xref: /openbmc/linux/fs/ubifs/budget.c (revision 3e30a927)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the budgeting sub-system which is responsible for UBIFS
13  * space management.
14  *
15  * Factors such as compression, wasted space at the ends of LEBs, space in other
16  * journal heads, the effect of updates on the index, and so on, make it
17  * impossible to accurately predict the amount of space needed. Consequently
18  * approximations are used.
19  */
20 
21 #include "ubifs.h"
22 #include <linux/writeback.h>
23 #include <linux/math64.h>
24 
25 /*
26  * When pessimistic budget calculations say that there is no enough space,
27  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
28  * or committing. The below constant defines maximum number of times UBIFS
29  * repeats the operations.
30  */
31 #define MAX_MKSPC_RETRIES 3
32 
33 /*
34  * The below constant defines amount of dirty pages which should be written
35  * back at when trying to shrink the liability.
36  */
37 #define NR_TO_WRITE 16
38 
39 /**
40  * shrink_liability - write-back some dirty pages/inodes.
41  * @c: UBIFS file-system description object
42  * @nr_to_write: how many dirty pages to write-back
43  *
44  * This function shrinks UBIFS liability by means of writing back some amount
45  * of dirty inodes and their pages.
46  *
47  * Note, this function synchronizes even VFS inodes which are locked
48  * (@i_mutex) by the caller of the budgeting function, because write-back does
49  * not touch @i_mutex.
50  */
51 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
52 {
53 	down_read(&c->vfs_sb->s_umount);
54 	writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
55 	up_read(&c->vfs_sb->s_umount);
56 }
57 
58 /**
59  * run_gc - run garbage collector.
60  * @c: UBIFS file-system description object
61  *
62  * This function runs garbage collector to make some more free space. Returns
63  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
64  * negative error code in case of failure.
65  */
66 static int run_gc(struct ubifs_info *c)
67 {
68 	int err, lnum;
69 
70 	/* Make some free space by garbage-collecting dirty space */
71 	down_read(&c->commit_sem);
72 	lnum = ubifs_garbage_collect(c, 1);
73 	up_read(&c->commit_sem);
74 	if (lnum < 0)
75 		return lnum;
76 
77 	/* GC freed one LEB, return it to lprops */
78 	dbg_budg("GC freed LEB %d", lnum);
79 	err = ubifs_return_leb(c, lnum);
80 	if (err)
81 		return err;
82 	return 0;
83 }
84 
85 /**
86  * get_liability - calculate current liability.
87  * @c: UBIFS file-system description object
88  *
89  * This function calculates and returns current UBIFS liability, i.e. the
90  * amount of bytes UBIFS has "promised" to write to the media.
91  */
92 static long long get_liability(struct ubifs_info *c)
93 {
94 	long long liab;
95 
96 	spin_lock(&c->space_lock);
97 	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
98 	spin_unlock(&c->space_lock);
99 	return liab;
100 }
101 
102 /**
103  * make_free_space - make more free space on the file-system.
104  * @c: UBIFS file-system description object
105  *
106  * This function is called when an operation cannot be budgeted because there
107  * is supposedly no free space. But in most cases there is some free space:
108  *   o budgeting is pessimistic, so it always budgets more than it is actually
109  *     needed, so shrinking the liability is one way to make free space - the
110  *     cached data will take less space then it was budgeted for;
111  *   o GC may turn some dark space into free space (budgeting treats dark space
112  *     as not available);
113  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
114  *
115  * So this function tries to do the above. Returns %-EAGAIN if some free space
116  * was presumably made and the caller has to re-try budgeting the operation.
117  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
118  * codes on failures.
119  */
120 static int make_free_space(struct ubifs_info *c)
121 {
122 	int err, retries = 0;
123 	long long liab1, liab2;
124 
125 	do {
126 		liab1 = get_liability(c);
127 		/*
128 		 * We probably have some dirty pages or inodes (liability), try
129 		 * to write them back.
