1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements the budgeting sub-system which is responsible for UBIFS 13 * space management. 14 * 15 * Factors such as compression, wasted space at the ends of LEBs, space in other 16 * journal heads, the effect of updates on the index, and so on, make it 17 * impossible to accurately predict the amount of space needed. Consequently 18 * approximations are used. 19 */ 20 21 #include "ubifs.h" 22 #include <linux/writeback.h> 23 #include <linux/math64.h> 24 25 /* 26 * When pessimistic budget calculations say that there is no enough space, 27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 28 * or committing. The below constant defines maximum number of times UBIFS 29 * repeats the operations. 30 */ 31 #define MAX_MKSPC_RETRIES 3 32 33 /* 34 * The below constant defines amount of dirty pages which should be written 35 * back at when trying to shrink the liability. 36 */ 37 #define NR_TO_WRITE 16 38 39 /** 40 * shrink_liability - write-back some dirty pages/inodes. 41 * @c: UBIFS file-system description object 42 * @nr_to_write: how many dirty pages to write-back 43 * 44 * This function shrinks UBIFS liability by means of writing back some amount 45 * of dirty inodes and their pages. 46 * 47 * Note, this function synchronizes even VFS inodes which are locked 48 * (@i_mutex) by the caller of the budgeting function, because write-back does 49 * not touch @i_mutex. 50 */ 51 static void shrink_liability(struct ubifs_info *c, int nr_to_write) 52 { 53 down_read(&c->vfs_sb->s_umount); 54 writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE); 55 up_read(&c->vfs_sb->s_umount); 56 } 57 58 /** 59 * run_gc - run garbage collector. 60 * @c: UBIFS file-system description object 61 * 62 * This function runs garbage collector to make some more free space. Returns 63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 64 * negative error code in case of failure. 65 */ 66 static int run_gc(struct ubifs_info *c) 67 { 68 int err, lnum; 69 70 /* Make some free space by garbage-collecting dirty space */ 71 down_read(&c->commit_sem); 72 lnum = ubifs_garbage_collect(c, 1); 73 up_read(&c->commit_sem); 74 if (lnum < 0) 75 return lnum; 76 77 /* GC freed one LEB, return it to lprops */ 78 dbg_budg("GC freed LEB %d", lnum); 79 err = ubifs_return_leb(c, lnum); 80 if (err) 81 return err; 82 return 0; 83 } 84 85 /** 86 * get_liability - calculate current liability. 87 * @c: UBIFS file-system description object 88 * 89 * This function calculates and returns current UBIFS liability, i.e. the 90 * amount of bytes UBIFS has "promised" to write to the media. 91 */ 92 static long long get_liability(struct ubifs_info *c) 93 { 94 long long liab; 95 96 spin_lock(&c->space_lock); 97 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; 98 spin_unlock(&c->space_lock); 99 return liab; 100 } 101 102 /** 103 * make_free_space - make more free space on the file-system. 104 * @c: UBIFS file-system description object 105 * 106 * This function is called when an operation cannot be budgeted because there 107 * is supposedly no free space. But in most cases there is some free space: 108 * o budgeting is pessimistic, so it always budgets more than it is actually 109 * needed, so shrinking the liability is one way to make free space - the 110 * cached data will take less space then it was budgeted for; 111 * o GC may turn some dark space into free space (budgeting treats dark space 112 * as not available); 113 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 114 * 115 * So this function tries to do the above. Returns %-EAGAIN if some free space 116 * was presumably made and the caller has to re-try budgeting the operation. 117 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 118 * codes on failures. 