1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions that manage the running of the commit process. 25 * Each affected module has its own functions to accomplish their part in the 26 * commit and those functions are called here. 27 * 28 * The commit is the process whereby all updates to the index and LEB properties 29 * are written out together and the journal becomes empty. This keeps the 30 * file system consistent - at all times the state can be recreated by reading 31 * the index and LEB properties and then replaying the journal. 32 * 33 * The commit is split into two parts named "commit start" and "commit end". 34 * During commit start, the commit process has exclusive access to the journal 35 * by holding the commit semaphore down for writing. As few I/O operations as 36 * possible are performed during commit start, instead the nodes that are to be 37 * written are merely identified. During commit end, the commit semaphore is no 38 * longer held and the journal is again in operation, allowing users to continue 39 * to use the file system while the bulk of the commit I/O is performed. The 40 * purpose of this two-step approach is to prevent the commit from causing any 41 * latency blips. Note that in any case, the commit does not prevent lookups 42 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page 43 * cache. 44 */ 45 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/slab.h> 49 #include "ubifs.h" 50 51 /** 52 * do_commit - commit the journal. 53 * @c: UBIFS file-system description object 54 * 55 * This function implements UBIFS commit. It has to be called with commit lock 56 * locked. Returns zero in case of success and a negative error code in case of 57 * failure. 58 */ 59 static int do_commit(struct ubifs_info *c) 60 { 61 int err, new_ltail_lnum, old_ltail_lnum, i; 62 struct ubifs_zbranch zroot; 63 struct ubifs_lp_stats lst; 64 65 dbg_cmt("start"); 66 ubifs_assert(!c->ro_media && !c->ro_mount); 67 68 if (c->ro_error) { 69 err = -EROFS; 70 goto out_up; 71 } 72 73 /* Sync all write buffers (necessary for recovery) */ 74 for (i = 0; i < c->jhead_cnt; i++) { 75 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 76 if (err) 77 goto out_up; 78 } 79 80 c->cmt_no += 1; 81 err = ubifs_gc_start_commit(c); 82 if (err) 83 goto out_up; 84 err = dbg_check_lprops(c); 85 if (err) 86 goto out_up; 87 err = ubifs_log_start_commit(c, &new_ltail_lnum); 88 if (err) 89 goto out_up; 90 err = ubifs_tnc_start_commit(c, &zroot); 91 if (err) 92 goto out_up; 93 err = ubifs_lpt_start_commit(c); 94 if (err) 95 goto out_up; 96 err = ubifs_orphan_start_commit(c); 97 if (err) 98 goto out_up; 99 100 ubifs_get_lp_stats(c, &lst); 101 102 up_write(&c->commit_sem); 103 104 err = ubifs_tnc_end_commit(c); 105 if (err) 106 goto out; 107 err = ubifs_lpt_end_commit(c); 108 if (err) 109 goto out; 110 err = ubifs_orphan_end_commit(c); 111 if (err) 112 goto out; 113 old_ltail_lnum = c->ltail_lnum; 114 err = ubifs_log_end_commit(c, new_ltail_lnum); 115 if (err) 116 goto out; 117 err = dbg_check_old_index(c, &zroot); 118 if (err) 119 goto out; 120 121 mutex_lock(&c->mst_mutex); 122 c->mst_node->cmt_no = cpu_to_le64(c->cmt_no); 123 c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum); 124 c->mst_node->root_lnum = cpu_to_le32(zroot.lnum); 125 c->mst_node->root_offs = cpu_to_le32(zroot.offs); 126 c->mst_node->root_len = cpu_to_le32(zroot.len); 127 c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum); 128 c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs); 129 c->mst_node->index_size = cpu_to_le64(c->old_idx_sz); 130 c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum); 131 c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs); 132 c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum); 133 c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs); 134 c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum); 135 c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs); 136 c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum); 