xref: /openbmc/linux/fs/ubifs/commit.c (revision 8497f696)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include <linux/slab.h>
49 #include "ubifs.h"
50 
51 /*
52  * nothing_to_commit - check if there is nothing to commit.
53  * @c: UBIFS file-system description object
54  *
55  * This is a helper function which checks if there is anything to commit. It is
56  * used as an optimization to avoid starting the commit if it is not really
57  * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
58  * writing the commit start node to the log), and it is better to avoid doing
59  * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
60  * nothing to commit, it is more optimal to avoid any flash I/O.
61  *
62  * This function has to be called with @c->commit_sem locked for writing -
63  * this function does not take LPT/TNC locks because the @c->commit_sem
64  * guarantees that we have exclusive access to the TNC and LPT data structures.
65  *
66  * This function returns %1 if there is nothing to commit and %0 otherwise.
67  */
68 static int nothing_to_commit(struct ubifs_info *c)
69 {
70 	/*
71 	 * During mounting or remounting from R/O mode to R/W mode we may
72 	 * commit for various recovery-related reasons.
73 	 */
74 	if (c->mounting || c->remounting_rw)
75 		return 0;
76 
77 	/*
78 	 * If the root TNC node is dirty, we definitely have something to
79 	 * commit.
80 	 */
81 	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
82 		return 0;
83 
84 	/*
85 	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
86 	 * example, this may happen if the budgeting subsystem invoked GC to
87 	 * make some free space, and the GC found an LEB with only dirty and
88 	 * free space. In this case GC would just change the lprops of this
89 	 * LEB (by turning all space into free space) and unmap it.
90 	 */
91 	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
92 		return 0;
93 
94 	ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
95 	ubifs_assert(c->dirty_pn_cnt == 0);
96 	ubifs_assert(c->dirty_nn_cnt == 0);
97 
98 	return 1;
99 }
100 
101 /**
102  * do_commit - commit the journal.
103  * @c: UBIFS file-system description object
104  *
105  * This function implements UBIFS commit. It has to be called with commit lock
106  * locked. Returns zero in case of success and a negative error code in case of
107  * failure.
108  */
109 static int do_commit(struct ubifs_info *c)
110 {
111 	int err, new_ltail_lnum, old_ltail_lnum, i;
112 	struct ubifs_zbranch zroot;
113 	struct ubifs_lp_stats lst;
114 
115 	dbg_cmt("start");
116 	ubifs_assert(!c->ro_media && !c->ro_mount);
117 
118 	if (c->ro_error) {
119 		err = -EROFS;
120 		goto out_up;
121 	}
122 
123 	if (nothing_to_commit(c)) {
124 		up_write(&c->commit_sem);
125 		err = 0;
126 		goto out_cancel;
127 	}
128 
129 	/* Sync all write buffers (necessary for recovery) */
130 	for (i = 0; i < c->jhead_cnt; i++) {
131 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
132 		if (err)
133 			goto out_up;
134 	}
135 
136 	c->cmt_no += 1;
137 	err = ubifs_gc_start_commit(c);
138 	if (err)
139 		goto out_up;
140 	err = dbg_check_lprops(c);
141 	if (err)
142 		goto out_up;
143 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
144 	if (err)
145 		goto out_up;
146 	err = ubifs_tnc_start_commit(c, &zroot);
147 	if (err)
148 		goto out_up;
149 	err = ubifs_lpt_start_commit(c);
150 	if (err)
151 		goto out_up;
152 	err = ubifs_orphan_start_commit(c);
153 	if (err)
154 		goto out_up;
155 
156 	ubifs_get_lp_stats(c, &lst);
157 
158 	up_write(&c->commit_sem);
159 
160 	err = ubifs_tnc_end_commit(c);
161 	if (err)
162 		goto out;
163 	err = ubifs_lpt_end_commit(c);
164 	if (err)
165 		goto out;
166 	err = ubifs_orphan_end_commit(c);
167 	if (err)
168 		goto out;
169 	old_ltail_lnum = c->ltail_lnum;
170 	err = ubifs_log_end_commit(c, new_ltail_lnum);
171 	if (err)
172 		goto out;
173 	err = dbg_check_old_index(c, &zroot);
174 	if (err)
175 		goto out;
176 
177 	mutex_lock(&c->mst_mutex);
178 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
179 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
180 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
181 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
182 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
183 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
184 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
185 	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
186 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
