xref: /openbmc/linux/fs/ubifs/commit.c (revision 4800cd83)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include <linux/slab.h>
49 #include "ubifs.h"
50 
51 /**
52  * do_commit - commit the journal.
53  * @c: UBIFS file-system description object
54  *
55  * This function implements UBIFS commit. It has to be called with commit lock
56  * locked. Returns zero in case of success and a negative error code in case of
57  * failure.
58  */
59 static int do_commit(struct ubifs_info *c)
60 {
61 	int err, new_ltail_lnum, old_ltail_lnum, i;
62 	struct ubifs_zbranch zroot;
63 	struct ubifs_lp_stats lst;
64 
65 	dbg_cmt("start");
66 	ubifs_assert(!c->ro_media && !c->ro_mount);
67 
68 	if (c->ro_error) {
69 		err = -EROFS;
70 		goto out_up;
71 	}
72 
73 	/* Sync all write buffers (necessary for recovery) */
74 	for (i = 0; i < c->jhead_cnt; i++) {
75 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
76 		if (err)
77 			goto out_up;
78 	}
79 
80 	c->cmt_no += 1;
81 	err = ubifs_gc_start_commit(c);
82 	if (err)
83 		goto out_up;
84 	err = dbg_check_lprops(c);
85 	if (err)
86 		goto out_up;
87 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
88 	if (err)
89 		goto out_up;
90 	err = ubifs_tnc_start_commit(c, &zroot);
91 	if (err)
92 		goto out_up;
93 	err = ubifs_lpt_start_commit(c);
94 	if (err)
95 		goto out_up;
96 	err = ubifs_orphan_start_commit(c);
97 	if (err)
98 		goto out_up;
99 
100 	ubifs_get_lp_stats(c, &lst);
101 
102 	up_write(&c->commit_sem);
103 
104 	err = ubifs_tnc_end_commit(c);
105 	if (err)
106 		goto out;
107 	err = ubifs_lpt_end_commit(c);
108 	if (err)
109 		goto out;
110 	err = ubifs_orphan_end_commit(c);
111 	if (err)
112 		goto out;
113 	old_ltail_lnum = c->ltail_lnum;
114 	err = ubifs_log_end_commit(c, new_ltail_lnum);
115 	if (err)
116 		goto out;
117 	err = dbg_check_old_index(c, &zroot);
118 	if (err)
119 		goto out;
120 
121 	mutex_lock(&c->mst_mutex);
122 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
123 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
124 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
125 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
126 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
127 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
128 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
129 	c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
130 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
131 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
132 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
133 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
134 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
135 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
136 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
137 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
138 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
139 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
140 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
141 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
142 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
143 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
144 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
145 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
146 	if (c->no_orphs)
147 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
148 	else
149 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
150 	err = ubifs_write_master(c);
151 	mutex_unlock(&c->mst_mutex);
152 	if (err)
153 		goto out;
154 
155 	err = ubifs_log_post_commit(c, old_ltail_lnum);
156 	if (err)
157 		goto out;
158 	err = ubifs_gc_end_commit(c);
159 	if (err)
160 		goto out;
161 	err = ubifs_lpt_post_commit(c);
162 	if (err)
163 		goto out;
164 
165 	spin_lock(&c->cs_lock);
166 	c->cmt_state = COMMIT_RESTING;
167 	wake_up(&c->cmt_wq);
168 	dbg_cmt("commit end");
169 	spin_unlock(&c->cs_lock);
170 
171 	return 0;
172 
173 out_up:
174 	up_write(&c->commit_sem);
175 out:
176 	ubifs_err("commit failed, error %d", err);
177 	spin_lock(&c->cs_lock);
178 	c->cmt_state = COMMIT_BROKEN;
179 	wake_up(&c->cmt_wq);
180 	spin_unlock(&c->cs_lock);
181 	ubifs_ro_mode(c, err);
182 	return err;
183 }
184 
185 /**
186  * run_bg_commit - run background commit if it is needed.
