1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions that manage the running of the commit process. 25 * Each affected module has its own functions to accomplish their part in the 26 * commit and those functions are called here. 27 * 28 * The commit is the process whereby all updates to the index and LEB properties 29 * are written out together and the journal becomes empty. This keeps the 30 * file system consistent - at all times the state can be recreated by reading 31 * the index and LEB properties and then replaying the journal. 32 * 33 * The commit is split into two parts named "commit start" and "commit end". 34 * During commit start, the commit process has exclusive access to the journal 35 * by holding the commit semaphore down for writing. As few I/O operations as 36 * possible are performed during commit start, instead the nodes that are to be 37 * written are merely identified. During commit end, the commit semaphore is no 38 * longer held and the journal is again in operation, allowing users to continue 39 * to use the file system while the bulk of the commit I/O is performed. The 40 * purpose of this two-step approach is to prevent the commit from causing any 41 * latency blips. Note that in any case, the commit does not prevent lookups 42 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page 43 * cache. 44 */ 45 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/slab.h> 49 #include "ubifs.h" 50 51 /* 52 * nothing_to_commit - check if there is nothing to commit. 53 * @c: UBIFS file-system description object 54 * 55 * This is a helper function which checks if there is anything to commit. It is 56 * used as an optimization to avoid starting the commit if it is not really 57 * necessary. Indeed, the commit operation always assumes flash I/O (e.g., 58 * writing the commit start node to the log), and it is better to avoid doing 59 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is 60 * nothing to commit, it is more optimal to avoid any flash I/O. 61 * 62 * This function has to be called with @c->commit_sem locked for writing - 63 * this function does not take LPT/TNC locks because the @c->commit_sem 64 * guarantees that we have exclusive access to the TNC and LPT data structures. 65 * 66 * This function returns %1 if there is nothing to commit and %0 otherwise. 67 */ 68 static int nothing_to_commit(struct ubifs_info *c) 69 { 70 /* 71 * During mounting or remounting from R/O mode to R/W mode we may 72 * commit for various recovery-related reasons. 73 */ 74 if (c->mounting || c->remounting_rw) 75 return 0; 76 77 /* 78 * If the root TNC node is dirty, we definitely have something to 79 * commit. 80 */ 81 if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode)) 82 return 0; 83 84 /* 85 * Even though the TNC is clean, the LPT tree may have dirty nodes. For 86 * example, this may happen if the budgeting subsystem invoked GC to 87 * make some free space, and the GC found an LEB with only dirty and 88 * free space. In this case GC would just change the lprops of this 89 * LEB (by turning all space into free space) and unmap it. 90 */ 91 if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) 92 return 0; 93 94 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 95 ubifs_assert(c->dirty_pn_cnt == 0); 96 ubifs_assert(c->dirty_nn_cnt == 0); 97 98 return 1; 99 } 100 101 /** 102 * do_commit - commit the journal. 103 * @c: UBIFS file-system description object 104 * 105 * This function implements UBIFS commit. It has to be called with commit lock 106 * locked. Returns zero in case of success and a negative error code in case of 107 * failure. 