119 */ 120 static int make_free_space(struct ubifs_info *c) 121 { 122 int err, retries = 0; 123 long long liab1, liab2; 124 125 do { 126 liab1 = get_liability(c); 127 /* 128 * We probably have some dirty pages or inodes (liability), try 129 * to write them back. 130 */ 131 dbg_budg("liability %lld, run write-back", liab1); 132 shrink_liability(c, NR_TO_WRITE); 133 134 liab2 = get_liability(c); 135 if (liab2 < liab1) 136 return -EAGAIN; 137 138 dbg_budg("new liability %lld (not shrunk)", liab2); 139 140 /* Liability did not shrink again, try GC */ 141 dbg_budg("Run GC"); 142 err = run_gc(c); 143 if (!err) 144 return -EAGAIN; 145 146 if (err != -EAGAIN && err != -ENOSPC) 147 /* Some real error happened */ 148 return err; 149 150 dbg_budg("Run commit (retries %d)", retries); 151 err = ubifs_run_commit(c); 152 if (err) 153 return err; 154 } while (retries++ < MAX_MKSPC_RETRIES); 155 156 return -ENOSPC; 157 } 158 159 /** 160 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. 161 * @c: UBIFS file-system description object 162 * 163 * This function calculates and returns the number of LEBs which should be kept 164 * for index usage. 165 */ 166 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 167 { 168 int idx_lebs; 169 long long idx_size; 170 171 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; 172 /* And make sure we have thrice the index size of space reserved */ 173 idx_size += idx_size << 1; 174 /* 175 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 176 * pair, nor similarly the two variables for the new index size, so we 177 * have to do this costly 64-bit division on fast-path. 178 */ 179 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); 180 /* 181 * The index head is not available for the in-the-gaps method, so add an 182 * extra LEB to compensate. 183 */ 184 idx_lebs += 1; 185 if (idx_lebs < MIN_INDEX_LEBS) 186 idx_lebs = MIN_INDEX_LEBS; 187 return idx_lebs; 188 } 189 190 /** 191 * ubifs_calc_available - calculate available FS space. 192 * @c: UBIFS file-system description object 193 * @min_idx_lebs: minimum number of LEBs reserved for the index 194 * 195 * This function calculates and returns amount of FS space available for use. 196 */ 197 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 198 { 199 int subtract_lebs; 200 long long available; 201 202 available = c->main_bytes - c->lst.total_used; 203 204 /* 205 * Now 'available' contains theoretically available flash space 206 * assuming there is no index, so we have to subtract the space which 207 * is reserved for the index. 208 */ 209 subtract_lebs = min_idx_lebs; 210 211 /* Take into account that GC reserves one LEB for its own needs */ 212 subtract_lebs += 1; 213 214 /* 215 * The GC journal head LEB is not really accessible. And since 216 * different write types go to different heads, we may count only on 217 * one head's space. 218 */ 219 subtract_lebs += c->jhead_cnt - 1; 220 221 /* We also reserve one LEB for deletions, which bypass budgeting */ 222 subtract_lebs += 1; 223 224 available -= (long long)subtract_lebs * c->leb_size; 225 226 /* Subtract the dead space which is not available for use */ 227 available -= c->lst.total_dead; 228 229 /* 230 * Subtract dark space, which might or might not be usable - it depends 231 * on the data which we have on the media and which will be written. If 232 * this is a lot of uncompressed or not-compressible data, the dark 233 * space cannot be used. 234 */ 235 available -= c->lst.total_dark; 236 237 /* 238 * However, there is more dark space. The index may be bigger than 239 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 240 * their dark space is not included in total_dark, so it is subtracted 241 * here. 242 */ 243 if (c->lst.idx_lebs > min_idx_lebs) { 244 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 245 available -= subtract_lebs * c->dark_wm; 246 } 247 248 /* The calculations are rough and may end up with a negative number */ 249 return available > 0 ? available : 0; 250 } 251 252 /** 253 * can_use_rp - check whether the user is allowed to use reserved pool. 254 * @c: UBIFS file-system description object 255 * 256 * UBIFS has so-called "reserved pool" which is flash space reserved 257 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 258 * This function checks whether current user is allowed to use reserved pool. 259 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 260 */ 261 static int can_use_rp(struct ubifs_info *c) 262 { 263 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || 264 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) 265 return 1; 266 return 0; 267 } 268 269 /** 270 * do_budget_space - reserve flash space for index and data growth. 