1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements the budgeting sub-system which is responsible for UBIFS 13 * space management. 14 * 15 * Factors such as compression, wasted space at the ends of LEBs, space in other 16 * journal heads, the effect of updates on the index, and so on, make it 17 * impossible to accurately predict the amount of space needed. Consequently 18 * approximations are used. 19 */ 20 21 #include "ubifs.h" 22 #include <linux/writeback.h> 23 #include <linux/math64.h> 24 25 /* 26 * When pessimistic budget calculations say that there is no enough space, 27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 28 * or committing. The below constant defines maximum number of times UBIFS 29 * repeats the operations. 30 */ 31 #define MAX_MKSPC_RETRIES 3 32 33 /* 34 * The below constant defines amount of dirty pages which should be written 35 * back at when trying to shrink the liability. 36 */ 37 #define NR_TO_WRITE 16 38 39 /** 40 * shrink_liability - write-back some dirty pages/inodes. 41 * @c: UBIFS file-system description object 42 * @nr_to_write: how many dirty pages to write-back 43 * 44 * This function shrinks UBIFS liability by means of writing back some amount 45 * of dirty inodes and their pages. 46 * 47 * Note, this function synchronizes even VFS inodes which are locked 48 * (@i_mutex) by the caller of the budgeting function, because write-back does 49 * not touch @i_mutex. 50 */ 51 static void shrink_liability(struct ubifs_info *c, int nr_to_write) 52 { 53 down_read(&c->vfs_sb->s_umount); 54 writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE); 55 up_read(&c->vfs_sb->s_umount); 56 } 57 58 /** 59 * run_gc - run garbage collector. 60 * @c: UBIFS file-system description object 61 * 62 * This function runs garbage collector to make some more free space. Returns 63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 64 * negative error code in case of failure. 65 */ 66 static int run_gc(struct ubifs_info *c) 67 { 68 int lnum; 69 70 /* Make some free space by garbage-collecting dirty space */ 71 down_read(&c->commit_sem); 72 lnum = ubifs_garbage_collect(c, 1); 73 up_read(&c->commit_sem); 74 if (lnum < 0) 75 return lnum; 76 77 /* GC freed one LEB, return it to lprops */ 78 dbg_budg("GC freed LEB %d", lnum); 79 return ubifs_return_leb(c, lnum); 80 } 81 82 /** 83 * get_liability - calculate current liability. 84 * @c: UBIFS file-system description object 85 * 86 * This function calculates and returns current UBIFS liability, i.e. the 87 * amount of bytes UBIFS has "promised" to write to the media. 88 */ 89 static long long get_liability(struct ubifs_info *c) 90 { 91 long long liab; 92 93 spin_lock(&c->space_lock); 94 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; 95 spin_unlock(&c->space_lock); 96 return liab; 97 } 98 99 /** 100 * make_free_space - make more free space on the file-system. 101 * @c: UBIFS file-system description object 102 * 103 * This function is called when an operation cannot be budgeted because there 104 * is supposedly no free space. But in most cases there is some free space: 105 * o budgeting is pessimistic, so it always budgets more than it is actually 106 * needed, so shrinking the liability is one way to make free space - the 107 * cached data will take less space then it was budgeted for; 108 * o GC may turn some dark space into free space (budgeting treats dark space 109 * as not available); 110 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 111 * 112 * So this function tries to do the above. Returns %-EAGAIN if some free space 113 * was presumably made and the caller has to re-try budgeting the operation. 114 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 115 * codes on failures. 