187 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
188 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
189 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
190 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
191 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
192 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
193 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
194 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
195 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
196 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
197 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
198 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
199 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
200 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
201 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
202 	if (c->no_orphs)
203 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
204 	else
205 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
206 	err = ubifs_write_master(c);
207 	mutex_unlock(&c->mst_mutex);
208 	if (err)
209 		goto out;
210 
211 	err = ubifs_log_post_commit(c, old_ltail_lnum);
212 	if (err)
213 		goto out;
214 	err = ubifs_gc_end_commit(c);
215 	if (err)
216 		goto out;
217 	err = ubifs_lpt_post_commit(c);
218 	if (err)
219 		goto out;
220 
221 out_cancel:
222 	spin_lock(&c->cs_lock);
223 	c->cmt_state = COMMIT_RESTING;
224 	wake_up(&c->cmt_wq);
225 	dbg_cmt("commit end");
226 	spin_unlock(&c->cs_lock);
227 	return 0;
228 
229 out_up:
230 	up_write(&c->commit_sem);
231 out:
232 	ubifs_err("commit failed, error %d", err);
233 	spin_lock(&c->cs_lock);
234 	c->cmt_state = COMMIT_BROKEN;
235 	wake_up(&c->cmt_wq);
236 	spin_unlock(&c->cs_lock);
237 	ubifs_ro_mode(c, err);
238 	return err;
239 }
240 
241 /**
242  * run_bg_commit - run background commit if it is needed.
243  * @c: UBIFS file-system description object
244  *
245  * This function runs background commit if it is needed. Returns zero in case
246  * of success and a negative error code in case of failure.
247  */
248 static int run_bg_commit(struct ubifs_info *c)
249 {
250 	spin_lock(&c->cs_lock);
251 	/*
252 	 * Run background commit only if background commit was requested or if
253 	 * commit is required.
254 	 */
255 	if (c->cmt_state != COMMIT_BACKGROUND &&
256 	    c->cmt_state != COMMIT_REQUIRED)
257 		goto out;
258 	spin_unlock(&c->cs_lock);
259 
260 	down_write(&c->commit_sem);
261 	spin_lock(&c->cs_lock);
262 	if (c->cmt_state == COMMIT_REQUIRED)
263 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
264 	else if (c->cmt_state == COMMIT_BACKGROUND)
265 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
266 	else
267 		goto out_cmt_unlock;
268 	spin_unlock(&c->cs_lock);
269 
270 	return do_commit(c);
271 
272 out_cmt_unlock:
273 	up_write(&c->commit_sem);
274 out:
275 	spin_unlock(&c->cs_lock);
276 	return 0;
277 }
278 
279 /**
280  * ubifs_bg_thread - UBIFS background thread function.
281  * @info: points to the file-system description object
282  *
283  * This function implements various file-system background activities:
284  * o when a write-buffer timer expires it synchronizes the appropriate
285  *   write-buffer;
286  * o when the journal is about to be full, it starts in-advance commit.
287  *
288  * Note, other stuff like background garbage collection may be added here in
289  * future.
290  */
291 int ubifs_bg_thread(void *info)
292 {
293 	int err;
294 	struct ubifs_info *c = info;
295 
296 	dbg_msg("background thread \"%s\" started, PID %d",
297 		c->bgt_name, current->pid);
298 	set_freezable();
299 
300 	while (1) {
301 		if (kthread_should_stop())
302 			break;
303 
304 		if (try_to_freeze())
305 			continue;
306 
307 		set_current_state(TASK_INTERRUPTIBLE);
308 		/* Check if there is something to do */
309 		if (!c->need_bgt) {
310 			/*
311 			 * Nothing prevents us from going sleep now and
312 			 * be never woken up and block the task which
313 			 * could wait in 'kthread_stop()' forever.
314 			 */
315 			if (kthread_should_stop())
316 				break;
317 			schedule();
318 			continue;
319 		} else
320 			__set_current_state(TASK_RUNNING);
321 
322 		c->need_bgt = 0;
323 		err = ubifs_bg_wbufs_sync(c);
324 		if (err)
325 			ubifs_ro_mode(c, err);
326 
327 		run_bg_commit(c);
328 		cond_resched();
329 	}
330 
331 	dbg_msg("background thread \"%s\" stops", c->bgt_name);
332 	return 0;
333 }
334 
335 /**
336  * ubifs_commit_required - set commit state to "required".