130 		 */
131 		dbg_budg("liability %lld, run write-back", liab1);
132 		shrink_liability(c, NR_TO_WRITE);
133 
134 		liab2 = get_liability(c);
135 		if (liab2 < liab1)
136 			return -EAGAIN;
137 
138 		dbg_budg("new liability %lld (not shrunk)", liab2);
139 
140 		/* Liability did not shrink again, try GC */
141 		dbg_budg("Run GC");
142 		err = run_gc(c);
143 		if (!err)
144 			return -EAGAIN;
145 
146 		if (err != -EAGAIN && err != -ENOSPC)
147 			/* Some real error happened */
148 			return err;
149 
150 		dbg_budg("Run commit (retries %d)", retries);
151 		err = ubifs_run_commit(c);
152 		if (err)
153 			return err;
154 	} while (retries++ < MAX_MKSPC_RETRIES);
155 
156 	return -ENOSPC;
157 }
158 
159 /**
160  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
161  * @c: UBIFS file-system description object
162  *
163  * This function calculates and returns the number of LEBs which should be kept
164  * for index usage.
165  */
166 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
167 {
168 	int idx_lebs;
169 	long long idx_size;
170 
171 	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
172 	/* And make sure we have thrice the index size of space reserved */
173 	idx_size += idx_size << 1;
174 	/*
175 	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
176 	 * pair, nor similarly the two variables for the new index size, so we
177 	 * have to do this costly 64-bit division on fast-path.
178 	 */
179 	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
180 	/*
181 	 * The index head is not available for the in-the-gaps method, so add an
182 	 * extra LEB to compensate.
183 	 */
184 	idx_lebs += 1;
185 	if (idx_lebs < MIN_INDEX_LEBS)
186 		idx_lebs = MIN_INDEX_LEBS;
187 	return idx_lebs;
188 }
189 
190 /**
191  * ubifs_calc_available - calculate available FS space.
192  * @c: UBIFS file-system description object
193  * @min_idx_lebs: minimum number of LEBs reserved for the index
194  *
195  * This function calculates and returns amount of FS space available for use.
196  */
197 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
198 {
199 	int subtract_lebs;
200 	long long available;
201 
202 	available = c->main_bytes - c->lst.total_used;
203 
204 	/*
205 	 * Now 'available' contains theoretically available flash space
206 	 * assuming there is no index, so we have to subtract the space which
207 	 * is reserved for the index.
208 	 */
209 	subtract_lebs = min_idx_lebs;
210 
211 	/* Take into account that GC reserves one LEB for its own needs */
212 	subtract_lebs += 1;
213 
214 	/*
215 	 * The GC journal head LEB is not really accessible. And since
216 	 * different write types go to different heads, we may count only on
217 	 * one head's space.
218 	 */
219 	subtract_lebs += c->jhead_cnt - 1;
220 
221 	/* We also reserve one LEB for deletions, which bypass budgeting */
222 	subtract_lebs += 1;
223 
224 	available -= (long long)subtract_lebs * c->leb_size;
225 
226 	/* Subtract the dead space which is not available for use */
227 	available -= c->lst.total_dead;
228 
229 	/*
230 	 * Subtract dark space, which might or might not be usable - it depends
231 	 * on the data which we have on the media and which will be written. If
232 	 * this is a lot of uncompressed or not-compressible data, the dark
233 	 * space cannot be used.
234 	 */
235 	available -= c->lst.total_dark;
236 
237 	/*
238 	 * However, there is more dark space. The index may be bigger than
239 	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
240 	 * their dark space is not included in total_dark, so it is subtracted
241 	 * here.
242 	 */
243 	if (c->lst.idx_lebs > min_idx_lebs) {
244 		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
245 		available -= subtract_lebs * c->dark_wm;
246 	}
247 
248 	/* The calculations are rough and may end up with a negative number */
249 	return available > 0 ? available : 0;
250 }
251 
252 /**
253  * can_use_rp - check whether the user is allowed to use reserved pool.
254  * @c: UBIFS file-system description object
255  *
256  * UBIFS has so-called "reserved pool" which is flash space reserved
257  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
258  * This function checks whether current user is allowed to use reserved pool.