116 */ 117 static int make_free_space(struct ubifs_info *c) 118 { 119 int err, retries = 0; 120 long long liab1, liab2; 121 122 do { 123 liab1 = get_liability(c); 124 /* 125 * We probably have some dirty pages or inodes (liability), try 126 * to write them back. 127 */ 128 dbg_budg("liability %lld, run write-back", liab1); 129 shrink_liability(c, NR_TO_WRITE); 130 131 liab2 = get_liability(c); 132 if (liab2 < liab1) 133 return -EAGAIN; 134 135 dbg_budg("new liability %lld (not shrunk)", liab2); 136 137 /* Liability did not shrink again, try GC */ 138 dbg_budg("Run GC"); 139 err = run_gc(c); 140 if (!err) 141 return -EAGAIN; 142 143 if (err != -EAGAIN && err != -ENOSPC) 144 /* Some real error happened */ 145 return err; 146 147 dbg_budg("Run commit (retries %d)", retries); 148 err = ubifs_run_commit(c); 149 if (err) 150 return err; 151 } while (retries++ < MAX_MKSPC_RETRIES); 152 153 return -ENOSPC; 154 } 155 156 /** 157 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. 158 * @c: UBIFS file-system description object 159 * 160 * This function calculates and returns the number of LEBs which should be kept 161 * for index usage. 162 */ 163 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 164 { 165 int idx_lebs; 166 long long idx_size; 167 168 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; 169 /* And make sure we have thrice the index size of space reserved */ 170 idx_size += idx_size << 1; 171 /* 172 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 173 * pair, nor similarly the two variables for the new index size, so we 174 * have to do this costly 64-bit division on fast-path. 175 */ 176 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); 177 /* 178 * The index head is not available for the in-the-gaps method, so add an 179 * extra LEB to compensate. 180 */ 181 idx_lebs += 1; 182 if (idx_lebs < MIN_INDEX_LEBS) 183 idx_lebs = MIN_INDEX_LEBS; 184 return idx_lebs; 185 } 186 187 /** 188 * ubifs_calc_available - calculate available FS space. 189 * @c: UBIFS file-system description object 190 * @min_idx_lebs: minimum number of LEBs reserved for the index 191 * 192 * This function calculates and returns amount of FS space available for use. 193 */ 194 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 195 { 196 int subtract_lebs; 197 long long available; 198 199 available = c->main_bytes - c->lst.total_used; 200 201 /* 202 * Now 'available' contains theoretically available flash space 203 * assuming there is no index, so we have to subtract the space which 204 * is reserved for the index. 205 */ 206 subtract_lebs = min_idx_lebs; 207 208 /* Take into account that GC reserves one LEB for its own needs */ 209 subtract_lebs += 1; 210 211 /* 212 * The GC journal head LEB is not really accessible. And since 213 * different write types go to different heads, we may count only on 214 * one head's space. 215 */ 216 subtract_lebs += c->jhead_cnt - 1; 217 218 /* We also reserve one LEB for deletions, which bypass budgeting */ 219 subtract_lebs += 1; 220 221 available -= (long long)subtract_lebs * c->leb_size; 222 223 /* Subtract the dead space which is not available for use */ 224 available -= c->lst.total_dead; 225 226 /* 227 * Subtract dark space, which might or might not be usable - it depends 228 * on the data which we have on the media and which will be written. If 229 * this is a lot of uncompressed or not-compressible data, the dark 230 * space cannot be used. 231 */ 232 available -= c->lst.total_dark; 233 234 /* 235 * However, there is more dark space. The index may be bigger than 236 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 237 * their dark space is not included in total_dark, so it is subtracted 238 * here. 239 */ 240 if (c->lst.idx_lebs > min_idx_lebs) { 241 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 242 available -= subtract_lebs * c->dark_wm; 243 } 244 245 /* The calculations are rough and may end up with a negative number */ 246 return available > 0 ? available : 0; 247 } 248 249 /** 250 * can_use_rp - check whether the user is allowed to use reserved pool. 251 * @c: UBIFS file-system description object 252 * 253 * UBIFS has so-called "reserved pool" which is flash space reserved 254 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 255 * This function checks whether current user is allowed to use reserved pool. 256 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 257 */ 258 static int can_use_rp(struct ubifs_info *c) 259 { 260 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || 261 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) 262 return 1; 263 return 0; 264 } 265 266 /** 267 * do_budget_space - reserve flash space for index and data growth. 