xref: /openbmc/linux/fs/ubifs/commit.c (revision 545e4006)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include "ubifs.h"
49 
50 /**
51  * do_commit - commit the journal.
52  * @c: UBIFS file-system description object
53  *
54  * This function implements UBIFS commit. It has to be called with commit lock
55  * locked. Returns zero in case of success and a negative error code in case of
56  * failure.
57  */
58 static int do_commit(struct ubifs_info *c)
59 {
60 	int err, new_ltail_lnum, old_ltail_lnum, i;
61 	struct ubifs_zbranch zroot;
62 	struct ubifs_lp_stats lst;
63 
64 	dbg_cmt("start");
65 	if (c->ro_media) {
66 		err = -EROFS;
67 		goto out_up;
68 	}
69 
70 	/* Sync all write buffers (necessary for recovery) */
71 	for (i = 0; i < c->jhead_cnt; i++) {
72 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
73 		if (err)
74 			goto out_up;
75 	}
76 
77 	err = ubifs_gc_start_commit(c);
78 	if (err)
79 		goto out_up;
80 	err = dbg_check_lprops(c);
81 	if (err)
82 		goto out_up;
83 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
84 	if (err)
85 		goto out_up;
86 	err = ubifs_tnc_start_commit(c, &zroot);
87 	if (err)
88 		goto out_up;
89 	err = ubifs_lpt_start_commit(c);
90 	if (err)
91 		goto out_up;
92 	err = ubifs_orphan_start_commit(c);
93 	if (err)
94 		goto out_up;
95 
96 	ubifs_get_lp_stats(c, &lst);
97 
98 	up_write(&c->commit_sem);
99 
100 	err = ubifs_tnc_end_commit(c);
101 	if (err)
102 		goto out;
103 	err = ubifs_lpt_end_commit(c);
104 	if (err)
105 		goto out;
106 	err = ubifs_orphan_end_commit(c);
107 	if (err)
108 		goto out;
109 	old_ltail_lnum = c->ltail_lnum;
110 	err = ubifs_log_end_commit(c, new_ltail_lnum);
111 	if (err)
112 		goto out;
113 	err = dbg_check_old_index(c, &zroot);
114 	if (err)
115 		goto out;
116 
117 	mutex_lock(&c->mst_mutex);
118 	c->mst_node->cmt_no      = cpu_to_le64(++c->cmt_no);
119 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
120 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
121 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
122 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
123 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
124 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
125 	c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
126 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
127 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
128 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
129 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
130 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
131 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
132 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
133 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
134 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
135 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
136 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
137 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
138 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
139 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
140 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
141 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
142 	if (c->no_orphs)
143 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
144 	else
145 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
146 	err = ubifs_write_master(c);
147 	mutex_unlock(&c->mst_mutex);
148 	if (err)
149 		goto out;
150 
151 	err = ubifs_log_post_commit(c, old_ltail_lnum);
152 	if (err)
153 		goto out;
154 	err = ubifs_gc_end_commit(c);
155 	if (err)
156 		goto out;
157 	err = ubifs_lpt_post_commit(c);
158 	if (err)
159 		goto out;
160 
161 	spin_lock(&c->cs_lock);
162 	c->cmt_state = COMMIT_RESTING;
163 	wake_up(&c->cmt_wq);
164 	dbg_cmt("commit end");
165 	spin_unlock(&c->cs_lock);
166 
167 	return 0;
168 
169 out_up:
170 	up_write(&c->commit_sem);
171 out:
172 	ubifs_err("commit failed, error %d", err);
173 	spin_lock(&c->cs_lock);
174 	c->cmt_state = COMMIT_BROKEN;
175 	wake_up(&c->cmt_wq);
176 	spin_unlock(&c->cs_lock);
177 	ubifs_ro_mode(c, err);
178 	return err;
179 }
180 
181 /**
182  * run_bg_commit - run background commit if it is needed.
