed, so we have to make sure
1259 		 * @I_DIRTY_DATASYNC is set.
1260 		 */
1261 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1262 	else
1263 		mark_inode_dirty_sync(inode);
1264 	mutex_unlock(&ui->ui_mutex);
1265 
1266 	if (release)
1267 		ubifs_release_budget(c, &req);
1268 	if (IS_SYNC(inode))
1269 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1270 	return err;
1271 }
1272 
1273 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1274 {
1275 	int err;
1276 	struct inode *inode = d_inode(dentry);
1277 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1278 
1279 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1280 		inode->i_ino, inode->i_mode, attr->ia_valid);
1281 	err = setattr_prepare(dentry, attr);
1282 	if (err)
1283 		return err;
1284 
1285 	err = dbg_check_synced_i_size(c, inode);
1286 	if (err)
1287 		return err;
1288 
1289 	err = fscrypt_prepare_setattr(dentry, attr);
1290 	if (err)
1291 		return err;
1292 
1293 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1294 		/* Truncation to a smaller size */
1295 		err = do_truncation(c, inode, attr);
1296 	else
1297 		err = do_setattr(c, inode, attr);
1298 
1299 	return err;
1300 }
1301 
1302 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1303 				 unsigned int length)
1304 {
1305 	struct inode *inode = page->mapping->host;
1306 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1307 
1308 	ubifs_assert(c, PagePrivate(page));
1309 	if (offset || length < PAGE_SIZE)
1310 		/* Partial page remains dirty */
1311 		return;
1312 
1313 	if (PageChecked(page))
1314 		release_new_page_budget(c);
1315 	else
1316 		release_existing_page_budget(c);
1317 
1318 	atomic_long_dec(&c->dirty_pg_cnt);
1319 	ClearPagePrivate(page);
1320 	ClearPageChecked(page);
1321 }
1322 
1323 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1324 {
1325 	struct inode *inode = file->f_mapping->host;
1326 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1327 	int err;
1328 
1329 	dbg_gen("syncing inode %lu", inode->i_ino);
1330 
1331 	if (c->ro_mount)
1332 		/*
1333 		 * For some really strange reasons VFS does not filter out
1334 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1335 		 */
1336 		return 0;
1337 
1338 	err = file_write_and_wait_range(file, start, end);
1339 	if (err)
1340 		return err;
1341 	inode_lock(inode);
1342 
1343 	/* Synchronize the inode unless this is a 'datasync()' call. */
1344 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1345 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1346 		if (err)
1347 			goto out;
1348 	}
1349 
1350 	/*
1351 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1352 	 * them.
1353 	 */
1354 	err = ubifs_sync_wbufs_by_inode(c, inode);
1355 out:
1356 	inode_unlock(inode);
1357 	return err;
1358 }
1359 
1360 /**
1361  * mctime_update_needed - check if mtime or ctime update is needed.
1362  * @inode: the inode to do the check for
1363  * @now: current time
1364  *
1365  * This helper function checks if the inode mtime/ctime should be updated or
1366  * not. If current values of the time-stamps are within the UBIFS inode time
1367  * granularity, they are not updated. This is an optimization.
1368  */
1369 static inline int mctime_update_needed(const struct inode *inode,
1370 				       const struct timespec64 *now)
1371 {
1372 	if (!timespec64_equal(&inode->i_mtime, now) ||
1373 	    !timespec64_equal(&inode->i_ctime, now))
1374 		return 1;
1375 	return 0;
1376 }
1377 
1378 /**
1379  * ubifs_update_time - update time of inode.
1380  * @inode: inode to update
1381  *
1382  * This function updates time of the inode.
1383  */
1384 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1385 			     int flags)
1386 {
1387 	struct ubifs_inode *ui = ubifs_inode(inode);
1388 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1389 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1390 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1391 	int iflags = I_DIRTY_TIME;
1392 	int err, release;
1393 
1394 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1395 		return generic_update_time(inode, time, flags);
1396 
1397 	err = ubifs_budget_space(c, &req);
1398 	if (err)
1399 		return err;
1400 
1401 	mutex_lock(&ui->ui_mutex);
1402 	if (flags & S_ATIME)
1403 		inode->i_atime = *time;
1404 	if (flags & S_CTIME)
1405 		inode->i_ctime = *time;
1406 	if (flags & S_MTIME)
1407 		inode->i_mtime = *time;
1408 
1409 	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1410 		iflags |= I_DIRTY_SYNC;
1411 
1412 	release = ui->dirty;
1413 	__mark_inode_dirty(inode, iflags);
1414 	mutex_unlock(&ui->ui_mutex);
1415 	if (release)
1416 		ubifs_release_budget(c, &req);
1417 	return 0;
1418 }
1419 
1420 /**
1421  * update_mctime - update mtime and ctime of an inode.