268 * @c: UBIFS file-system description object 269 * 270 * This function makes sure UBIFS has enough free LEBs for index growth and 271 * data. 272 * 273 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 274 * would take if it was consolidated and written to the flash. This guarantees 275 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 276 * be able to commit dirty index. So this function basically adds amount of 277 * budgeted index space to the size of the current index, multiplies this by 3, 278 * and makes sure this does not exceed the amount of free LEBs. 279 * 280 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: 281 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 282 * be large, because UBIFS does not do any index consolidation as long as 283 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 284 * will contain a lot of dirt. 285 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, 286 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. 287 * 288 * This function returns zero in case of success, and %-ENOSPC in case of 289 * failure. 290 */ 291 static int do_budget_space(struct ubifs_info *c) 292 { 293 long long outstanding, available; 294 int lebs, rsvd_idx_lebs, min_idx_lebs; 295 296 /* First budget index space */ 297 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 298 299 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 300 if (min_idx_lebs > c->lst.idx_lebs) 301 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 302 else 303 rsvd_idx_lebs = 0; 304 305 /* 306 * The number of LEBs that are available to be used by the index is: 307 * 308 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 309 * @c->lst.taken_empty_lebs 310 * 311 * @c->lst.empty_lebs are available because they are empty. 312 * @c->freeable_cnt are available because they contain only free and 313 * dirty space, @c->idx_gc_cnt are available because they are index 314 * LEBs that have been garbage collected and are awaiting the commit 315 * before they can be used. And the in-the-gaps method will grab these 316 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have 317 * already been allocated for some purpose. 318 * 319 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because 320 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they 321 * are taken until after the commit). 322 * 323 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one 324 * because of the way we serialize LEB allocations and budgeting. See a 325 * comment in 'ubifs_find_free_space()'. 326 */ 327 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 328 c->lst.taken_empty_lebs; 329 if (unlikely(rsvd_idx_lebs > lebs)) { 330 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", 331 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); 332 return -ENOSPC; 333 } 334 335 available = ubifs_calc_available(c, min_idx_lebs); 336 outstanding = c->bi.data_growth + c->bi.dd_growth; 337 338 if (unlikely(available < outstanding)) { 339 dbg_budg("out of data space: available %lld, outstanding %lld", 340 available, outstanding); 341 return -ENOSPC; 342 } 343 344 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 345 return -ENOSPC; 346 347 c->bi.min_idx_lebs = min_idx_lebs; 348 return 0; 349 } 350 351 /** 352 * calc_idx_growth - calculate approximate index growth from budgeting request. 353 * @c: UBIFS file-system description object 354 * @req: budgeting request 355 * 356 * For now we assume each new node adds one znode. But this is rather poor 357 * approximation, though. 358 */ 359 static int calc_idx_growth(const struct ubifs_info *c, 360 const struct ubifs_budget_req *req) 361 { 362 int znodes; 363 364 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 365 req->new_dent; 366 return znodes * c->max_idx_node_sz; 367 } 368 369 /** 370 * calc_data_growth - calculate approximate amount of new data from budgeting 371 * request. 