183  * @c: UBIFS file-system description object
184  *
185  * This function runs background commit if it is needed. Returns zero in case
186  * of success and a negative error code in case of failure.
187  */
188 static int run_bg_commit(struct ubifs_info *c)
189 {
190 	spin_lock(&c->cs_lock);
191 	/*
192 	 * Run background commit only if background commit was requested or if
193 	 * commit is required.
194 	 */
195 	if (c->cmt_state != COMMIT_BACKGROUND &&
196 	    c->cmt_state != COMMIT_REQUIRED)
197 		goto out;
198 	spin_unlock(&c->cs_lock);
199 
200 	down_write(&c->commit_sem);
201 	spin_lock(&c->cs_lock);
202 	if (c->cmt_state == COMMIT_REQUIRED)
203 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
204 	else if (c->cmt_state == COMMIT_BACKGROUND)
205 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
206 	else
207 		goto out_cmt_unlock;
208 	spin_unlock(&c->cs_lock);
209 
210 	return do_commit(c);
211 
212 out_cmt_unlock:
213 	up_write(&c->commit_sem);
214 out:
215 	spin_unlock(&c->cs_lock);
216 	return 0;
217 }
218 
219 /**
220  * ubifs_bg_thread - UBIFS background thread function.
221  * @info: points to the file-system description object
222  *
223  * This function implements various file-system background activities:
224  * o when a write-buffer timer expires it synchronizes the appropriate
225  *   write-buffer;
226  * o when the journal is about to be full, it starts in-advance commit.
227  *
228  * Note, other stuff like background garbage collection may be added here in
229  * future.
230  */
231 int ubifs_bg_thread(void *info)
232 {
233 	int err;
234 	struct ubifs_info *c = info;
235 
236 	ubifs_msg("background thread \"%s\" started, PID %d",
237 		  c->bgt_name, current->pid);
238 	set_freezable();
239 
240 	while (1) {
241 		if (kthread_should_stop())
242 			break;
243 
244 		if (try_to_freeze())
245 			continue;
246 
247 		set_current_state(TASK_INTERRUPTIBLE);
248 		/* Check if there is something to do */
249 		if (!c->need_bgt) {
250 			/*
251 			 * Nothing prevents us from going sleep now and
252 			 * be never woken up and block the task which
253 			 * could wait in 'kthread_stop()' forever.
254 			 */
255 			if (kthread_should_stop())
256 				break;
257 			schedule();
258 			continue;
259 		} else
260 			__set_current_state(TASK_RUNNING);
261 
262 		c->need_bgt = 0;
263 		err = ubifs_bg_wbufs_sync(c);
264 		if (err)
265 			ubifs_ro_mode(c, err);
266 
267 		run_bg_commit(c);
268 		cond_resched();
269 	}
270 
271 	dbg_msg("background thread \"%s\" stops", c->bgt_name);
272 	return 0;
273 }
274 
275 /**
276  * ubifs_commit_required - set commit state to "required".
277  * @c: UBIFS file-system description object
278  *
279  * This function is called if a commit is required but cannot be done from the
280  * calling function, so it is just flagged instead.
281  */
282 void ubifs_commit_required(struct ubifs_info *c)
283 {
284 	spin_lock(&c->cs_lock);
285 	switch (c->cmt_state) {
286 	case COMMIT_RESTING:
287 	case COMMIT_BACKGROUND:
288 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
289 			dbg_cstate(COMMIT_REQUIRED));
290 		c->cmt_state = COMMIT_REQUIRED;
291 		break;
292 	case COMMIT_RUNNING_BACKGROUND:
293 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
294 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
295 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
296 		break;
297 	case COMMIT_REQUIRED:
298 	case COMMIT_RUNNING_REQUIRED:
299 	case COMMIT_BROKEN:
300 		break;
301 	}
302 	spin_unlock(&c->cs_lock);
303 }
304 
305 /**
306  * ubifs_request_bg_commit - notify the background thread to do a commit.