137 c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs); 138 c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum); 139 c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs); 140 c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs); 141 c->mst_node->total_free = cpu_to_le64(lst.total_free); 142 c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty); 143 c->mst_node->total_used = cpu_to_le64(lst.total_used); 144 c->mst_node->total_dead = cpu_to_le64(lst.total_dead); 145 c->mst_node->total_dark = cpu_to_le64(lst.total_dark); 146 if (c->no_orphs) 147 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 148 else 149 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS); 150 err = ubifs_write_master(c); 151 mutex_unlock(&c->mst_mutex); 152 if (err) 153 goto out; 154 155 err = ubifs_log_post_commit(c, old_ltail_lnum); 156 if (err) 157 goto out; 158 err = ubifs_gc_end_commit(c); 159 if (err) 160 goto out; 161 err = ubifs_lpt_post_commit(c); 162 if (err) 163 goto out; 164 165 spin_lock(&c->cs_lock); 166 c->cmt_state = COMMIT_RESTING; 167 wake_up(&c->cmt_wq); 168 dbg_cmt("commit end"); 169 spin_unlock(&c->cs_lock); 170 171 return 0; 172 173 out_up: 174 up_write(&c->commit_sem); 175 out: 176 ubifs_err("commit failed, error %d", err); 177 spin_lock(&c->cs_lock); 178 c->cmt_state = COMMIT_BROKEN; 179 wake_up(&c->cmt_wq); 180 spin_unlock(&c->cs_lock); 181 ubifs_ro_mode(c, err); 182 return err; 183 } 184 185 /** 186 * run_bg_commit - run background commit if it is needed. 187 * @c: UBIFS file-system description object 188 * 189 * This function runs background commit if it is needed. Returns zero in case 190 * of success and a negative error code in case of failure. 191 */ 192 static int run_bg_commit(struct ubifs_info *c) 193 { 194 spin_lock(&c->cs_lock); 195 /* 196 * Run background commit only if background commit was requested or if 197 * commit is required. 198 */ 199 if (c->cmt_state != COMMIT_BACKGROUND && 200 c->cmt_state != COMMIT_REQUIRED) 201 goto out; 202 spin_unlock(&c->cs_lock); 203 204 down_write(&c->commit_sem); 205 spin_lock(&c->cs_lock); 206 if (c->cmt_state == COMMIT_REQUIRED) 207 c->cmt_state = COMMIT_RUNNING_REQUIRED; 208 else if (c->cmt_state == COMMIT_BACKGROUND) 209 c->cmt_state = COMMIT_RUNNING_BACKGROUND; 210 else 211 goto out_cmt_unlock; 212 spin_unlock(&c->cs_lock); 213 214 return do_commit(c); 215 216 out_cmt_unlock: 217 up_write(&c->commit_sem); 218 out: 219 spin_unlock(&c->cs_lock); 220 return 0; 221 } 222 223 /** 224 * ubifs_bg_thread - UBIFS background thread function. 225 * @info: points to the file-system description object 226 * 227 * This function implements various file-system background activities: 228 * o when a write-buffer timer expires it synchronizes the appropriate 229 * write-buffer; 230 * o when the journal is about to be full, it starts in-advance commit. 231 * 232 * Note, other stuff like background garbage collection may be added here in 233 * future. 234 */ 235 int ubifs_bg_thread(void *info) 236 { 237 int err; 238 struct ubifs_info *c = info; 239 240 dbg_msg("background thread \"%s\" started, PID %d", 241 c->bgt_name, current->pid); 242 set_freezable(); 243 244 while (1) { 245 if (kthread_should_stop()) 246 break; 247 248 if (try_to_freeze()) 249 continue; 250 251 set_current_state(TASK_INTERRUPTIBLE); 252 /* Check if there is something to do */ 253 if (!c->need_bgt) { 254 /* 255 * Nothing prevents us from going sleep now and 256 * be never woken up and block the task which 257 * could wait in 'kthread_stop()' forever. 258 */ 259 if (kthread_should_stop()) 260 break; 261 schedule(); 262 continue; 263 } else 264 __set_current_state(TASK_RUNNING); 265 266 c->need_bgt = 0; 267 err = ubifs_bg_wbufs_sync(c); 268 if (err) 269 ubifs_ro_mode(c, err); 270 271 run_bg_commit(c); 272 cond_resched(); 273 } 274 275 dbg_msg("background thread \"%s\" stops", c->bgt_name); 276 return 0; 277 } 278 279 /** 280 * ubifs_commit_required - set commit state to "required". 