337  * @c: UBIFS file-system description object
338  *
339  * This function is called if a commit is required but cannot be done from the
340  * calling function, so it is just flagged instead.
341  */
342 void ubifs_commit_required(struct ubifs_info *c)
343 {
344 	spin_lock(&c->cs_lock);
345 	switch (c->cmt_state) {
346 	case COMMIT_RESTING:
347 	case COMMIT_BACKGROUND:
348 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
349 			dbg_cstate(COMMIT_REQUIRED));
350 		c->cmt_state = COMMIT_REQUIRED;
351 		break;
352 	case COMMIT_RUNNING_BACKGROUND:
353 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
354 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
355 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
356 		break;
357 	case COMMIT_REQUIRED:
358 	case COMMIT_RUNNING_REQUIRED:
359 	case COMMIT_BROKEN:
360 		break;
361 	}
362 	spin_unlock(&c->cs_lock);
363 }
364 
365 /**
366  * ubifs_request_bg_commit - notify the background thread to do a commit.
367  * @c: UBIFS file-system description object
368  *
369  * This function is called if the journal is full enough to make a commit
370  * worthwhile, so background thread is kicked to start it.
371  */
372 void ubifs_request_bg_commit(struct ubifs_info *c)
373 {
374 	spin_lock(&c->cs_lock);
375 	if (c->cmt_state == COMMIT_RESTING) {
376 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
377 			dbg_cstate(COMMIT_BACKGROUND));
378 		c->cmt_state = COMMIT_BACKGROUND;
379 		spin_unlock(&c->cs_lock);
380 		ubifs_wake_up_bgt(c);
381 	} else
382 		spin_unlock(&c->cs_lock);
383 }
384 
385 /**
386  * wait_for_commit - wait for commit.
387  * @c: UBIFS file-system description object
388  *
389  * This function sleeps until the commit operation is no longer running.
390  */
391 static int wait_for_commit(struct ubifs_info *c)
392 {
393 	dbg_cmt("pid %d goes sleep", current->pid);
394 
395 	/*
396 	 * The following sleeps if the condition is false, and will be woken
397 	 * when the commit ends. It is possible, although very unlikely, that we
398 	 * will wake up and see the subsequent commit running, rather than the
399 	 * one we were waiting for, and go back to sleep.  However, we will be
400 	 * woken again, so there is no danger of sleeping forever.
401 	 */
402 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
403 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
404 	dbg_cmt("commit finished, pid %d woke up", current->pid);
405 	return 0;
406 }
407 
408 /**
409  * ubifs_run_commit - run or wait for commit.
410  * @c: UBIFS file-system description object
411  *
412  * This function runs commit and returns zero in case of success and a negative
413  * error code in case of failure.
414  */
415 int ubifs_run_commit(struct ubifs_info *c)
416 {
417 	int err = 0;
418 
419 	spin_lock(&c->cs_lock);
420 	if (c->cmt_state == COMMIT_BROKEN) {
421 		err = -EROFS;
422 		goto out;
423 	}
424 
425 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
426 		/*
427 		 * We set the commit state to 'running required' to indicate
428 		 * that we want it to complete as quickly as possible.
429 		 */
430 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
431 
432 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
433 		spin_unlock(&c->cs_lock);
434 		return wait_for_commit(c);
435 	}
436 	spin_unlock(&c->cs_lock);
437 
438 	/* Ok, the commit is indeed needed */
439 
440 	down_write(&c->commit_sem);
441 	spin_lock(&c->cs_lock);
442 	/*
443 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
444 	 * re-check it.
445 	 */
446 	if (c->cmt_state == COMMIT_BROKEN) {
447 		err = -EROFS;
448 		goto out_cmt_unlock;
449 	}
450 
451 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
452 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
453 
454 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
455 		up_write(&c->commit_sem);
456 		spin_unlock(&c->cs_lock);
457 		return wait_for_commit(c);
458 	}
459 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
460 	spin_unlock(&c->cs_lock);
461 
462 	err = do_commit(c);
463 	return err;
464 
465 out_cmt_unlock:
466 	up_write(&c->commit_sem);
467 out:
468 	spin_unlock(&c->cs_lock);
469 	return err;
470 }
471 
472 /**
473  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
474  * @c: UBIFS file-system description object
475  *
476  * This function is called by garbage collection to determine if commit should
477  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
478  * is full enough to start commit, this function returns true. It is not
479  * absolutely necessary to commit yet, but it feels like this should be better
480  * then to keep doing GC. This function returns %1 if GC has to initiate commit
481  * and %0 if not.