271 * @c: UBIFS file-system description object 272 * 273 * This function makes sure UBIFS has enough free LEBs for index growth and 274 * data. 275 * 276 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 277 * would take if it was consolidated and written to the flash. This guarantees 278 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 279 * be able to commit dirty index. So this function basically adds amount of 280 * budgeted index space to the size of the current index, multiplies this by 3, 281 * and makes sure this does not exceed the amount of free LEBs. 282 * 283 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: 284 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 285 * be large, because UBIFS does not do any index consolidation as long as 286 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 287 * will contain a lot of dirt. 288 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, 289 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. 290 * 291 * This function returns zero in case of success, and %-ENOSPC in case of 292 * failure. 293 */ 294 static int do_budget_space(struct ubifs_info *c) 295 { 296 long long outstanding, available; 297 int lebs, rsvd_idx_lebs, min_idx_lebs; 298 299 /* First budget index space */ 300 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 301 302 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 303 if (min_idx_lebs > c->lst.idx_lebs) 304 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 305 else 306 rsvd_idx_lebs = 0; 307 308 /* 309 * The number of LEBs that are available to be used by the index is: 310 * 311 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 312 * @c->lst.taken_empty_lebs 313 * 314 * @c->lst.empty_lebs are available because they are empty. 315 * @c->freeable_cnt are available because they contain only free and 316 * dirty space, @c->idx_gc_cnt are available because they are index 317 * LEBs that have been garbage collected and are awaiting the commit 318 * before they can be used. And the in-the-gaps method will grab these 319 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have 320 * already been allocated for some purpose. 321 * 322 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because 323 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they 324 * are taken until after the commit). 325 * 326 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one 327 * because of the way we serialize LEB allocations and budgeting. See a 328 * comment in 'ubifs_find_free_space()'. 329 */ 330 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 331 c->lst.taken_empty_lebs; 332 if (unlikely(rsvd_idx_lebs > lebs)) { 333 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", 334 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); 335 return -ENOSPC; 336 } 337 338 available = ubifs_calc_available(c, min_idx_lebs); 339 outstanding = c->bi.data_growth + c->bi.dd_growth; 340 341 if (unlikely(available < outstanding)) { 342 dbg_budg("out of data space: available %lld, outstanding %lld", 343 available, outstanding); 344 return -ENOSPC; 345 } 346 347 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 348 return -ENOSPC; 349 350 c->bi.min_idx_lebs = min_idx_lebs; 351 return 0; 352 } 353 354 /** 355 * calc_idx_growth - calculate approximate index growth from budgeting request. 356 * @c: UBIFS file-system description object 357 * @req: budgeting request 358 * 359 * For now we assume each new node adds one znode. But this is rather poor 360 * approximation, though. 361 */ 362 static int calc_idx_growth(const struct ubifs_info *c, 363 const struct ubifs_budget_req *req) 364 { 365 int znodes; 366 367 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 368 req->new_dent; 369 return znodes * c->max_idx_node_sz; 370 } 371 372 /** 373 * calc_data_growth - calculate approximate amount of new data from budgeting 374 * request. 