281 * @c: UBIFS file-system description object 282 * 283 * This function is called if a commit is required but cannot be done from the 284 * calling function, so it is just flagged instead. 285 */ 286 void ubifs_commit_required(struct ubifs_info *c) 287 { 288 spin_lock(&c->cs_lock); 289 switch (c->cmt_state) { 290 case COMMIT_RESTING: 291 case COMMIT_BACKGROUND: 292 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 293 dbg_cstate(COMMIT_REQUIRED)); 294 c->cmt_state = COMMIT_REQUIRED; 295 break; 296 case COMMIT_RUNNING_BACKGROUND: 297 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 298 dbg_cstate(COMMIT_RUNNING_REQUIRED)); 299 c->cmt_state = COMMIT_RUNNING_REQUIRED; 300 break; 301 case COMMIT_REQUIRED: 302 case COMMIT_RUNNING_REQUIRED: 303 case COMMIT_BROKEN: 304 break; 305 } 306 spin_unlock(&c->cs_lock); 307 } 308 309 /** 310 * ubifs_request_bg_commit - notify the background thread to do a commit. 311 * @c: UBIFS file-system description object 312 * 313 * This function is called if the journal is full enough to make a commit 314 * worthwhile, so background thread is kicked to start it. 315 */ 316 void ubifs_request_bg_commit(struct ubifs_info *c) 317 { 318 spin_lock(&c->cs_lock); 319 if (c->cmt_state == COMMIT_RESTING) { 320 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 321 dbg_cstate(COMMIT_BACKGROUND)); 322 c->cmt_state = COMMIT_BACKGROUND; 323 spin_unlock(&c->cs_lock); 324 ubifs_wake_up_bgt(c); 325 } else 326 spin_unlock(&c->cs_lock); 327 } 328 329 /** 330 * wait_for_commit - wait for commit. 331 * @c: UBIFS file-system description object 332 * 333 * This function sleeps until the commit operation is no longer running. 334 */ 335 static int wait_for_commit(struct ubifs_info *c) 336 { 337 dbg_cmt("pid %d goes sleep", current->pid); 338 339 /* 340 * The following sleeps if the condition is false, and will be woken 341 * when the commit ends. It is possible, although very unlikely, that we 342 * will wake up and see the subsequent commit running, rather than the 343 * one we were waiting for, and go back to sleep. However, we will be 344 * woken again, so there is no danger of sleeping forever. 345 */ 346 wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND && 347 c->cmt_state != COMMIT_RUNNING_REQUIRED); 348 dbg_cmt("commit finished, pid %d woke up", current->pid); 349 return 0; 350 } 351 352 /** 353 * ubifs_run_commit - run or wait for commit. 354 * @c: UBIFS file-system description object 355 * 356 * This function runs commit and returns zero in case of success and a negative 357 * error code in case of failure. 358 */ 359 int ubifs_run_commit(struct ubifs_info *c) 360 { 361 int err = 0; 362 363 spin_lock(&c->cs_lock); 364 if (c->cmt_state == COMMIT_BROKEN) { 365 err = -EINVAL; 366 goto out; 367 } 368 369 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 370 /* 371 * We set the commit state to 'running required' to indicate 372 * that we want it to complete as quickly as possible. 373 */ 374 c->cmt_state = COMMIT_RUNNING_REQUIRED; 375 376 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 377 spin_unlock(&c->cs_lock); 378 return wait_for_commit(c); 379 } 380 spin_unlock(&c->cs_lock); 381 382 /* Ok, the commit is indeed needed */ 383 384 down_write(&c->commit_sem); 385 spin_lock(&c->cs_lock); 386 /* 387 * Since we unlocked 'c->cs_lock', the state may have changed, so 388 * re-check it. 389 */ 390 if (c->cmt_state == COMMIT_BROKEN) { 391 err = -EINVAL; 392 goto out_cmt_unlock; 393 } 394 395 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 396 c->cmt_state = COMMIT_RUNNING_REQUIRED; 397 398 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 399 up_write(&c->commit_sem); 400 spin_unlock(&c->cs_lock); 401 return wait_for_commit(c); 402 } 403 c->cmt_state = COMMIT_RUNNING_REQUIRED; 404 spin_unlock(&c->cs_lock); 405 406 err = do_commit(c); 407 return err; 408 409 out_cmt_unlock: 410 up_write(&c->commit_sem); 411 out: 412 spin_unlock(&c->cs_lock); 413 return err; 414 } 415 416 /** 417 * ubifs_gc_should_commit - determine if it is time for GC to run commit. 