187  * @c: UBIFS file-system description object
188  *
189  * This function runs background commit if it is needed. Returns zero in case
190  * of success and a negative error code in case of failure.
191  */
192 static int run_bg_commit(struct ubifs_info *c)
193 {
194 	spin_lock(&c->cs_lock);
195 	/*
196 	 * Run background commit only if background commit was requested or if
197 	 * commit is required.
198 	 */
199 	if (c->cmt_state != COMMIT_BACKGROUND &&
200 	    c->cmt_state != COMMIT_REQUIRED)
201 		goto out;
202 	spin_unlock(&c->cs_lock);
203 
204 	down_write(&c->commit_sem);
205 	spin_lock(&c->cs_lock);
206 	if (c->cmt_state == COMMIT_REQUIRED)
207 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
208 	else if (c->cmt_state == COMMIT_BACKGROUND)
209 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
210 	else
211 		goto out_cmt_unlock;
212 	spin_unlock(&c->cs_lock);
213 
214 	return do_commit(c);
215 
216 out_cmt_unlock:
217 	up_write(&c->commit_sem);
218 out:
219 	spin_unlock(&c->cs_lock);
220 	return 0;
221 }
222 
223 /**
224  * ubifs_bg_thread - UBIFS background thread function.
225  * @info: points to the file-system description object
226  *
227  * This function implements various file-system background activities:
228  * o when a write-buffer timer expires it synchronizes the appropriate
229  *   write-buffer;
230  * o when the journal is about to be full, it starts in-advance commit.
231  *
232  * Note, other stuff like background garbage collection may be added here in
233  * future.
234  */
235 int ubifs_bg_thread(void *info)
236 {
237 	int err;
238 	struct ubifs_info *c = info;
239 
240 	dbg_msg("background thread \"%s\" started, PID %d",
241 		c->bgt_name, current->pid);
242 	set_freezable();
243 
244 	while (1) {
245 		if (kthread_should_stop())
246 			break;
247 
248 		if (try_to_freeze())
249 			continue;
250 
251 		set_current_state(TASK_INTERRUPTIBLE);
252 		/* Check if there is something to do */
253 		if (!c->need_bgt) {
254 			/*
255 			 * Nothing prevents us from going sleep now and
256 			 * be never woken up and block the task which
257 			 * could wait in 'kthread_stop()' forever.
258 			 */
259 			if (kthread_should_stop())
260 				break;
261 			schedule();
262 			continue;
263 		} else
264 			__set_current_state(TASK_RUNNING);
265 
266 		c->need_bgt = 0;
267 		err = ubifs_bg_wbufs_sync(c);
268 		if (err)
269 			ubifs_ro_mode(c, err);
270 
271 		run_bg_commit(c);
272 		cond_resched();
273 	}
274 
275 	dbg_msg("background thread \"%s\" stops", c->bgt_name);
276 	return 0;
277 }
278 
279 /**
280  * ubifs_commit_required - set commit state to "required".
281  * @c: UBIFS file-system description object
282  *
283  * This function is called if a commit is required but cannot be done from the
284  * calling function, so it is just flagged instead.
285  */
286 void ubifs_commit_required(struct ubifs_info *c)
287 {
288 	spin_lock(&c->cs_lock);
289 	switch (c->cmt_state) {
290 	case COMMIT_RESTING:
291 	case COMMIT_BACKGROUND:
292 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
293 			dbg_cstate(COMMIT_REQUIRED));
294 		c->cmt_state = COMMIT_REQUIRED;
295 		break;
296 	case COMMIT_RUNNING_BACKGROUND:
297 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
298 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
299 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
300 		break;
301 	case COMMIT_REQUIRED:
302 	case COMMIT_RUNNING_REQUIRED:
303 	case COMMIT_BROKEN:
304 		break;
305 	}
306 	spin_unlock(&c->cs_lock);
307 }
308 
309 /**
310  * ubifs_request_bg_commit - notify the background thread to do a commit.