307  * @c: UBIFS file-system description object
308  *
309  * This function is called if the journal is full enough to make a commit
310  * worthwhile, so background thread is kicked to start it.
311  */
312 void ubifs_request_bg_commit(struct ubifs_info *c)
313 {
314 	spin_lock(&c->cs_lock);
315 	if (c->cmt_state == COMMIT_RESTING) {
316 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
317 			dbg_cstate(COMMIT_BACKGROUND));
318 		c->cmt_state = COMMIT_BACKGROUND;
319 		spin_unlock(&c->cs_lock);
320 		ubifs_wake_up_bgt(c);
321 	} else
322 		spin_unlock(&c->cs_lock);
323 }
324 
325 /**
326  * wait_for_commit - wait for commit.
327  * @c: UBIFS file-system description object
328  *
329  * This function sleeps until the commit operation is no longer running.
330  */
331 static int wait_for_commit(struct ubifs_info *c)
332 {
333 	dbg_cmt("pid %d goes sleep", current->pid);
334 
335 	/*
336 	 * The following sleeps if the condition is false, and will be woken
337 	 * when the commit ends. It is possible, although very unlikely, that we
338 	 * will wake up and see the subsequent commit running, rather than the
339 	 * one we were waiting for, and go back to sleep.  However, we will be
340 	 * woken again, so there is no danger of sleeping forever.
341 	 */
342 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
343 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
344 	dbg_cmt("commit finished, pid %d woke up", current->pid);
345 	return 0;
346 }
347 
348 /**
349  * ubifs_run_commit - run or wait for commit.
350  * @c: UBIFS file-system description object
351  *
352  * This function runs commit and returns zero in case of success and a negative
353  * error code in case of failure.
354  */
355 int ubifs_run_commit(struct ubifs_info *c)
356 {
357 	int err = 0;
358 
359 	spin_lock(&c->cs_lock);
360 	if (c->cmt_state == COMMIT_BROKEN) {
361 		err = -EINVAL;
362 		goto out;
363 	}
364 
365 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
366 		/*
367 		 * We set the commit state to 'running required' to indicate
368 		 * that we want it to complete as quickly as possible.
369 		 */
370 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
371 
372 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
373 		spin_unlock(&c->cs_lock);
374 		return wait_for_commit(c);
375 	}
376 	spin_unlock(&c->cs_lock);
377 
378 	/* Ok, the commit is indeed needed */
379 
380 	down_write(&c->commit_sem);
381 	spin_lock(&c->cs_lock);
382 	/*
383 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
384 	 * re-check it.
385 	 */
386 	if (c->cmt_state == COMMIT_BROKEN) {
387 		err = -EINVAL;
388 		goto out_cmt_unlock;
389 	}
390 
391 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
392 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
393 
394 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
395 		up_write(&c->commit_sem);
396 		spin_unlock(&c->cs_lock);
397 		return wait_for_commit(c);
398 	}
399 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
400 	spin_unlock(&c->cs_lock);
401 
402 	err = do_commit(c);
403 	return err;
404 
405 out_cmt_unlock:
406 	up_write(&c->commit_sem);
407 out:
408 	spin_unlock(&c->cs_lock);
409 	return err;
410 }
411 
412 /**
413  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
414  * @c: UBIFS file-system description object
415  *
416  * This function is called by garbage collection to determine if commit should
417  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
418  * is full enough to start commit, this function returns true. It is not
419  * absolutely necessary to commit yet, but it feels like this should be better
420  * then to keep doing GC. This function returns %1 if GC has to initiate commit
421  * and %0 if not.
422  */
423 int ubifs_gc_should_commit(struct ubifs_info *c)
424 {
425 	int ret = 0;
426 
427 	spin_lock(&c->cs_lock);
428 	if (c->cmt_state == COMMIT_BACKGROUND) {
429 		dbg_cmt("commit required now");
430 		c->cmt_state = COMMIT_REQUIRED;
431 	} else
432 		dbg_cmt("commit not requested");
433 	if (c->cmt_state == COMMIT_REQUIRED)
434 		ret = 1;
435 	spin_unlock(&c->cs_lock);
436 	return ret;
437 }
438 
439 #ifdef CONFIG_UBIFS_FS_DEBUG
440 
441 /**
442  * struct idx_node - hold index nodes during index tree traversal.