108 */ 109 static int do_commit(struct ubifs_info *c) 110 { 111 int err, new_ltail_lnum, old_ltail_lnum, i; 112 struct ubifs_zbranch zroot; 113 struct ubifs_lp_stats lst; 114 115 dbg_cmt("start"); 116 ubifs_assert(!c->ro_media && !c->ro_mount); 117 118 if (c->ro_error) { 119 err = -EROFS; 120 goto out_up; 121 } 122 123 if (nothing_to_commit(c)) { 124 up_write(&c->commit_sem); 125 err = 0; 126 goto out_cancel; 127 } 128 129 /* Sync all write buffers (necessary for recovery) */ 130 for (i = 0; i < c->jhead_cnt; i++) { 131 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 132 if (err) 133 goto out_up; 134 } 135 136 c->cmt_no += 1; 137 err = ubifs_gc_start_commit(c); 138 if (err) 139 goto out_up; 140 err = dbg_check_lprops(c); 141 if (err) 142 goto out_up; 143 err = ubifs_log_start_commit(c, &new_ltail_lnum); 144 if (err) 145 goto out_up; 146 err = ubifs_tnc_start_commit(c, &zroot); 147 if (err) 148 goto out_up; 149 err = ubifs_lpt_start_commit(c); 150 if (err) 151 goto out_up; 152 err = ubifs_orphan_start_commit(c); 153 if (err) 154 goto out_up; 155 156 ubifs_get_lp_stats(c, &lst); 157 158 up_write(&c->commit_sem); 159 160 err = ubifs_tnc_end_commit(c); 161 if (err) 162 goto out; 163 err = ubifs_lpt_end_commit(c); 164 if (err) 165 goto out; 166 err = ubifs_orphan_end_commit(c); 167 if (err) 168 goto out; 169 old_ltail_lnum = c->ltail_lnum; 170 err = ubifs_log_end_commit(c, new_ltail_lnum); 171 if (err) 172 goto out; 173 err = dbg_check_old_index(c, &zroot); 174 if (err) 175 goto out; 176 177 mutex_lock(&c->mst_mutex); 178 c->mst_node->cmt_no = cpu_to_le64(c->cmt_no); 179 c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum); 180 c->mst_node->root_lnum = cpu_to_le32(zroot.lnum); 181 c->mst_node->root_offs = cpu_to_le32(zroot.offs); 182 c->mst_node->root_len = cpu_to_le32(zroot.len); 183 c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum); 184 c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs); 185 c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz); 186 c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum); 187 c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs); 188 c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum); 189 c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs); 190 c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum); 191 c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs); 192 c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum); 193 c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs); 194 c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum); 195 c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs); 196 c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs); 197 c->mst_node->total_free = cpu_to_le64(lst.total_free); 198 c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty); 199 c->mst_node->total_used = cpu_to_le64(lst.total_used); 200 c->mst_node->total_dead = cpu_to_le64(lst.total_dead); 201 c->mst_node->total_dark = cpu_to_le64(lst.total_dark); 202 if (c->no_orphs) 203 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 204 else 205 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS); 206 err = ubifs_write_master(c); 207 mutex_unlock(&c->mst_mutex); 208 if (err) 209 goto out; 210 211 err = ubifs_log_post_commit(c, old_ltail_lnum); 212 if (err) 213 goto out; 214 err = ubifs_gc_end_commit(c); 215 if (err) 216 goto out; 217 err = ubifs_lpt_post_commit(c); 218 if (err) 219 goto out; 220 221 out_cancel: 222 spin_lock(&c->cs_lock); 223 c->cmt_state = COMMIT_RESTING; 224 wake_up(&c->cmt_wq); 225 dbg_cmt("commit end"); 226 spin_unlock(&c->cs_lock); 227 return 0; 228 229 out_up: 230 up_write(&c->commit_sem); 231 out: 232 ubifs_err("commit failed, error %d", err); 233 spin_lock(&c->cs_lock); 234 c->cmt_state = COMMIT_BROKEN; 235 wake_up(&c->cmt_wq); 236 spin_unlock(&c->cs_lock); 237 ubifs_ro_mode(c, err); 238 return err; 239 } 240 241 /** 242 * run_bg_commit - run background commit if it is needed. 