311  * @c: UBIFS file-system description object
312  *
313  * This function is called if the journal is full enough to make a commit
314  * worthwhile, so background thread is kicked to start it.
315  */
316 void ubifs_request_bg_commit(struct ubifs_info *c)
317 {
318 	spin_lock(&c->cs_lock);
319 	if (c->cmt_state == COMMIT_RESTING) {
320 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
321 			dbg_cstate(COMMIT_BACKGROUND));
322 		c->cmt_state = COMMIT_BACKGROUND;
323 		spin_unlock(&c->cs_lock);
324 		ubifs_wake_up_bgt(c);
325 	} else
326 		spin_unlock(&c->cs_lock);
327 }
328 
329 /**
330  * wait_for_commit - wait for commit.
331  * @c: UBIFS file-system description object
332  *
333  * This function sleeps until the commit operation is no longer running.
334  */
335 static int wait_for_commit(struct ubifs_info *c)
336 {
337 	dbg_cmt("pid %d goes sleep", current->pid);
338 
339 	/*
340 	 * The following sleeps if the condition is false, and will be woken
341 	 * when the commit ends. It is possible, although very unlikely, that we
342 	 * will wake up and see the subsequent commit running, rather than the
343 	 * one we were waiting for, and go back to sleep.  However, we will be
344 	 * woken again, so there is no danger of sleeping forever.
345 	 */
346 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
347 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
348 	dbg_cmt("commit finished, pid %d woke up", current->pid);
349 	return 0;
350 }
351 
352 /**
353  * ubifs_run_commit - run or wait for commit.
354  * @c: UBIFS file-system description object
355  *
356  * This function runs commit and returns zero in case of success and a negative
357  * error code in case of failure.
358  */
359 int ubifs_run_commit(struct ubifs_info *c)
360 {
361 	int err = 0;
362 
363 	spin_lock(&c->cs_lock);
364 	if (c->cmt_state == COMMIT_BROKEN) {
365 		err = -EINVAL;
366 		goto out;
367 	}
368 
369 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
370 		/*
371 		 * We set the commit state to 'running required' to indicate
372 		 * that we want it to complete as quickly as possible.
373 		 */
374 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
375 
376 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
377 		spin_unlock(&c->cs_lock);
378 		return wait_for_commit(c);
379 	}
380 	spin_unlock(&c->cs_lock);
381 
382 	/* Ok, the commit is indeed needed */
383 
384 	down_write(&c->commit_sem);
385 	spin_lock(&c->cs_lock);
386 	/*
387 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
388 	 * re-check it.
389 	 */
390 	if (c->cmt_state == COMMIT_BROKEN) {
391 		err = -EINVAL;
392 		goto out_cmt_unlock;
393 	}
394 
395 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
396 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
397 
398 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
399 		up_write(&c->commit_sem);
400 		spin_unlock(&c->cs_lock);
401 		return wait_for_commit(c);
402 	}
403 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
404 	spin_unlock(&c->cs_lock);
405 
406 	err = do_commit(c);
407 	return err;
408 
409 out_cmt_unlock:
410 	up_write(&c->commit_sem);
411 out:
412 	spin_unlock(&c->cs_lock);
413 	return err;
414 }
415 
416 /**
417  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
418  * @c: UBIFS file-system description object
419  *
420  * This function is called by garbage collection to determine if commit should
421  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
422  * is full enough to start commit, this function returns true. It is not
423  * absolutely necessary to commit yet, but it feels like this should be better
424  * then to keep doing GC. This function returns %1 if GC has to initiate commit
425  * and %0 if not.