259  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
260  */
261 static int can_use_rp(struct ubifs_info *c)
262 {
263 	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
264 	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
265 		return 1;
266 	return 0;
267 }
268 
269 /**
270  * do_budget_space - reserve flash space for index and data growth.
271  * @c: UBIFS file-system description object
272  *
273  * This function makes sure UBIFS has enough free LEBs for index growth and
274  * data.
275  *
276  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
277  * would take if it was consolidated and written to the flash. This guarantees
278  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
279  * be able to commit dirty index. So this function basically adds amount of
280  * budgeted index space to the size of the current index, multiplies this by 3,
281  * and makes sure this does not exceed the amount of free LEBs.
282  *
283  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
284  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
285  *    be large, because UBIFS does not do any index consolidation as long as
286  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
287  *    will contain a lot of dirt.
288  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
289  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
290  *
291  * This function returns zero in case of success, and %-ENOSPC in case of
292  * failure.
293  */
294 static int do_budget_space(struct ubifs_info *c)
295 {
296 	long long outstanding, available;
297 	int lebs, rsvd_idx_lebs, min_idx_lebs;
298 
299 	/* First budget index space */
300 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
301 
302 	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
303 	if (min_idx_lebs > c->lst.idx_lebs)
304 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
305 	else
306 		rsvd_idx_lebs = 0;
307 
308 	/*
309 	 * The number of LEBs that are available to be used by the index is:
310 	 *
311 	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
312 	 *    @c->lst.taken_empty_lebs
313 	 *
314 	 * @c->lst.empty_lebs are available because they are empty.
315 	 * @c->freeable_cnt are available because they contain only free and
316 	 * dirty space, @c->idx_gc_cnt are available because they are index
317 	 * LEBs that have been garbage collected and are awaiting the commit
318 	 * before they can be used. And the in-the-gaps method will grab these
319 	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
320 	 * already been allocated for some purpose.
321 	 *
322 	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
323 	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
324 	 * are taken until after the commit).
325 	 *
326 	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
327 	 * because of the way we serialize LEB allocations and budgeting. See a
328 	 * comment in 'ubifs_find_free_space()'.
329 	 */
330 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
331 	       c->lst.taken_empty_lebs;
332 	if (unlikely(rsvd_idx_lebs > lebs)) {
333 		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
334 			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
335 		return -ENOSPC;
336 	}
337 
338 	available = ubifs_calc_available(c, min_idx_lebs);
339 	outstanding = c->bi.data_growth + c->bi.dd_growth;
340 
341 	if (unlikely(available < outstanding)) {
342 		dbg_budg("out of data space: available %lld, outstanding %lld",
343 			 available, outstanding);
344 		return -ENOSPC;
345 	}
346 
347 	if (available - outstanding <= c->rp_size && !can_use_rp(c))
348 		return -ENOSPC;
349 
350 	c->bi.min_idx_lebs = min_idx_lebs;
351 	return 0;
352 }
353 
354 /**
355  * calc_idx_growth - calculate approximate index growth from budgeting request.
356  * @c: UBIFS file-system description object
357  * @req: budgeting request
358  *
359  * For now we assume each new node adds one znode. But this is rather poor
360  * approximation, though.
361  */
362 static int calc_idx_growth(const struct ubifs_info *c,
363 			   const struct ubifs_budget_req *req)
364 {
365 	int znodes;
366 
367 	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
368 		 req->new_dent;
369 	return znodes * c->max_idx_node_sz;
370 }
371 
372 /**
373  * calc_data_growth - calculate approximate amount of new data from budgeting
374  * request.
375  * @c: UBIFS file-system description object
376  * @req: budgeting request
377  */
378 static int calc_data_growth(const struct ubifs_info *c,
379 			    const struct ubifs_budget_req *req)
380 {
381 	int data_growth;
382 
383 	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
384 	if (req->new_page)
385 		data_growth += c->bi.page_budget;
386 	if (req->new_dent)
387 		data_growth += c->bi.dent_budget;
388 	data_growth += req->new_ino_d;
389 	return data_growth;
390 }
391 
392 /**
393  * calc_dd_growth - calculate approximate amount of data which makes other data
394  * dirty from budgeting request.