482  */
483 int ubifs_gc_should_commit(struct ubifs_info *c)
484 {
485 	int ret = 0;
486 
487 	spin_lock(&c->cs_lock);
488 	if (c->cmt_state == COMMIT_BACKGROUND) {
489 		dbg_cmt("commit required now");
490 		c->cmt_state = COMMIT_REQUIRED;
491 	} else
492 		dbg_cmt("commit not requested");
493 	if (c->cmt_state == COMMIT_REQUIRED)
494 		ret = 1;
495 	spin_unlock(&c->cs_lock);
496 	return ret;
497 }
498 
499 /*
500  * Everything below is related to debugging.
501  */
502 
503 /**
504  * struct idx_node - hold index nodes during index tree traversal.
505  * @list: list
506  * @iip: index in parent (slot number of this indexing node in the parent
507  *       indexing node)
508  * @upper_key: all keys in this indexing node have to be less or equivalent to
509  *             this key
510  * @idx: index node (8-byte aligned because all node structures must be 8-byte
511  *       aligned)
512  */
513 struct idx_node {
514 	struct list_head list;
515 	int iip;
516 	union ubifs_key upper_key;
517 	struct ubifs_idx_node idx __attribute__((aligned(8)));
518 };
519 
520 /**
521  * dbg_old_index_check_init - get information for the next old index check.
522  * @c: UBIFS file-system description object
523  * @zroot: root of the index
524  *
525  * This function records information about the index that will be needed for the
526  * next old index check i.e. 'dbg_check_old_index()'.
527  *
528  * This function returns %0 on success and a negative error code on failure.
529  */
530 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
531 {
532 	struct ubifs_idx_node *idx;
533 	int lnum, offs, len, err = 0;
534 	struct ubifs_debug_info *d = c->dbg;
535 
536 	d->old_zroot = *zroot;
537 	lnum = d->old_zroot.lnum;
538 	offs = d->old_zroot.offs;
539 	len = d->old_zroot.len;
540 
541 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
542 	if (!idx)
543 		return -ENOMEM;
544 
545 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
546 	if (err)
547 		goto out;
548 
549 	d->old_zroot_level = le16_to_cpu(idx->level);
550 	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
551 out:
552 	kfree(idx);
553 	return err;
554 }
555 
556 /**
557  * dbg_check_old_index - check the old copy of the index.
558  * @c: UBIFS file-system description object
559  * @zroot: root of the new index
560  *
561  * In order to be able to recover from an unclean unmount, a complete copy of
562  * the index must exist on flash. This is the "old" index. The commit process
563  * must write the "new" index to flash without overwriting or destroying any
564  * part of the old index. This function is run at commit end in order to check
565  * that the old index does indeed exist completely intact.
566  *
567  * This function returns %0 on success and a negative error code on failure.
568  */
569 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
570 {
571 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
572 	int first = 1, iip;
573 	struct ubifs_debug_info *d = c->dbg;
574 	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
575 	unsigned long long uninitialized_var(last_sqnum);
576 	struct ubifs_idx_node *idx;
577 	struct list_head list;
578 	struct idx_node *i;
579 	size_t sz;
580 
581 	if (!dbg_is_chk_index(c))
582 		return 0;
583 
584 	INIT_LIST_HEAD(&list);
585 
586 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
587 	     UBIFS_IDX_NODE_SZ;
588 
589 	/* Start at the old zroot */
590 	lnum = d->old_zroot.lnum;
591 	offs = d->old_zroot.offs;
592 	len = d->old_zroot.len;
593 	iip = 0;
594 
595 	/*
596 	 * Traverse the index tree preorder depth-first i.e. do a node and then
597 	 * its subtrees from left to right.