372 * @c: UBIFS file-system description object 373 * @req: budgeting request 374 */ 375 static int calc_data_growth(const struct ubifs_info *c, 376 const struct ubifs_budget_req *req) 377 { 378 int data_growth; 379 380 data_growth = req->new_ino ? c->bi.inode_budget : 0; 381 if (req->new_page) 382 data_growth += c->bi.page_budget; 383 if (req->new_dent) 384 data_growth += c->bi.dent_budget; 385 data_growth += req->new_ino_d; 386 return data_growth; 387 } 388 389 /** 390 * calc_dd_growth - calculate approximate amount of data which makes other data 391 * dirty from budgeting request. 392 * @c: UBIFS file-system description object 393 * @req: budgeting request 394 */ 395 static int calc_dd_growth(const struct ubifs_info *c, 396 const struct ubifs_budget_req *req) 397 { 398 int dd_growth; 399 400 dd_growth = req->dirtied_page ? c->bi.page_budget : 0; 401 402 if (req->dirtied_ino) 403 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1); 404 if (req->mod_dent) 405 dd_growth += c->bi.dent_budget; 406 dd_growth += req->dirtied_ino_d; 407 return dd_growth; 408 } 409 410 /** 411 * ubifs_budget_space - ensure there is enough space to complete an operation. 412 * @c: UBIFS file-system description object 413 * @req: budget request 414 * 415 * This function allocates budget for an operation. It uses pessimistic 416 * approximation of how much flash space the operation needs. The goal of this 417 * function is to make sure UBIFS always has flash space to flush all dirty 418 * pages, dirty inodes, and dirty znodes (liability). This function may force 419 * commit, garbage-collection or write-back. Returns zero in case of success, 420 * %-ENOSPC if there is no free space and other negative error codes in case of 421 * failures. 422 */ 423 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 424 { 425 int err, idx_growth, data_growth, dd_growth, retried = 0; 426 427 ubifs_assert(c, req->new_page <= 1); 428 ubifs_assert(c, req->dirtied_page <= 1); 429 ubifs_assert(c, req->new_dent <= 1); 430 ubifs_assert(c, req->mod_dent <= 1); 431 ubifs_assert(c, req->new_ino <= 1); 432 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 433 ubifs_assert(c, req->dirtied_ino <= 4); 434 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 435 ubifs_assert(c, !(req->new_ino_d & 7)); 436 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 437 438 data_growth = calc_data_growth(c, req); 439 dd_growth = calc_dd_growth(c, req); 440 if (!data_growth && !dd_growth) 441 return 0; 442 idx_growth = calc_idx_growth(c, req); 443 444 again: 445 spin_lock(&c->space_lock); 446 ubifs_assert(c, c->bi.idx_growth >= 0); 447 ubifs_assert(c, c->bi.data_growth >= 0); 448 ubifs_assert(c, c->bi.dd_growth >= 0); 449 450 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { 451 dbg_budg("no space"); 452 spin_unlock(&c->space_lock); 453 return -ENOSPC; 454 } 455 456 c->bi.idx_growth += idx_growth; 457 c->bi.data_growth += data_growth; 458 c->bi.dd_growth += dd_growth; 459 460 err = do_budget_space(c); 461 if (likely(!err)) { 462 req->idx_growth = idx_growth; 463 req->data_growth = data_growth; 464 req->dd_growth = dd_growth; 465 spin_unlock(&c->space_lock); 466 return 0; 467 } 468 469 /* Restore the old values */ 470 c->bi.idx_growth -= idx_growth; 471 c->bi.data_growth -= data_growth; 472 c->bi.dd_growth -= dd_growth; 473 spin_unlock(&c->space_lock); 474 475 if (req->fast) { 476 dbg_budg("no space for fast budgeting"); 477 return err; 478 } 479 480 err = make_free_space(c); 481 cond_resched(); 482 if (err == -EAGAIN) { 483 dbg_budg("try again"); 484 goto again; 485 } else if (err == -ENOSPC) { 486 if (!retried) { 487 retried = 1; 488 dbg_budg("-ENOSPC, but anyway try once again"); 489 goto again; 490 } 491 dbg_budg("FS is full, -ENOSPC"); 492 c->bi.nospace = 1; 493 if (can_use_rp(c) || c->rp_size == 0) 494 c->bi.nospace_rp = 1; 495 smp_wmb(); 496 } else 497 ubifs_err(c, "cannot budget space, error %d", err); 498 return err; 499 } 500 501 /** 502 * ubifs_release_budget - release budgeted free space. 