243 * @c: UBIFS file-system description object 244 * 245 * This function runs background commit if it is needed. Returns zero in case 246 * of success and a negative error code in case of failure. 247 */ 248 static int run_bg_commit(struct ubifs_info *c) 249 { 250 spin_lock(&c->cs_lock); 251 /* 252 * Run background commit only if background commit was requested or if 253 * commit is required. 254 */ 255 if (c->cmt_state != COMMIT_BACKGROUND && 256 c->cmt_state != COMMIT_REQUIRED) 257 goto out; 258 spin_unlock(&c->cs_lock); 259 260 down_write(&c->commit_sem); 261 spin_lock(&c->cs_lock); 262 if (c->cmt_state == COMMIT_REQUIRED) 263 c->cmt_state = COMMIT_RUNNING_REQUIRED; 264 else if (c->cmt_state == COMMIT_BACKGROUND) 265 c->cmt_state = COMMIT_RUNNING_BACKGROUND; 266 else 267 goto out_cmt_unlock; 268 spin_unlock(&c->cs_lock); 269 270 return do_commit(c); 271 272 out_cmt_unlock: 273 up_write(&c->commit_sem); 274 out: 275 spin_unlock(&c->cs_lock); 276 return 0; 277 } 278 279 /** 280 * ubifs_bg_thread - UBIFS background thread function. 281 * @info: points to the file-system description object 282 * 283 * This function implements various file-system background activities: 284 * o when a write-buffer timer expires it synchronizes the appropriate 285 * write-buffer; 286 * o when the journal is about to be full, it starts in-advance commit. 287 * 288 * Note, other stuff like background garbage collection may be added here in 289 * future. 290 */ 291 int ubifs_bg_thread(void *info) 292 { 293 int err; 294 struct ubifs_info *c = info; 295 296 ubifs_msg("background thread \"%s\" started, PID %d", 297 c->bgt_name, current->pid); 298 set_freezable(); 299 300 while (1) { 301 if (kthread_should_stop()) 302 break; 303 304 if (try_to_freeze()) 305 continue; 306 307 set_current_state(TASK_INTERRUPTIBLE); 308 /* Check if there is something to do */ 309 if (!c->need_bgt) { 310 /* 311 * Nothing prevents us from going sleep now and 312 * be never woken up and block the task which 313 * could wait in 'kthread_stop()' forever. 314 */ 315 if (kthread_should_stop()) 316 break; 317 schedule(); 318 continue; 319 } else 320 __set_current_state(TASK_RUNNING); 321 322 c->need_bgt = 0; 323 err = ubifs_bg_wbufs_sync(c); 324 if (err) 325 ubifs_ro_mode(c, err); 326 327 run_bg_commit(c); 328 cond_resched(); 329 } 330 331 ubifs_msg("background thread \"%s\" stops", c->bgt_name); 332 return 0; 333 } 334 335 /** 336 * ubifs_commit_required - set commit state to "required". 337 * @c: UBIFS file-system description object 338 * 339 * This function is called if a commit is required but cannot be done from the 340 * calling function, so it is just flagged instead. 341 */ 342 void ubifs_commit_required(struct ubifs_info *c) 343 { 344 spin_lock(&c->cs_lock); 345 switch (c->cmt_state) { 346 case COMMIT_RESTING: 347 case COMMIT_BACKGROUND: 348 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 349 dbg_cstate(COMMIT_REQUIRED)); 350 c->cmt_state = COMMIT_REQUIRED; 351 break; 352 case COMMIT_RUNNING_BACKGROUND: 353 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 354 dbg_cstate(COMMIT_RUNNING_REQUIRED)); 355 c->cmt_state = COMMIT_RUNNING_REQUIRED; 356 break; 357 case COMMIT_REQUIRED: 358 case COMMIT_RUNNING_REQUIRED: 359 case COMMIT_BROKEN: 360 break; 361 } 362 spin_unlock(&c->cs_lock); 363 } 364 365 /** 366 * ubifs_request_bg_commit - notify the background thread to do a commit. 