395  * @c: UBIFS file-system description object
396  * @req: budgeting request
397  */
398 static int calc_dd_growth(const struct ubifs_info *c,
399 			  const struct ubifs_budget_req *req)
400 {
401 	int dd_growth;
402 
403 	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
404 
405 	if (req->dirtied_ino)
406 		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
407 	if (req->mod_dent)
408 		dd_growth += c->bi.dent_budget;
409 	dd_growth += req->dirtied_ino_d;
410 	return dd_growth;
411 }
412 
413 /**
414  * ubifs_budget_space - ensure there is enough space to complete an operation.
415  * @c: UBIFS file-system description object
416  * @req: budget request
417  *
418  * This function allocates budget for an operation. It uses pessimistic
419  * approximation of how much flash space the operation needs. The goal of this
420  * function is to make sure UBIFS always has flash space to flush all dirty
421  * pages, dirty inodes, and dirty znodes (liability). This function may force
422  * commit, garbage-collection or write-back. Returns zero in case of success,
423  * %-ENOSPC if there is no free space and other negative error codes in case of
424  * failures.
425  */
426 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
427 {
428 	int err, idx_growth, data_growth, dd_growth, retried = 0;
429 
430 	ubifs_assert(c, req->new_page <= 1);
431 	ubifs_assert(c, req->dirtied_page <= 1);
432 	ubifs_assert(c, req->new_dent <= 1);
433 	ubifs_assert(c, req->mod_dent <= 1);
434 	ubifs_assert(c, req->new_ino <= 1);
435 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
436 	ubifs_assert(c, req->dirtied_ino <= 4);
437 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
438 	ubifs_assert(c, !(req->new_ino_d & 7));
439 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
440 
441 	data_growth = calc_data_growth(c, req);
442 	dd_growth = calc_dd_growth(c, req);
443 	if (!data_growth && !dd_growth)
444 		return 0;
445 	idx_growth = calc_idx_growth(c, req);
446 
447 again:
448 	spin_lock(&c->space_lock);
449 	ubifs_assert(c, c->bi.idx_growth >= 0);
450 	ubifs_assert(c, c->bi.data_growth >= 0);
451 	ubifs_assert(c, c->bi.dd_growth >= 0);
452 
453 	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
454 		dbg_budg("no space");
455 		spin_unlock(&c->space_lock);
456 		return -ENOSPC;
457 	}
458 
459 	c->bi.idx_growth += idx_growth;
460 	c->bi.data_growth += data_growth;
461 	c->bi.dd_growth += dd_growth;
462 
463 	err = do_budget_space(c);
464 	if (likely(!err)) {
465 		req->idx_growth = idx_growth;
466 		req->data_growth = data_growth;
467 		req->dd_growth = dd_growth;
468 		spin_unlock(&c->space_lock);
469 		return 0;
470 	}
471 
472 	/* Restore the old values */
473 	c->bi.idx_growth -= idx_growth;
474 	c->bi.data_growth -= data_growth;
475 	c->bi.dd_growth -= dd_growth;
476 	spin_unlock(&c->space_lock);
477 
478 	if (req->fast) {
479 		dbg_budg("no space for fast budgeting");
480 		return err;
481 	}
482 
483 	err = make_free_space(c);
484 	cond_resched();
485 	if (err == -EAGAIN) {
486 		dbg_budg("try again");
487 		goto again;
488 	} else if (err == -ENOSPC) {
489 		if (!retried) {
490 			retried = 1;
491 			dbg_budg("-ENOSPC, but anyway try once again");
492 			goto again;
493 		}
494 		dbg_budg("FS is full, -ENOSPC");
495 		c->bi.nospace = 1;
496 		if (can_use_rp(c) || c->rp_size == 0)
497 			c->bi.nospace_rp = 1;
498 		smp_wmb();
499 	} else
500 		ubifs_err(c, "cannot budget space, error %d", err);
501 	return err;
502 }
503 
504 /**
505  * ubifs_release_budget - release budgeted free space.