503 * @c: UBIFS file-system description object 504 * @req: budget request 505 * 506 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 507 * since the index changes (which were budgeted for in @req->idx_growth) will 508 * only be written to the media on commit, this function moves the index budget 509 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed 510 * by the commit operation. 511 */ 512 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 513 { 514 ubifs_assert(c, req->new_page <= 1); 515 ubifs_assert(c, req->dirtied_page <= 1); 516 ubifs_assert(c, req->new_dent <= 1); 517 ubifs_assert(c, req->mod_dent <= 1); 518 ubifs_assert(c, req->new_ino <= 1); 519 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 520 ubifs_assert(c, req->dirtied_ino <= 4); 521 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 522 ubifs_assert(c, !(req->new_ino_d & 7)); 523 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 524 if (!req->recalculate) { 525 ubifs_assert(c, req->idx_growth >= 0); 526 ubifs_assert(c, req->data_growth >= 0); 527 ubifs_assert(c, req->dd_growth >= 0); 528 } 529 530 if (req->recalculate) { 531 req->data_growth = calc_data_growth(c, req); 532 req->dd_growth = calc_dd_growth(c, req); 533 req->idx_growth = calc_idx_growth(c, req); 534 } 535 536 if (!req->data_growth && !req->dd_growth) 537 return; 538 539 c->bi.nospace = c->bi.nospace_rp = 0; 540 smp_wmb(); 541 542 spin_lock(&c->space_lock); 543 c->bi.idx_growth -= req->idx_growth; 544 c->bi.uncommitted_idx += req->idx_growth; 545 c->bi.data_growth -= req->data_growth; 546 c->bi.dd_growth -= req->dd_growth; 547 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 548 549 ubifs_assert(c, c->bi.idx_growth >= 0); 550 ubifs_assert(c, c->bi.data_growth >= 0); 551 ubifs_assert(c, c->bi.dd_growth >= 0); 552 ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs); 553 ubifs_assert(c, !(c->bi.idx_growth & 7)); 554 ubifs_assert(c, !(c->bi.data_growth & 7)); 555 ubifs_assert(c, !(c->bi.dd_growth & 7)); 556 spin_unlock(&c->space_lock); 557 } 558 559 /** 560 * ubifs_convert_page_budget - convert budget of a new page. 561 * @c: UBIFS file-system description object 562 * 563 * This function converts budget which was allocated for a new page of data to 564 * the budget of changing an existing page of data. The latter is smaller than 565 * the former, so this function only does simple re-calculation and does not 566 * involve any write-back. 567 */ 568 void ubifs_convert_page_budget(struct ubifs_info *c) 569 { 570 spin_lock(&c->space_lock); 571 /* Release the index growth reservation */ 572 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 573 /* Release the data growth reservation */ 574 c->bi.data_growth -= c->bi.page_budget; 575 /* Increase the dirty data growth reservation instead */ 576 c->bi.dd_growth += c->bi.page_budget; 577 /* And re-calculate the indexing space reservation */ 578 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 579 spin_unlock(&c->space_lock); 580 } 581 582 /** 583 * ubifs_release_dirty_inode_budget - release dirty inode budget. 584 * @c: UBIFS file-system description object 585 * @ui: UBIFS inode to release the budget for 586 * 587 * This function releases budget corresponding to a dirty inode. It is usually 588 * called when after the inode has been written to the media and marked as 589 * clean. It also causes the "no space" flags to be cleared. 590 */ 591 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 592 struct ubifs_inode *ui) 593 { 594 struct ubifs_budget_req req; 595 596 memset(&req, 0, sizeof(struct ubifs_budget_req)); 597 /* The "no space" flags will be cleared because dd_growth is > 0 */ 598 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); 599 ubifs_release_budget(c, &req); 600 } 601 602 /** 603 * ubifs_reported_space - calculate reported free space. 604 * @c: the UBIFS file-system description object 605 * @free: amount of free space 606 * 607 * This function calculates amount of free space which will be reported to 608 * user-space. User-space application tend to expect that if the file-system 609 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 610 * are able to write a file of size N. UBIFS attaches node headers to each data 611 * node and it has to write indexing nodes as well. This introduces additional 612 * overhead, and UBIFS has to report slightly less free space to meet the above 613 * expectations. 