418 * @c: UBIFS file-system description object 419 * 420 * This function is called by garbage collection to determine if commit should 421 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal 422 * is full enough to start commit, this function returns true. It is not 423 * absolutely necessary to commit yet, but it feels like this should be better 424 * then to keep doing GC. This function returns %1 if GC has to initiate commit 425 * and %0 if not. 426 */ 427 int ubifs_gc_should_commit(struct ubifs_info *c) 428 { 429 int ret = 0; 430 431 spin_lock(&c->cs_lock); 432 if (c->cmt_state == COMMIT_BACKGROUND) { 433 dbg_cmt("commit required now"); 434 c->cmt_state = COMMIT_REQUIRED; 435 } else 436 dbg_cmt("commit not requested"); 437 if (c->cmt_state == COMMIT_REQUIRED) 438 ret = 1; 439 spin_unlock(&c->cs_lock); 440 return ret; 441 } 442 443 #ifdef CONFIG_UBIFS_FS_DEBUG 444 445 /** 446 * struct idx_node - hold index nodes during index tree traversal. 447 * @list: list 448 * @iip: index in parent (slot number of this indexing node in the parent 449 * indexing node) 450 * @upper_key: all keys in this indexing node have to be less or equivalent to 451 * this key 452 * @idx: index node (8-byte aligned because all node structures must be 8-byte 453 * aligned) 454 */ 455 struct idx_node { 456 struct list_head list; 457 int iip; 458 union ubifs_key upper_key; 459 struct ubifs_idx_node idx __attribute__((aligned(8))); 460 }; 461 462 /** 463 * dbg_old_index_check_init - get information for the next old index check. 464 * @c: UBIFS file-system description object 465 * @zroot: root of the index 466 * 467 * This function records information about the index that will be needed for the 468 * next old index check i.e. 'dbg_check_old_index()'. 469 * 470 * This function returns %0 on success and a negative error code on failure. 471 */ 472 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot) 473 { 474 struct ubifs_idx_node *idx; 475 int lnum, offs, len, err = 0; 476 struct ubifs_debug_info *d = c->dbg; 477 478 d->old_zroot = *zroot; 479 lnum = d->old_zroot.lnum; 480 offs = d->old_zroot.offs; 481 len = d->old_zroot.len; 482 483 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 484 if (!idx) 485 return -ENOMEM; 486 487 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 488 if (err) 489 goto out; 490 491 d->old_zroot_level = le16_to_cpu(idx->level); 492 d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum); 493 out: 494 kfree(idx); 495 return err; 496 } 497 498 /** 499 * dbg_check_old_index - check the old copy of the index. 500 * @c: UBIFS file-system description object 501 * @zroot: root of the new index 502 * 503 * In order to be able to recover from an unclean unmount, a complete copy of 504 * the index must exist on flash. This is the "old" index. The commit process 505 * must write the "new" index to flash without overwriting or destroying any 506 * part of the old index. This function is run at commit end in order to check 507 * that the old index does indeed exist completely intact. 508 * 509 * This function returns %0 on success and a negative error code on failure. 510 */ 511 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot) 512 { 513 int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt; 514 int first = 1, iip; 515 struct ubifs_debug_info *d = c->dbg; 516 union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key; 517 unsigned long long uninitialized_var(last_sqnum); 518 struct ubifs_idx_node *idx; 519 struct list_head list; 520 struct idx_node *i; 521 size_t sz; 522 523 if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX)) 524 goto out; 525 526 INIT_LIST_HEAD(&list); 527 528 sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) - 529 UBIFS_IDX_NODE_SZ; 530 531 /* Start at the old zroot */ 532 lnum = d->old_zroot.lnum; 533 offs = d->old_zroot.offs; 534 len = d->old_zroot.len; 535 iip = 0; 536 537 /* 538 * Traverse the index tree preorder depth-first i.e. do a node and then 539 * its subtrees from left to right. 