426  */
427 int ubifs_gc_should_commit(struct ubifs_info *c)
428 {
429 	int ret = 0;
430 
431 	spin_lock(&c->cs_lock);
432 	if (c->cmt_state == COMMIT_BACKGROUND) {
433 		dbg_cmt("commit required now");
434 		c->cmt_state = COMMIT_REQUIRED;
435 	} else
436 		dbg_cmt("commit not requested");
437 	if (c->cmt_state == COMMIT_REQUIRED)
438 		ret = 1;
439 	spin_unlock(&c->cs_lock);
440 	return ret;
441 }
442 
443 #ifdef CONFIG_UBIFS_FS_DEBUG
444 
445 /**
446  * struct idx_node - hold index nodes during index tree traversal.
447  * @list: list
448  * @iip: index in parent (slot number of this indexing node in the parent
449  *       indexing node)
450  * @upper_key: all keys in this indexing node have to be less or equivalent to
451  *             this key
452  * @idx: index node (8-byte aligned because all node structures must be 8-byte
453  *       aligned)
454  */
455 struct idx_node {
456 	struct list_head list;
457 	int iip;
458 	union ubifs_key upper_key;
459 	struct ubifs_idx_node idx __attribute__((aligned(8)));
460 };
461 
462 /**
463  * dbg_old_index_check_init - get information for the next old index check.
464  * @c: UBIFS file-system description object
465  * @zroot: root of the index
466  *
467  * This function records information about the index that will be needed for the
468  * next old index check i.e. 'dbg_check_old_index()'.
469  *
470  * This function returns %0 on success and a negative error code on failure.
471  */
472 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
473 {
474 	struct ubifs_idx_node *idx;
475 	int lnum, offs, len, err = 0;
476 	struct ubifs_debug_info *d = c->dbg;
477 
478 	d->old_zroot = *zroot;
479 	lnum = d->old_zroot.lnum;
480 	offs = d->old_zroot.offs;
481 	len = d->old_zroot.len;
482 
483 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
484 	if (!idx)
485 		return -ENOMEM;
486 
487 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
488 	if (err)
489 		goto out;
490 
491 	d->old_zroot_level = le16_to_cpu(idx->level);
492 	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
493 out:
494 	kfree(idx);
495 	return err;
496 }
497 
498 /**
499  * dbg_check_old_index - check the old copy of the index.
500  * @c: UBIFS file-system description object
501  * @zroot: root of the new index
502  *
503  * In order to be able to recover from an unclean unmount, a complete copy of
504  * the index must exist on flash. This is the "old" index. The commit process
505  * must write the "new" index to flash without overwriting or destroying any
506  * part of the old index. This function is run at commit end in order to check
507  * that the old index does indeed exist completely intact.
508  *
509  * This function returns %0 on success and a negative error code on failure.
510  */
511 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
512 {
513 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
514 	int first = 1, iip;
515 	struct ubifs_debug_info *d = c->dbg;
516 	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
517 	unsigned long long uninitialized_var(last_sqnum);
518 	struct ubifs_idx_node *idx;
519 	struct list_head list;
520 	struct idx_node *i;
521 	size_t sz;
522 
523 	if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
524 		goto out;
525 
526 	INIT_LIST_HEAD(&list);
527 
528 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
529 	     UBIFS_IDX_NODE_SZ;
530 
531 	/* Start at the old zroot */
532 	lnum = d->old_zroot.lnum;
533 	offs = d->old_zroot.offs;
534 	len = d->old_zroot.len;
535 	iip = 0;
536 
537 	/*
538 	 * Traverse the index tree preorder depth-first i.e. do a node and then
539 	 * its subtrees from left to right.