375 * @c: UBIFS file-system description object 376 * @req: budgeting request 377 */ 378 static int calc_data_growth(const struct ubifs_info *c, 379 const struct ubifs_budget_req *req) 380 { 381 int data_growth; 382 383 data_growth = req->new_ino ? c->bi.inode_budget : 0; 384 if (req->new_page) 385 data_growth += c->bi.page_budget; 386 if (req->new_dent) 387 data_growth += c->bi.dent_budget; 388 data_growth += req->new_ino_d; 389 return data_growth; 390 } 391 392 /** 393 * calc_dd_growth - calculate approximate amount of data which makes other data 394 * dirty from budgeting request. 395 * @c: UBIFS file-system description object 396 * @req: budgeting request 397 */ 398 static int calc_dd_growth(const struct ubifs_info *c, 399 const struct ubifs_budget_req *req) 400 { 401 int dd_growth; 402 403 dd_growth = req->dirtied_page ? c->bi.page_budget : 0; 404 405 if (req->dirtied_ino) 406 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1); 407 if (req->mod_dent) 408 dd_growth += c->bi.dent_budget; 409 dd_growth += req->dirtied_ino_d; 410 return dd_growth; 411 } 412 413 /** 414 * ubifs_budget_space - ensure there is enough space to complete an operation. 415 * @c: UBIFS file-system description object 416 * @req: budget request 417 * 418 * This function allocates budget for an operation. It uses pessimistic 419 * approximation of how much flash space the operation needs. The goal of this 420 * function is to make sure UBIFS always has flash space to flush all dirty 421 * pages, dirty inodes, and dirty znodes (liability). This function may force 422 * commit, garbage-collection or write-back. Returns zero in case of success, 423 * %-ENOSPC if there is no free space and other negative error codes in case of 424 * failures. 425 */ 426 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 427 { 428 int err, idx_growth, data_growth, dd_growth, retried = 0; 429 430 ubifs_assert(c, req->new_page <= 1); 431 ubifs_assert(c, req->dirtied_page <= 1); 432 ubifs_assert(c, req->new_dent <= 1); 433 ubifs_assert(c, req->mod_dent <= 1); 434 ubifs_assert(c, req->new_ino <= 1); 435 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 436 ubifs_assert(c, req->dirtied_ino <= 4); 437 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 438 ubifs_assert(c, !(req->new_ino_d & 7)); 439 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 440 441 data_growth = calc_data_growth(c, req); 442 dd_growth = calc_dd_growth(c, req); 443 if (!data_growth && !dd_growth) 444 return 0; 445 idx_growth = calc_idx_growth(c, req); 446 447 again: 448 spin_lock(&c->space_lock); 449 ubifs_assert(c, c->bi.idx_growth >= 0); 450 ubifs_assert(c, c->bi.data_growth >= 0); 451 ubifs_assert(c, c->bi.dd_growth >= 0); 452 453 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { 454 dbg_budg("no space"); 455 spin_unlock(&c->space_lock); 456 return -ENOSPC; 457 } 458 459 c->bi.idx_growth += idx_growth; 460 c->bi.data_growth += data_growth; 461 c->bi.dd_growth += dd_growth; 462 463 err = do_budget_space(c); 464 if (likely(!err)) { 465 req->idx_growth = idx_growth; 466 req->data_growth = data_growth; 467 req->dd_growth = dd_growth; 468 spin_unlock(&c->space_lock); 469 return 0; 470 } 471 472 /* Restore the old values */ 473 c->bi.idx_growth -= idx_growth; 474 c->bi.data_growth -= data_growth; 475 c->bi.dd_growth -= dd_growth; 476 spin_unlock(&c->space_lock); 477 478 if (req->fast) { 479 dbg_budg("no space for fast budgeting"); 480 return err; 481 } 482 483 err = make_free_space(c); 484 cond_resched(); 485 if (err == -EAGAIN) { 486 dbg_budg("try again"); 487 goto again; 488 } else if (err == -ENOSPC) { 489 if (!retried) { 490 retried = 1; 491 dbg_budg("-ENOSPC, but anyway try once again"); 492 goto again; 493 } 494 dbg_budg("FS is full, -ENOSPC"); 495 c->bi.nospace = 1; 496 if (can_use_rp(c) || c->rp_size == 0) 497 c->bi.nospace_rp = 1; 498 smp_wmb(); 499 } else 500 ubifs_err(c, "cannot budget space, error %d", err); 501 return err; 502 } 503 504 /** 505 * ubifs_release_budget - release budgeted free space. 