367 * @c: UBIFS file-system description object 368 * 369 * This function is called if the journal is full enough to make a commit 370 * worthwhile, so background thread is kicked to start it. 371 */ 372 void ubifs_request_bg_commit(struct ubifs_info *c) 373 { 374 spin_lock(&c->cs_lock); 375 if (c->cmt_state == COMMIT_RESTING) { 376 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 377 dbg_cstate(COMMIT_BACKGROUND)); 378 c->cmt_state = COMMIT_BACKGROUND; 379 spin_unlock(&c->cs_lock); 380 ubifs_wake_up_bgt(c); 381 } else 382 spin_unlock(&c->cs_lock); 383 } 384 385 /** 386 * wait_for_commit - wait for commit. 387 * @c: UBIFS file-system description object 388 * 389 * This function sleeps until the commit operation is no longer running. 390 */ 391 static int wait_for_commit(struct ubifs_info *c) 392 { 393 dbg_cmt("pid %d goes sleep", current->pid); 394 395 /* 396 * The following sleeps if the condition is false, and will be woken 397 * when the commit ends. It is possible, although very unlikely, that we 398 * will wake up and see the subsequent commit running, rather than the 399 * one we were waiting for, and go back to sleep. However, we will be 400 * woken again, so there is no danger of sleeping forever. 401 */ 402 wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND && 403 c->cmt_state != COMMIT_RUNNING_REQUIRED); 404 dbg_cmt("commit finished, pid %d woke up", current->pid); 405 return 0; 406 } 407 408 /** 409 * ubifs_run_commit - run or wait for commit. 410 * @c: UBIFS file-system description object 411 * 412 * This function runs commit and returns zero in case of success and a negative 413 * error code in case of failure. 414 */ 415 int ubifs_run_commit(struct ubifs_info *c) 416 { 417 int err = 0; 418 419 spin_lock(&c->cs_lock); 420 if (c->cmt_state == COMMIT_BROKEN) { 421 err = -EROFS; 422 goto out; 423 } 424 425 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 426 /* 427 * We set the commit state to 'running required' to indicate 428 * that we want it to complete as quickly as possible. 429 */ 430 c->cmt_state = COMMIT_RUNNING_REQUIRED; 431 432 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 433 spin_unlock(&c->cs_lock); 434 return wait_for_commit(c); 435 } 436 spin_unlock(&c->cs_lock); 437 438 /* Ok, the commit is indeed needed */ 439 440 down_write(&c->commit_sem); 441 spin_lock(&c->cs_lock); 442 /* 443 * Since we unlocked 'c->cs_lock', the state may have changed, so 444 * re-check it. 445 */ 446 if (c->cmt_state == COMMIT_BROKEN) { 447 err = -EROFS; 448 goto out_cmt_unlock; 449 } 450 451 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 452 c->cmt_state = COMMIT_RUNNING_REQUIRED; 453 454 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 455 up_write(&c->commit_sem); 456 spin_unlock(&c->cs_lock); 457 return wait_for_commit(c); 458 } 459 c->cmt_state = COMMIT_RUNNING_REQUIRED; 460 spin_unlock(&c->cs_lock); 461 462 err = do_commit(c); 463 return err; 464 465 out_cmt_unlock: 466 up_write(&c->commit_sem); 467 out: 468 spin_unlock(&c->cs_lock); 469 return err; 470 } 471 472 /** 473 * ubifs_gc_should_commit - determine if it is time for GC to run commit. 474 * @c: UBIFS file-system description object 475 * 476 * This function is called by garbage collection to determine if commit should 477 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal 478 * is full enough to start commit, this function returns true. It is not 479 * absolutely necessary to commit yet, but it feels like this should be better 480 * then to keep doing GC. This function returns %1 if GC has to initiate commit 481 * and %0 if not. 482 */ 483 int ubifs_gc_should_commit(struct ubifs_info *c) 484 { 485 int ret = 0; 486 487 spin_lock(&c->cs_lock); 488 if (c->cmt_state == COMMIT_BACKGROUND) { 489 dbg_cmt("commit required now"); 490 c->cmt_state = COMMIT_REQUIRED; 491 } else 492 dbg_cmt("commit not requested"); 493 if (c->cmt_state == COMMIT_REQUIRED) 494 ret = 1; 495 spin_unlock(&c->cs_lock); 496 return ret; 497 } 498 499 /* 500 * Everything below is related to debugging. 