443  * @list: list
444  * @iip: index in parent (slot number of this indexing node in the parent
445  *       indexing node)
446  * @upper_key: all keys in this indexing node have to be less or equivalent to
447  *             this key
448  * @idx: index node (8-byte aligned because all node structures must be 8-byte
449  *       aligned)
450  */
451 struct idx_node {
452 	struct list_head list;
453 	int iip;
454 	union ubifs_key upper_key;
455 	struct ubifs_idx_node idx __attribute__((aligned(8)));
456 };
457 
458 /**
459  * dbg_old_index_check_init - get information for the next old index check.
460  * @c: UBIFS file-system description object
461  * @zroot: root of the index
462  *
463  * This function records information about the index that will be needed for the
464  * next old index check i.e. 'dbg_check_old_index()'.
465  *
466  * This function returns %0 on success and a negative error code on failure.
467  */
468 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
469 {
470 	struct ubifs_idx_node *idx;
471 	int lnum, offs, len, err = 0;
472 
473 	c->old_zroot = *zroot;
474 
475 	lnum = c->old_zroot.lnum;
476 	offs = c->old_zroot.offs;
477 	len = c->old_zroot.len;
478 
479 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
480 	if (!idx)
481 		return -ENOMEM;
482 
483 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
484 	if (err)
485 		goto out;
486 
487 	c->old_zroot_level = le16_to_cpu(idx->level);
488 	c->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
489 out:
490 	kfree(idx);
491 	return err;
492 }
493 
494 /**
495  * dbg_check_old_index - check the old copy of the index.
496  * @c: UBIFS file-system description object
497  * @zroot: root of the new index
498  *
499  * In order to be able to recover from an unclean unmount, a complete copy of
500  * the index must exist on flash. This is the "old" index. The commit process
501  * must write the "new" index to flash without overwriting or destroying any
502  * part of the old index. This function is run at commit end in order to check
503  * that the old index does indeed exist completely intact.
504  *
505  * This function returns %0 on success and a negative error code on failure.
506  */
507 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
508 {
509 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
510 	int first = 1, iip;
511 	union ubifs_key lower_key, upper_key, l_key, u_key;
512 	unsigned long long uninitialized_var(last_sqnum);
513 	struct ubifs_idx_node *idx;
514 	struct list_head list;
515 	struct idx_node *i;
516 	size_t sz;
517 
518 	if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
519 		goto out;
520 
521 	INIT_LIST_HEAD(&list);
522 
523 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
524 	     UBIFS_IDX_NODE_SZ;
525 
526 	/* Start at the old zroot */
527 	lnum = c->old_zroot.lnum;
528 	offs = c->old_zroot.offs;
529 	len = c->old_zroot.len;
530 	iip = 0;
531 
532 	/*
533 	 * Traverse the index tree preorder depth-first i.e. do a node and then
534 	 * its subtrees from left to right.