506 * @c: UBIFS file-system description object 507 * @req: budget request 508 * 509 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 510 * since the index changes (which were budgeted for in @req->idx_growth) will 511 * only be written to the media on commit, this function moves the index budget 512 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed 513 * by the commit operation. 514 */ 515 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 516 { 517 ubifs_assert(c, req->new_page <= 1); 518 ubifs_assert(c, req->dirtied_page <= 1); 519 ubifs_assert(c, req->new_dent <= 1); 520 ubifs_assert(c, req->mod_dent <= 1); 521 ubifs_assert(c, req->new_ino <= 1); 522 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 523 ubifs_assert(c, req->dirtied_ino <= 4); 524 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 525 ubifs_assert(c, !(req->new_ino_d & 7)); 526 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 527 if (!req->recalculate) { 528 ubifs_assert(c, req->idx_growth >= 0); 529 ubifs_assert(c, req->data_growth >= 0); 530 ubifs_assert(c, req->dd_growth >= 0); 531 } 532 533 if (req->recalculate) { 534 req->data_growth = calc_data_growth(c, req); 535 req->dd_growth = calc_dd_growth(c, req); 536 req->idx_growth = calc_idx_growth(c, req); 537 } 538 539 if (!req->data_growth && !req->dd_growth) 540 return; 541 542 c->bi.nospace = c->bi.nospace_rp = 0; 543 smp_wmb(); 544 545 spin_lock(&c->space_lock); 546 c->bi.idx_growth -= req->idx_growth; 547 c->bi.uncommitted_idx += req->idx_growth; 548 c->bi.data_growth -= req->data_growth; 549 c->bi.dd_growth -= req->dd_growth; 550 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 551 552 ubifs_assert(c, c->bi.idx_growth >= 0); 553 ubifs_assert(c, c->bi.data_growth >= 0); 554 ubifs_assert(c, c->bi.dd_growth >= 0); 555 ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs); 556 ubifs_assert(c, !(c->bi.idx_growth & 7)); 557 ubifs_assert(c, !(c->bi.data_growth & 7)); 558 ubifs_assert(c, !(c->bi.dd_growth & 7)); 559 spin_unlock(&c->space_lock); 560 } 561 562 /** 563 * ubifs_convert_page_budget - convert budget of a new page. 564 * @c: UBIFS file-system description object 565 * 566 * This function converts budget which was allocated for a new page of data to 567 * the budget of changing an existing page of data. The latter is smaller than 568 * the former, so this function only does simple re-calculation and does not 569 * involve any write-back. 570 */ 571 void ubifs_convert_page_budget(struct ubifs_info *c) 572 { 573 spin_lock(&c->space_lock); 574 /* Release the index growth reservation */ 575 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 576 /* Release the data growth reservation */ 577 c->bi.data_growth -= c->bi.page_budget; 578 /* Increase the dirty data growth reservation instead */ 579 c->bi.dd_growth += c->bi.page_budget; 580 /* And re-calculate the indexing space reservation */ 581 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 582 spin_unlock(&c->space_lock); 583 } 584 585 /** 586 * ubifs_release_dirty_inode_budget - release dirty inode budget. 587 * @c: UBIFS file-system description object 588 * @ui: UBIFS inode to release the budget for 589 * 590 * This function releases budget corresponding to a dirty inode. It is usually 591 * called when after the inode has been written to the media and marked as 592 * clean. It also causes the "no space" flags to be cleared. 593 */ 594 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 595 struct ubifs_inode *ui) 596 { 597 struct ubifs_budget_req req; 598 599 memset(&req, 0, sizeof(struct ubifs_budget_req)); 600 /* The "no space" flags will be cleared because dd_growth is > 0 */ 601 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); 602 ubifs_release_budget(c, &req); 603 } 604 605 /** 606 * ubifs_reported_space - calculate reported free space. 607 * @c: the UBIFS file-system description object 608 * @free: amount of free space 609 * 610 * This function calculates amount of free space which will be reported to 611 * user-space. User-space application tend to expect that if the file-system 612 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 613 * are able to write a file of size N. UBIFS attaches node headers to each data 614 * node and it has to write indexing nodes as well. This introduces additional 615 * overhead, and UBIFS has to report slightly less free space to meet the above 616 * expectations. 