540 	 */
541 	while (1) {
542 		struct ubifs_branch *br;
543 
544 		/* Get the next index node */
545 		i = kmalloc(sz, GFP_NOFS);
546 		if (!i) {
547 			err = -ENOMEM;
548 			goto out_free;
549 		}
550 		i->iip = iip;
551 		/* Keep the index nodes on our path in a linked list */
552 		list_add_tail(&i->list, &list);
553 		/* Read the index node */
554 		idx = &i->idx;
555 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
556 		if (err)
557 			goto out_free;
558 		/* Validate index node */
559 		child_cnt = le16_to_cpu(idx->child_cnt);
560 		if (child_cnt < 1 || child_cnt > c->fanout) {
561 			err = 1;
562 			goto out_dump;
563 		}
564 		if (first) {
565 			first = 0;
566 			/* Check root level and sqnum */
567 			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
568 				err = 2;
569 				goto out_dump;
570 			}
571 			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
572 				err = 3;
573 				goto out_dump;
574 			}
575 			/* Set last values as though root had a parent */
576 			last_level = le16_to_cpu(idx->level) + 1;
577 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
578 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
579 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
580 		}
581 		key_copy(c, &upper_key, &i->upper_key);
582 		if (le16_to_cpu(idx->level) != last_level - 1) {
583 			err = 3;
584 			goto out_dump;
585 		}
586 		/*
587 		 * The index is always written bottom up hence a child's sqnum
588 		 * is always less than the parents.
589 		 */
590 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
591 			err = 4;
592 			goto out_dump;
593 		}
594 		/* Check key range */
595 		key_read(c, ubifs_idx_key(c, idx), &l_key);
596 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
597 		key_read(c, &br->key, &u_key);
598 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
599 			err = 5;
600 			goto out_dump;
601 		}
602 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
603 			err = 6;
604 			goto out_dump;
605 		}
606 		if (keys_cmp(c, &upper_key, &u_key) == 0)
607 			if (!is_hash_key(c, &u_key)) {
608 				err = 7;
609 				goto out_dump;
610 			}
611 		/* Go to next index node */
612 		if (le16_to_cpu(idx->level) == 0) {
613 			/* At the bottom, so go up until can go right */
614 			while (1) {
615 				/* Drop the bottom of the list */
616 				list_del(&i->list);
617 				kfree(i);
618 				/* No more list means we are done */
619 				if (list_empty(&list))
620 					goto out;
621 				/* Look at the new bottom */
622 				i = list_entry(list.prev, struct idx_node,
623 					       list);
624 				idx = &i->idx;
625 				/* Can we go right */
626 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
627 					iip = iip + 1;
628 					break;
629 				} else
630 					/* Nope, so go up again */
631 					iip = i->iip;
632 			}
633 		} else
634 			/* Go down left */
635 			iip = 0;
636 		/*
637 		 * We have the parent in 'idx' and now we set up for reading the
638 		 * child pointed to by slot 'iip'.
639 		 */
640 		last_level = le16_to_cpu(idx->level);
641 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
642 		br = ubifs_idx_branch(c, idx, iip);
643 		lnum = le32_to_cpu(br->lnum);
644 		offs = le32_to_cpu(br->offs);
645 		len = le32_to_cpu(br->len);
646 		key_read(c, &br->key, &lower_key);
647 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
648 			br = ubifs_idx_branch(c, idx, iip + 1);
649 			key_read(c, &br->key, &upper_key);
650 		} else
651 			key_copy(c, &i->upper_key, &upper_key);
652 	}
653 out:
654 	err = dbg_old_index_check_init(c, zroot);
655 	if (err)
656 		goto out_free;
657 
658 	return 0;
659 
660 out_dump:
661 	dbg_err("dumping index node (iip=%d)", i->iip);
662 	dbg_dump_node(c, idx);
663 	list_del(&i->list);
664 	kfree(i);
665 	if (!list_empty(&list)) {
666 		i = list_entry(list.prev, struct idx_node, list);
667 		dbg_err("dumping parent index node");
668 		dbg_dump_node(c, &i->idx);
669 	}
670 out_free:
671 	while (!list_empty(&list)) {
672 		i = list_entry(list.next, struct idx_node, list);
673 		list_del(&i->list);
674 		kfree(i);
675 	}
676 	ubifs_err("failed, error %d", err);
677 	if (err > 0)
678 		err = -EINVAL;
679 	return err;
680 }
681 
682 #endif /* CONFIG_UBIFS_FS_DEBUG */
683