614 * 615 * This function assumes free space is made up of uncompressed data nodes and 616 * full index nodes (one per data node, tripled because we always allow enough 617 * space to write the index thrice). 618 * 619 * Note, the calculation is pessimistic, which means that most of the time 620 * UBIFS reports less space than it actually has. 621 */ 622 long long ubifs_reported_space(const struct ubifs_info *c, long long free) 623 { 624 int divisor, factor, f; 625 626 /* 627 * Reported space size is @free * X, where X is UBIFS block size 628 * divided by UBIFS block size + all overhead one data block 629 * introduces. The overhead is the node header + indexing overhead. 630 * 631 * Indexing overhead calculations are based on the following formula: 632 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 633 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 634 * as less than maximum fanout, we assume that each data node 635 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 636 * Note, the multiplier 3 is because UBIFS reserves thrice as more space 637 * for the index. 638 */ 639 f = c->fanout > 3 ? c->fanout >> 1 : 2; 640 factor = UBIFS_BLOCK_SIZE; 641 divisor = UBIFS_MAX_DATA_NODE_SZ; 642 divisor += (c->max_idx_node_sz * 3) / (f - 1); 643 free *= factor; 644 return div_u64(free, divisor); 645 } 646 647 /** 648 * ubifs_get_free_space_nolock - return amount of free space. 649 * @c: UBIFS file-system description object 650 * 651 * This function calculates amount of free space to report to user-space. 652 * 653 * Because UBIFS may introduce substantial overhead (the index, node headers, 654 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of 655 * free flash space it has (well, because not all dirty space is reclaimable, 656 * UBIFS does not actually know the real amount). If UBIFS did so, it would 657 * bread user expectations about what free space is. Users seem to accustomed 658 * to assume that if the file-system reports N bytes of free space, they would 659 * be able to fit a file of N bytes to the FS. This almost works for 660 * traditional file-systems, because they have way less overhead than UBIFS. 661 * So, to keep users happy, UBIFS tries to take the overhead into account. 662 */ 663 long long ubifs_get_free_space_nolock(struct ubifs_info *c) 664 { 665 int rsvd_idx_lebs, lebs; 666 long long available, outstanding, free; 667 668 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 669 outstanding = c->bi.data_growth + c->bi.dd_growth; 670 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 671 672 /* 673 * When reporting free space to user-space, UBIFS guarantees that it is 674 * possible to write a file of free space size. This means that for 675 * empty LEBs we may use more precise calculations than 676 * 'ubifs_calc_available()' is using. Namely, we know that in empty 677 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 678 * Thus, amend the available space. 679 * 680 * Note, the calculations below are similar to what we have in 681 * 'do_budget_space()', so refer there for comments. 682 */ 683 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 684 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 685 else 686 rsvd_idx_lebs = 0; 687 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 688 c->lst.taken_empty_lebs; 689 lebs -= rsvd_idx_lebs; 690 available += lebs * (c->dark_wm - c->leb_overhead); 691 692 if (available > outstanding) 693 free = ubifs_reported_space(c, available - outstanding); 694 else 695 free = 0; 696 return free; 697 } 698 699 /** 700 * ubifs_get_free_space - return amount of free space. 701 * @c: UBIFS file-system description object 702 * 703 * This function calculates and returns amount of free space to report to 704 * user-space. 705 */ 706 long long ubifs_get_free_space(struct ubifs_info *c) 707 { 708 long long free; 709 710 spin_lock(&c->space_lock); 711 free = ubifs_get_free_space_nolock(c); 712 spin_unlock(&c->space_lock); 713 714 return free; 715 } 716