506  * @c: UBIFS file-system description object
507  * @req: budget request
508  *
509  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
510  * since the index changes (which were budgeted for in @req->idx_growth) will
511  * only be written to the media on commit, this function moves the index budget
512  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
513  * by the commit operation.
514  */
515 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
516 {
517 	ubifs_assert(c, req->new_page <= 1);
518 	ubifs_assert(c, req->dirtied_page <= 1);
519 	ubifs_assert(c, req->new_dent <= 1);
520 	ubifs_assert(c, req->mod_dent <= 1);
521 	ubifs_assert(c, req->new_ino <= 1);
522 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
523 	ubifs_assert(c, req->dirtied_ino <= 4);
524 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
525 	ubifs_assert(c, !(req->new_ino_d & 7));
526 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
527 	if (!req->recalculate) {
528 		ubifs_assert(c, req->idx_growth >= 0);
529 		ubifs_assert(c, req->data_growth >= 0);
530 		ubifs_assert(c, req->dd_growth >= 0);
531 	}
532 
533 	if (req->recalculate) {
534 		req->data_growth = calc_data_growth(c, req);
535 		req->dd_growth = calc_dd_growth(c, req);
536 		req->idx_growth = calc_idx_growth(c, req);
537 	}
538 
539 	if (!req->data_growth && !req->dd_growth)
540 		return;
541 
542 	c->bi.nospace = c->bi.nospace_rp = 0;
543 	smp_wmb();
544 
545 	spin_lock(&c->space_lock);
546 	c->bi.idx_growth -= req->idx_growth;
547 	c->bi.uncommitted_idx += req->idx_growth;
548 	c->bi.data_growth -= req->data_growth;
549 	c->bi.dd_growth -= req->dd_growth;
550 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
551 
552 	ubifs_assert(c, c->bi.idx_growth >= 0);
553 	ubifs_assert(c, c->bi.data_growth >= 0);
554 	ubifs_assert(c, c->bi.dd_growth >= 0);
555 	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
556 	ubifs_assert(c, !(c->bi.idx_growth & 7));
557 	ubifs_assert(c, !(c->bi.data_growth & 7));
558 	ubifs_assert(c, !(c->bi.dd_growth & 7));
559 	spin_unlock(&c->space_lock);
560 }
561 
562 /**
563  * ubifs_convert_page_budget - convert budget of a new page.
564  * @c: UBIFS file-system description object
565  *
566  * This function converts budget which was allocated for a new page of data to
567  * the budget of changing an existing page of data. The latter is smaller than
568  * the former, so this function only does simple re-calculation and does not
569  * involve any write-back.
570  */
571 void ubifs_convert_page_budget(struct ubifs_info *c)
572 {
573 	spin_lock(&c->space_lock);
574 	/* Release the index growth reservation */
575 	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
576 	/* Release the data growth reservation */
577 	c->bi.data_growth -= c->bi.page_budget;
578 	/* Increase the dirty data growth reservation instead */
579 	c->bi.dd_growth += c->bi.page_budget;
580 	/* And re-calculate the indexing space reservation */
581 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
582 	spin_unlock(&c->space_lock);
583 }
584 
585 /**
586  * ubifs_release_dirty_inode_budget - release dirty inode budget.
587  * @c: UBIFS file-system description object
588  * @ui: UBIFS inode to release the budget for
589  *
590  * This function releases budget corresponding to a dirty inode. It is usually
591  * called when after the inode has been written to the media and marked as
592  * clean. It also causes the "no space" flags to be cleared.
593  */
594 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
595 				      struct ubifs_inode *ui)
596 {
597 	struct ubifs_budget_req req;
598 
599 	memset(&req, 0, sizeof(struct ubifs_budget_req));
600 	/* The "no space" flags will be cleared because dd_growth is > 0 */
601 	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
602 	ubifs_release_budget(c, &req);
603 }
604 
605 /**
606  * ubifs_reported_space - calculate reported free space.