1422  * @inode: inode to update
1423  *
1424  * This function updates mtime and ctime of the inode if it is not equivalent to
1425  * current time. Returns zero in case of success and a negative error code in
1426  * case of failure.
1427  */
1428 static int update_mctime(struct inode *inode)
1429 {
1430 	struct timespec64 now = current_time(inode);
1431 	struct ubifs_inode *ui = ubifs_inode(inode);
1432 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1433 
1434 	if (mctime_update_needed(inode, &now)) {
1435 		int err, release;
1436 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1437 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1438 
1439 		err = ubifs_budget_space(c, &req);
1440 		if (err)
1441 			return err;
1442 
1443 		mutex_lock(&ui->ui_mutex);
1444 		inode->i_mtime = inode->i_ctime = current_time(inode);
1445 		release = ui->dirty;
1446 		mark_inode_dirty_sync(inode);
1447 		mutex_unlock(&ui->ui_mutex);
1448 		if (release)
1449 			ubifs_release_budget(c, &req);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1456 {
1457 	int err = update_mctime(file_inode(iocb->ki_filp));
1458 	if (err)
1459 		return err;
1460 
1461 	return generic_file_write_iter(iocb, from);
1462 }
1463 
1464 static int ubifs_set_page_dirty(struct page *page)
1465 {
1466 	int ret;
1467 	struct inode *inode = page->mapping->host;
1468 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1469 
1470 	ret = __set_page_dirty_nobuffers(page);
1471 	/*
1472 	 * An attempt to dirty a page without budgeting for it - should not
1473 	 * happen.
1474 	 */
1475 	ubifs_assert(c, ret == 0);
1476 	return ret;
1477 }
1478 
1479 #ifdef CONFIG_MIGRATION
1480 static int ubifs_migrate_page(struct address_space *mapping,
1481 		struct page *newpage, struct page *page, enum migrate_mode mode)
1482 {
1483 	int rc;
1484 
1485 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
1486 	if (rc != MIGRATEPAGE_SUCCESS)
1487 		return rc;
1488 
1489 	if (PagePrivate(page)) {
1490 		ClearPagePrivate(page);
1491 		SetPagePrivate(newpage);
1492 	}
1493 
1494 	if (mode != MIGRATE_SYNC_NO_COPY)
1495 		migrate_page_copy(newpage, page);
1496 	else
1497 		migrate_page_states(newpage, page);
1498 	return MIGRATEPAGE_SUCCESS;
1499 }
1500 #endif
1501 
1502 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1503 {
1504 	struct inode *inode = page->mapping->host;
1505 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1506 
1507 	/*
1508 	 * An attempt to release a dirty page without budgeting for it - should
1509 	 * not happen.
1510 	 */
1511 	if (PageWriteback(page))
1512 		return 0;
1513 	ubifs_assert(c, PagePrivate(page));
1514 	ubifs_assert(c, 0);
1515 	ClearPagePrivate(page);
1516 	ClearPageChecked(page);
1517 	return 1;
1518 }
1519 
1520 /*
1521  * mmap()d file has taken write protection fault and is being made writable.
1522  * UBIFS must ensure page is budgeted for.
1523  */
1524 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1525 {
1526 	struct page *page = vmf->page;
1527 	struct inode *inode = file_inode(vmf->vma->vm_file);
1528 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1529 	struct timespec64 now = current_time(inode);
1530 	struct ubifs_budget_req req = { .new_page = 1 };
1531 	int err, update_time;
1532 
1533 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1534 		i_size_read(inode));
1535 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1536 
1537 	if (unlikely(c->ro_error))
1538 		return VM_FAULT_SIGBUS; /* -EROFS */
1539 
1540 	/*
1541 	 * We have not locked @page so far so we may budget for changing the
1542 	 * page. Note, we cannot do this after we locked the page, because
1543 	 * budgeting may cause write-back which would cause deadlock.
1544 	 *
1545 	 * At the moment we do not know whether the page is dirty or not, so we
1546 	 * assume that it is not and budget for a new page. We could look at
1547 	 * the @PG_private flag and figure this out, but we may race with write
1548 	 * back and the page state may change by the time we lock it, so this
1549 	 * would need additional care. We do not bother with this at the
1550 	 * moment, although it might be good idea to do. Instead, we allocate
1551 	 * budget for a new page and amend it later on if the page was in fact
1552 	 * dirty.
1553 	 *
1554 	 * The budgeting-related logic of this function is similar to what we
1555 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1556 	 * for more comments.
1557 	 */
1558 	update_time = mctime_update_needed(inode, &now);
1559 	if (update_time)
1560 		/*
1561 		 * We have to change inode time stamp which requires extra
1562 		 * budgeting.