617 * 618 * This function assumes free space is made up of uncompressed data nodes and 619 * full index nodes (one per data node, tripled because we always allow enough 620 * space to write the index thrice). 621 * 622 * Note, the calculation is pessimistic, which means that most of the time 623 * UBIFS reports less space than it actually has. 624 */ 625 long long ubifs_reported_space(const struct ubifs_info *c, long long free) 626 { 627 int divisor, factor, f; 628 629 /* 630 * Reported space size is @free * X, where X is UBIFS block size 631 * divided by UBIFS block size + all overhead one data block 632 * introduces. The overhead is the node header + indexing overhead. 633 * 634 * Indexing overhead calculations are based on the following formula: 635 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 636 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 637 * as less than maximum fanout, we assume that each data node 638 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 639 * Note, the multiplier 3 is because UBIFS reserves thrice as more space 640 * for the index. 641 */ 642 f = c->fanout > 3 ? c->fanout >> 1 : 2; 643 factor = UBIFS_BLOCK_SIZE; 644 divisor = UBIFS_MAX_DATA_NODE_SZ; 645 divisor += (c->max_idx_node_sz * 3) / (f - 1); 646 free *= factor; 647 return div_u64(free, divisor); 648 } 649 650 /** 651 * ubifs_get_free_space_nolock - return amount of free space. 652 * @c: UBIFS file-system description object 653 * 654 * This function calculates amount of free space to report to user-space. 655 * 656 * Because UBIFS may introduce substantial overhead (the index, node headers, 657 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of 658 * free flash space it has (well, because not all dirty space is reclaimable, 659 * UBIFS does not actually know the real amount). If UBIFS did so, it would 660 * bread user expectations about what free space is. Users seem to accustomed 661 * to assume that if the file-system reports N bytes of free space, they would 662 * be able to fit a file of N bytes to the FS. This almost works for 663 * traditional file-systems, because they have way less overhead than UBIFS. 664 * So, to keep users happy, UBIFS tries to take the overhead into account. 665 */ 666 long long ubifs_get_free_space_nolock(struct ubifs_info *c) 667 { 668 int rsvd_idx_lebs, lebs; 669 long long available, outstanding, free; 670 671 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 672 outstanding = c->bi.data_growth + c->bi.dd_growth; 673 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 674 675 /* 676 * When reporting free space to user-space, UBIFS guarantees that it is 677 * possible to write a file of free space size. This means that for 678 * empty LEBs we may use more precise calculations than 679 * 'ubifs_calc_available()' is using. Namely, we know that in empty 680 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 681 * Thus, amend the available space. 682 * 683 * Note, the calculations below are similar to what we have in 684 * 'do_budget_space()', so refer there for comments. 685 */ 686 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 687 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 688 else 689 rsvd_idx_lebs = 0; 690 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 691 c->lst.taken_empty_lebs; 692 lebs -= rsvd_idx_lebs; 693 available += lebs * (c->dark_wm - c->leb_overhead); 694 695 if (available > outstanding) 696 free = ubifs_reported_space(c, available - outstanding); 697 else 698 free = 0; 699 return free; 700 } 701 702 /** 703 * ubifs_get_free_space - return amount of free space. 704 * @c: UBIFS file-system description object 705 * 706 * This function calculates and returns amount of free space to report to 707 * user-space. 708 */ 709 long long ubifs_get_free_space(struct ubifs_info *c) 710 { 711 long long free; 712 713 spin_lock(&c->space_lock); 714 free = ubifs_get_free_space_nolock(c); 715 spin_unlock(&c->space_lock); 716 717 return free; 718 } 719