540 */ 541 while (1) { 542 struct ubifs_branch *br; 543 544 /* Get the next index node */ 545 i = kmalloc(sz, GFP_NOFS); 546 if (!i) { 547 err = -ENOMEM; 548 goto out_free; 549 } 550 i->iip = iip; 551 /* Keep the index nodes on our path in a linked list */ 552 list_add_tail(&i->list, &list); 553 /* Read the index node */ 554 idx = &i->idx; 555 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 556 if (err) 557 goto out_free; 558 /* Validate index node */ 559 child_cnt = le16_to_cpu(idx->child_cnt); 560 if (child_cnt < 1 || child_cnt > c->fanout) { 561 err = 1; 562 goto out_dump; 563 } 564 if (first) { 565 first = 0; 566 /* Check root level and sqnum */ 567 if (le16_to_cpu(idx->level) != d->old_zroot_level) { 568 err = 2; 569 goto out_dump; 570 } 571 if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) { 572 err = 3; 573 goto out_dump; 574 } 575 /* Set last values as though root had a parent */ 576 last_level = le16_to_cpu(idx->level) + 1; 577 last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1; 578 key_read(c, ubifs_idx_key(c, idx), &lower_key); 579 highest_ino_key(c, &upper_key, INUM_WATERMARK); 580 } 581 key_copy(c, &upper_key, &i->upper_key); 582 if (le16_to_cpu(idx->level) != last_level - 1) { 583 err = 3; 584 goto out_dump; 585 } 586 /* 587 * The index is always written bottom up hence a child's sqnum 588 * is always less than the parents. 589 */ 590 if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) { 591 err = 4; 592 goto out_dump; 593 } 594 /* Check key range */ 595 key_read(c, ubifs_idx_key(c, idx), &l_key); 596 br = ubifs_idx_branch(c, idx, child_cnt - 1); 597 key_read(c, &br->key, &u_key); 598 if (keys_cmp(c, &lower_key, &l_key) > 0) { 599 err = 5; 600 goto out_dump; 601 } 602 if (keys_cmp(c, &upper_key, &u_key) < 0) { 603 err = 6; 604 goto out_dump; 605 } 606 if (keys_cmp(c, &upper_key, &u_key) == 0) 607 if (!is_hash_key(c, &u_key)) { 608 err = 7; 609 goto out_dump; 610 } 611 /* Go to next index node */ 612 if (le16_to_cpu(idx->level) == 0) { 613 /* At the bottom, so go up until can go right */ 614 while (1) { 615 /* Drop the bottom of the list */ 616 list_del(&i->list); 617 kfree(i); 618 /* No more list means we are done */ 619 if (list_empty(&list)) 620 goto out; 621 /* Look at the new bottom */ 622 i = list_entry(list.prev, struct idx_node, 623 list); 624 idx = &i->idx; 625 /* Can we go right */ 626 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 627 iip = iip + 1; 628 break; 629 } else 630 /* Nope, so go up again */ 631 iip = i->iip; 632 } 633 } else 634 /* Go down left */ 635 iip = 0; 636 /* 637 * We have the parent in 'idx' and now we set up for reading the 638 * child pointed to by slot 'iip'. 639 */ 640 last_level = le16_to_cpu(idx->level); 641 last_sqnum = le64_to_cpu(idx->ch.sqnum); 642 br = ubifs_idx_branch(c, idx, iip); 643 lnum = le32_to_cpu(br->lnum); 644 offs = le32_to_cpu(br->offs); 645 len = le32_to_cpu(br->len); 646 key_read(c, &br->key, &lower_key); 647 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 648 br = ubifs_idx_branch(c, idx, iip + 1); 649 key_read(c, &br->key, &upper_key); 650 } else 651 key_copy(c, &i->upper_key, &upper_key); 652 } 653 out: 654 err = dbg_old_index_check_init(c, zroot); 655 if (err) 656 goto out_free; 657 658 return 0; 659 660 out_dump: 661 dbg_err("dumping index node (iip=%d)", i->iip); 662 dbg_dump_node(c, idx); 663 list_del(&i->list); 664 kfree(i); 665 if (!list_empty(&list)) { 666 i = list_entry(list.prev, struct idx_node, list); 667 dbg_err("dumping parent index node"); 668 dbg_dump_node(c, &i->idx); 669 } 670 out_free: 671 while (!list_empty(&list)) { 672 i = list_entry(list.next, struct idx_node, list); 673 list_del(&i->list); 674 kfree(i); 675 } 676 ubifs_err("failed, error %d", err); 677 if (err > 0) 678 err = -EINVAL; 679 return err; 680 } 681 682 #endif /* CONFIG_UBIFS_FS_DEBUG */ 683