1563 		 */
1564 		req.dirtied_ino = 1;
1565 
1566 	err = ubifs_budget_space(c, &req);
1567 	if (unlikely(err)) {
1568 		if (err == -ENOSPC)
1569 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1570 				   inode->i_ino);
1571 		return VM_FAULT_SIGBUS;
1572 	}
1573 
1574 	lock_page(page);
1575 	if (unlikely(page->mapping != inode->i_mapping ||
1576 		     page_offset(page) > i_size_read(inode))) {
1577 		/* Page got truncated out from underneath us */
1578 		goto sigbus;
1579 	}
1580 
1581 	if (PagePrivate(page))
1582 		release_new_page_budget(c);
1583 	else {
1584 		if (!PageChecked(page))
1585 			ubifs_convert_page_budget(c);
1586 		SetPagePrivate(page);
1587 		atomic_long_inc(&c->dirty_pg_cnt);
1588 		__set_page_dirty_nobuffers(page);
1589 	}
1590 
1591 	if (update_time) {
1592 		int release;
1593 		struct ubifs_inode *ui = ubifs_inode(inode);
1594 
1595 		mutex_lock(&ui->ui_mutex);
1596 		inode->i_mtime = inode->i_ctime = current_time(inode);
1597 		release = ui->dirty;
1598 		mark_inode_dirty_sync(inode);
1599 		mutex_unlock(&ui->ui_mutex);
1600 		if (release)
1601 			ubifs_release_dirty_inode_budget(c, ui);
1602 	}
1603 
1604 	wait_for_stable_page(page);
1605 	return VM_FAULT_LOCKED;
1606 
1607 sigbus:
1608 	unlock_page(page);
1609 	ubifs_release_budget(c, &req);
1610 	return VM_FAULT_SIGBUS;
1611 }
1612 
1613 static const struct vm_operations_struct ubifs_file_vm_ops = {
1614 	.fault        = filemap_fault,
1615 	.map_pages = filemap_map_pages,
1616 	.page_mkwrite = ubifs_vm_page_mkwrite,
1617 };
1618 
1619 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1620 {
1621 	int err;
1622 
1623 	err = generic_file_mmap(file, vma);
1624 	if (err)
1625 		return err;
1626 	vma->vm_ops = &ubifs_file_vm_ops;
1627 
1628 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1629 		file_accessed(file);
1630 
1631 	return 0;
1632 }
1633 
1634 static const char *ubifs_get_link(struct dentry *dentry,
1635 					    struct inode *inode,
1636 					    struct delayed_call *done)
1637 {
1638 	struct ubifs_inode *ui = ubifs_inode(inode);
1639 
1640 	if (!IS_ENCRYPTED(inode))
1641 		return ui->data;
1642 
1643 	if (!dentry)
1644 		return ERR_PTR(-ECHILD);
1645 
1646 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1647 }
1648 
1649 const struct address_space_operations ubifs_file_address_operations = {
1650 	.readpage       = ubifs_readpage,
1651 	.writepage      = ubifs_writepage,
1652 	.write_begin    = ubifs_write_begin,
1653 	.write_end      = ubifs_write_end,
1654 	.invalidatepage = ubifs_invalidatepage,
1655 	.set_page_dirty = ubifs_set_page_dirty,
1656 #ifdef CONFIG_MIGRATION
1657 	.migratepage	= ubifs_migrate_page,
1658 #endif
1659 	.releasepage    = ubifs_releasepage,
1660 };
1661 
1662 const struct inode_operations ubifs_file_inode_operations = {
1663 	.setattr     = ubifs_setattr,
1664 	.getattr     = ubifs_getattr,
1665 #ifdef CONFIG_UBIFS_FS_XATTR
1666 	.listxattr   = ubifs_listxattr,
1667 #endif
1668 	.update_time = ubifs_update_time,
1669 };
1670 
1671 const struct inode_operations ubifs_symlink_inode_operations = {
1672 	.get_link    = ubifs_get_link,
1673 	.setattr     = ubifs_setattr,
1674 	.getattr     = ubifs_getattr,
1675 #ifdef CONFIG_UBIFS_FS_XATTR
1676 	.listxattr   = ubifs_listxattr,
1677 #endif
1678 	.update_time = ubifs_update_time,
1679 };
1680 
1681 const struct file_operations ubifs_file_operations = {
1682 	.llseek         = generic_file_llseek,
1683 	.read_iter      = generic_file_read_iter,
1684 	.write_iter     = ubifs_write_iter,
1685 	.mmap           = ubifs_file_mmap,
1686 	.fsync          = ubifs_fsync,
1687 	.unlocked_ioctl = ubifs_ioctl,
1688 	.splice_read	= generic_file_splice_read,
1689 	.splice_write	= iter_file_splice_write,
1690 	.open		= fscrypt_file_open,
1691 #ifdef CONFIG_COMPAT
1692 	.compat_ioctl   = ubifs_compat_ioctl,
1693 #endif
1694 };
1695