501 */ 502 503 /** 504 * struct idx_node - hold index nodes during index tree traversal. 505 * @list: list 506 * @iip: index in parent (slot number of this indexing node in the parent 507 * indexing node) 508 * @upper_key: all keys in this indexing node have to be less or equivalent to 509 * this key 510 * @idx: index node (8-byte aligned because all node structures must be 8-byte 511 * aligned) 512 */ 513 struct idx_node { 514 struct list_head list; 515 int iip; 516 union ubifs_key upper_key; 517 struct ubifs_idx_node idx __aligned(8); 518 }; 519 520 /** 521 * dbg_old_index_check_init - get information for the next old index check. 522 * @c: UBIFS file-system description object 523 * @zroot: root of the index 524 * 525 * This function records information about the index that will be needed for the 526 * next old index check i.e. 'dbg_check_old_index()'. 527 * 528 * This function returns %0 on success and a negative error code on failure. 529 */ 530 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot) 531 { 532 struct ubifs_idx_node *idx; 533 int lnum, offs, len, err = 0; 534 struct ubifs_debug_info *d = c->dbg; 535 536 d->old_zroot = *zroot; 537 lnum = d->old_zroot.lnum; 538 offs = d->old_zroot.offs; 539 len = d->old_zroot.len; 540 541 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 542 if (!idx) 543 return -ENOMEM; 544 545 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 546 if (err) 547 goto out; 548 549 d->old_zroot_level = le16_to_cpu(idx->level); 550 d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum); 551 out: 552 kfree(idx); 553 return err; 554 } 555 556 /** 557 * dbg_check_old_index - check the old copy of the index. 558 * @c: UBIFS file-system description object 559 * @zroot: root of the new index 560 * 561 * In order to be able to recover from an unclean unmount, a complete copy of 562 * the index must exist on flash. This is the "old" index. The commit process 563 * must write the "new" index to flash without overwriting or destroying any 564 * part of the old index. This function is run at commit end in order to check 565 * that the old index does indeed exist completely intact. 566 * 567 * This function returns %0 on success and a negative error code on failure. 568 */ 569 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot) 570 { 571 int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt; 572 int first = 1, iip; 573 struct ubifs_debug_info *d = c->dbg; 574 union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key; 575 unsigned long long uninitialized_var(last_sqnum); 576 struct ubifs_idx_node *idx; 577 struct list_head list; 578 struct idx_node *i; 579 size_t sz; 580 581 if (!dbg_is_chk_index(c)) 582 return 0; 583 584 INIT_LIST_HEAD(&list); 585 586 sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) - 587 UBIFS_IDX_NODE_SZ; 588 589 /* Start at the old zroot */ 590 lnum = d->old_zroot.lnum; 591 offs = d->old_zroot.offs; 592 len = d->old_zroot.len; 593 iip = 0; 594 595 /* 596 * Traverse the index tree preorder depth-first i.e. do a node and then 597 * its subtrees from left to right. 