598 	 */
599 	while (1) {
600 		struct ubifs_branch *br;
601 
602 		/* Get the next index node */
603 		i = kmalloc(sz, GFP_NOFS);
604 		if (!i) {
605 			err = -ENOMEM;
606 			goto out_free;
607 		}
608 		i->iip = iip;
609 		/* Keep the index nodes on our path in a linked list */
610 		list_add_tail(&i->list, &list);
611 		/* Read the index node */
612 		idx = &i->idx;
613 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
614 		if (err)
615 			goto out_free;
616 		/* Validate index node */
617 		child_cnt = le16_to_cpu(idx->child_cnt);
618 		if (child_cnt < 1 || child_cnt > c->fanout) {
619 			err = 1;
620 			goto out_dump;
621 		}
622 		if (first) {
623 			first = 0;
624 			/* Check root level and sqnum */
625 			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
626 				err = 2;
627 				goto out_dump;
628 			}
629 			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
630 				err = 3;
631 				goto out_dump;
632 			}
633 			/* Set last values as though root had a parent */
634 			last_level = le16_to_cpu(idx->level) + 1;
635 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
636 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
637 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
638 		}
639 		key_copy(c, &upper_key, &i->upper_key);
640 		if (le16_to_cpu(idx->level) != last_level - 1) {
641 			err = 3;
642 			goto out_dump;
643 		}
644 		/*
645 		 * The index is always written bottom up hence a child's sqnum
646 		 * is always less than the parents.
647 		 */
648 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
649 			err = 4;
650 			goto out_dump;
651 		}
652 		/* Check key range */
653 		key_read(c, ubifs_idx_key(c, idx), &l_key);
654 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
655 		key_read(c, &br->key, &u_key);
656 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
657 			err = 5;
658 			goto out_dump;
659 		}
660 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
661 			err = 6;
662 			goto out_dump;
663 		}
664 		if (keys_cmp(c, &upper_key, &u_key) == 0)
665 			if (!is_hash_key(c, &u_key)) {
666 				err = 7;
667 				goto out_dump;
668 			}
669 		/* Go to next index node */
670 		if (le16_to_cpu(idx->level) == 0) {
671 			/* At the bottom, so go up until can go right */
672 			while (1) {
673 				/* Drop the bottom of the list */
674 				list_del(&i->list);
675 				kfree(i);
676 				/* No more list means we are done */
677 				if (list_empty(&list))
678 					goto out;
679 				/* Look at the new bottom */
680 				i = list_entry(list.prev, struct idx_node,
681 					       list);
682 				idx = &i->idx;
683 				/* Can we go right */
684 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
685 					iip = iip + 1;
686 					break;
687 				} else
688 					/* Nope, so go up again */
689 					iip = i->iip;
690 			}
691 		} else
692 			/* Go down left */
693 			iip = 0;
694 		/*
695 		 * We have the parent in 'idx' and now we set up for reading the
696 		 * child pointed to by slot 'iip'.
697 		 */
698 		last_level = le16_to_cpu(idx->level);
699 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
700 		br = ubifs_idx_branch(c, idx, iip);
701 		lnum = le32_to_cpu(br->lnum);
702 		offs = le32_to_cpu(br->offs);
703 		len = le32_to_cpu(br->len);
704 		key_read(c, &br->key, &lower_key);
705 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
706 			br = ubifs_idx_branch(c, idx, iip + 1);
707 			key_read(c, &br->key, &upper_key);
708 		} else
709 			key_copy(c, &i->upper_key, &upper_key);
710 	}
711 out:
712 	err = dbg_old_index_check_init(c, zroot);
713 	if (err)
714 		goto out_free;
715 
716 	return 0;
717 
718 out_dump:
719 	ubifs_err("dumping index node (iip=%d)", i->iip);
720 	ubifs_dump_node(c, idx);
721 	list_del(&i->list);
722 	kfree(i);
723 	if (!list_empty(&list)) {
724 		i = list_entry(list.prev, struct idx_node, list);
725 		ubifs_err("dumping parent index node");
726 		ubifs_dump_node(c, &i->idx);
727 	}
728 out_free:
729 	while (!list_empty(&list)) {
730 		i = list_entry(list.next, struct idx_node, list);
731 		list_del(&i->list);
732 		kfree(i);
733 	}
734 	ubifs_err("failed, error %d", err);
735 	if (err > 0)
736 		err = -EINVAL;
737 	return err;
738 }
739