535 	 */
536 	while (1) {
537 		struct ubifs_branch *br;
538 
539 		/* Get the next index node */
540 		i = kmalloc(sz, GFP_NOFS);
541 		if (!i) {
542 			err = -ENOMEM;
543 			goto out_free;
544 		}
545 		i->iip = iip;
546 		/* Keep the index nodes on our path in a linked list */
547 		list_add_tail(&i->list, &list);
548 		/* Read the index node */
549 		idx = &i->idx;
550 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
551 		if (err)
552 			goto out_free;
553 		/* Validate index node */
554 		child_cnt = le16_to_cpu(idx->child_cnt);
555 		if (child_cnt < 1 || child_cnt > c->fanout) {
556 			err = 1;
557 			goto out_dump;
558 		}
559 		if (first) {
560 			first = 0;
561 			/* Check root level and sqnum */
562 			if (le16_to_cpu(idx->level) != c->old_zroot_level) {
563 				err = 2;
564 				goto out_dump;
565 			}
566 			if (le64_to_cpu(idx->ch.sqnum) != c->old_zroot_sqnum) {
567 				err = 3;
568 				goto out_dump;
569 			}
570 			/* Set last values as though root had a parent */
571 			last_level = le16_to_cpu(idx->level) + 1;
572 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
573 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
574 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
575 		}
576 		key_copy(c, &upper_key, &i->upper_key);
577 		if (le16_to_cpu(idx->level) != last_level - 1) {
578 			err = 3;
579 			goto out_dump;
580 		}
581 		/*
582 		 * The index is always written bottom up hence a child's sqnum
583 		 * is always less than the parents.
584 		 */
585 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
586 			err = 4;
587 			goto out_dump;
588 		}
589 		/* Check key range */
590 		key_read(c, ubifs_idx_key(c, idx), &l_key);
591 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
592 		key_read(c, &br->key, &u_key);
593 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
594 			err = 5;
595 			goto out_dump;
596 		}
597 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
598 			err = 6;
599 			goto out_dump;
600 		}
601 		if (keys_cmp(c, &upper_key, &u_key) == 0)
602 			if (!is_hash_key(c, &u_key)) {
603 				err = 7;
604 				goto out_dump;
605 			}
606 		/* Go to next index node */
607 		if (le16_to_cpu(idx->level) == 0) {
608 			/* At the bottom, so go up until can go right */
609 			while (1) {
610 				/* Drop the bottom of the list */
611 				list_del(&i->list);
612 				kfree(i);
613 				/* No more list means we are done */
614 				if (list_empty(&list))
615 					goto out;
616 				/* Look at the new bottom */
617 				i = list_entry(list.prev, struct idx_node,
618 					       list);
619 				idx = &i->idx;
620 				/* Can we go right */
621 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
622 					iip = iip + 1;
623 					break;
624 				} else
625 					/* Nope, so go up again */
626 					iip = i->iip;
627 			}
628 		} else
629 			/* Go down left */
630 			iip = 0;
631 		/*
632 		 * We have the parent in 'idx' and now we set up for reading the
633 		 * child pointed to by slot 'iip'.
634 		 */
635 		last_level = le16_to_cpu(idx->level);
636 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
637 		br = ubifs_idx_branch(c, idx, iip);
638 		lnum = le32_to_cpu(br->lnum);
639 		offs = le32_to_cpu(br->offs);
640 		len = le32_to_cpu(br->len);
641 		key_read(c, &br->key, &lower_key);
642 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
643 			br = ubifs_idx_branch(c, idx, iip + 1);
644 			key_read(c, &br->key, &upper_key);
645 		} else
646 			key_copy(c, &i->upper_key, &upper_key);
647 	}
648 out:
649 	err = dbg_old_index_check_init(c, zroot);
650 	if (err)
651 		goto out_free;
652 
653 	return 0;
654 
655 out_dump:
656 	dbg_err("dumping index node (iip=%d)", i->iip);
657 	dbg_dump_node(c, idx);
658 	list_del(&i->list);
659 	kfree(i);
660 	if (!list_empty(&list)) {
661 		i = list_entry(list.prev, struct idx_node, list);
662 		dbg_err("dumping parent index node");
663 		dbg_dump_node(c, &i->idx);
664 	}
665 out_free:
666 	while (!list_empty(&list)) {
667 		i = list_entry(list.next, struct idx_node, list);
668 		list_del(&i->list);
669 		kfree(i);
670 	}
671 	ubifs_err("failed, error %d", err);
672 	if (err > 0)
673 		err = -EINVAL;
674 	return err;
675 }
676 
677 #endif /* CONFIG_UBIFS_FS_DEBUG */
678