598 */ 599 while (1) { 600 struct ubifs_branch *br; 601 602 /* Get the next index node */ 603 i = kmalloc(sz, GFP_NOFS); 604 if (!i) { 605 err = -ENOMEM; 606 goto out_free; 607 } 608 i->iip = iip; 609 /* Keep the index nodes on our path in a linked list */ 610 list_add_tail(&i->list, &list); 611 /* Read the index node */ 612 idx = &i->idx; 613 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 614 if (err) 615 goto out_free; 616 /* Validate index node */ 617 child_cnt = le16_to_cpu(idx->child_cnt); 618 if (child_cnt < 1 || child_cnt > c->fanout) { 619 err = 1; 620 goto out_dump; 621 } 622 if (first) { 623 first = 0; 624 /* Check root level and sqnum */ 625 if (le16_to_cpu(idx->level) != d->old_zroot_level) { 626 err = 2; 627 goto out_dump; 628 } 629 if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) { 630 err = 3; 631 goto out_dump; 632 } 633 /* Set last values as though root had a parent */ 634 last_level = le16_to_cpu(idx->level) + 1; 635 last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1; 636 key_read(c, ubifs_idx_key(c, idx), &lower_key); 637 highest_ino_key(c, &upper_key, INUM_WATERMARK); 638 } 639 key_copy(c, &upper_key, &i->upper_key); 640 if (le16_to_cpu(idx->level) != last_level - 1) { 641 err = 3; 642 goto out_dump; 643 } 644 /* 645 * The index is always written bottom up hence a child's sqnum 646 * is always less than the parents. 647 */ 648 if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) { 649 err = 4; 650 goto out_dump; 651 } 652 /* Check key range */ 653 key_read(c, ubifs_idx_key(c, idx), &l_key); 654 br = ubifs_idx_branch(c, idx, child_cnt - 1); 655 key_read(c, &br->key, &u_key); 656 if (keys_cmp(c, &lower_key, &l_key) > 0) { 657 err = 5; 658 goto out_dump; 659 } 660 if (keys_cmp(c, &upper_key, &u_key) < 0) { 661 err = 6; 662 goto out_dump; 663 } 664 if (keys_cmp(c, &upper_key, &u_key) == 0) 665 if (!is_hash_key(c, &u_key)) { 666 err = 7; 667 goto out_dump; 668 } 669 /* Go to next index node */ 670 if (le16_to_cpu(idx->level) == 0) { 671 /* At the bottom, so go up until can go right */ 672 while (1) { 673 /* Drop the bottom of the list */ 674 list_del(&i->list); 675 kfree(i); 676 /* No more list means we are done */ 677 if (list_empty(&list)) 678 goto out; 679 /* Look at the new bottom */ 680 i = list_entry(list.prev, struct idx_node, 681 list); 682 idx = &i->idx; 683 /* Can we go right */ 684 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 685 iip = iip + 1; 686 break; 687 } else 688 /* Nope, so go up again */ 689 iip = i->iip; 690 } 691 } else 692 /* Go down left */ 693 iip = 0; 694 /* 695 * We have the parent in 'idx' and now we set up for reading the 696 * child pointed to by slot 'iip'. 697 */ 698 last_level = le16_to_cpu(idx->level); 699 last_sqnum = le64_to_cpu(idx->ch.sqnum); 700 br = ubifs_idx_branch(c, idx, iip); 701 lnum = le32_to_cpu(br->lnum); 702 offs = le32_to_cpu(br->offs); 703 len = le32_to_cpu(br->len); 704 key_read(c, &br->key, &lower_key); 705 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 706 br = ubifs_idx_branch(c, idx, iip + 1); 707 key_read(c, &br->key, &upper_key); 708 } else 709 key_copy(c, &i->upper_key, &upper_key); 710 } 711 out: 712 err = dbg_old_index_check_init(c, zroot); 713 if (err) 714 goto out_free; 715 716 return 0; 717 718 out_dump: 719 ubifs_err("dumping index node (iip=%d)", i->iip); 720 ubifs_dump_node(c, idx); 721 list_del(&i->list); 722 kfree(i); 723 if (!list_empty(&list)) { 724 i = list_entry(list.prev, struct idx_node, list); 725 ubifs_err("dumping parent index node"); 726 ubifs_dump_node(c, &i->idx); 727 } 728 out_free: 729 while (!list_empty(&list)) { 730 i = list_entry(list.next, struct idx_node, list); 731 list_del(&i->list); 732 kfree(i); 733 } 734 ubifs_err("failed, error %d", err); 735 if (err > 0) 736 err = -EINVAL; 737 return err; 738 } 739