607  * @c: the UBIFS file-system description object
608  * @free: amount of free space
609  *
610  * This function calculates amount of free space which will be reported to
611  * user-space. User-space application tend to expect that if the file-system
612  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
613  * are able to write a file of size N. UBIFS attaches node headers to each data
614  * node and it has to write indexing nodes as well. This introduces additional
615  * overhead, and UBIFS has to report slightly less free space to meet the above
616  * expectations.
617  *
618  * This function assumes free space is made up of uncompressed data nodes and
619  * full index nodes (one per data node, tripled because we always allow enough
620  * space to write the index thrice).
621  *
622  * Note, the calculation is pessimistic, which means that most of the time
623  * UBIFS reports less space than it actually has.
624  */
625 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
626 {
627 	int divisor, factor, f;
628 
629 	/*
630 	 * Reported space size is @free * X, where X is UBIFS block size
631 	 * divided by UBIFS block size + all overhead one data block
632 	 * introduces. The overhead is the node header + indexing overhead.
633 	 *
634 	 * Indexing overhead calculations are based on the following formula:
635 	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
636 	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
637 	 * as less than maximum fanout, we assume that each data node
638 	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
639 	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
640 	 * for the index.
641 	 */
642 	f = c->fanout > 3 ? c->fanout >> 1 : 2;
643 	factor = UBIFS_BLOCK_SIZE;
644 	divisor = UBIFS_MAX_DATA_NODE_SZ;
645 	divisor += (c->max_idx_node_sz * 3) / (f - 1);
646 	free *= factor;
647 	return div_u64(free, divisor);
648 }
649 
650 /**
651  * ubifs_get_free_space_nolock - return amount of free space.
652  * @c: UBIFS file-system description object
653  *
654  * This function calculates amount of free space to report to user-space.
655  *
656  * Because UBIFS may introduce substantial overhead (the index, node headers,
657  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
658  * free flash space it has (well, because not all dirty space is reclaimable,
659  * UBIFS does not actually know the real amount). If UBIFS did so, it would
660  * bread user expectations about what free space is. Users seem to accustomed
661  * to assume that if the file-system reports N bytes of free space, they would
662  * be able to fit a file of N bytes to the FS. This almost works for
663  * traditional file-systems, because they have way less overhead than UBIFS.
664  * So, to keep users happy, UBIFS tries to take the overhead into account.
665  */
666 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
667 {
668 	int rsvd_idx_lebs, lebs;
669 	long long available, outstanding, free;
670 
671 	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
672 	outstanding = c->bi.data_growth + c->bi.dd_growth;
673 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
674 
675 	/*
676 	 * When reporting free space to user-space, UBIFS guarantees that it is
677 	 * possible to write a file of free space size. This means that for
678 	 * empty LEBs we may use more precise calculations than
679 	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
680 	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
681 	 * Thus, amend the available space.
682 	 *
683 	 * Note, the calculations below are similar to what we have in
684 	 * 'do_budget_space()', so refer there for comments.
685 	 */
686 	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
687 		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
688 	else
689 		rsvd_idx_lebs = 0;
690 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
691 	       c->lst.taken_empty_lebs;
692 	lebs -= rsvd_idx_lebs;
693 	available += lebs * (c->dark_wm - c->leb_overhead);
694 
695 	if (available > outstanding)
696 		free = ubifs_reported_space(c, available - outstanding);
697 	else
698 		free = 0;
699 	return free;
700 }
701 
702 /**
703  * ubifs_get_free_space - return amount of free space.
704  * @c: UBIFS file-system description object
705  *
706  * This function calculates and returns amount of free space to report to
707  * user-space.
708  */
709 long long ubifs_get_free_space(struct ubifs_info *c)
710 {
711 	long long free;
712 
713 	spin_lock(&c->space_lock);
714 	free = ubifs_get_free_space_nolock(c);
715 	spin_unlock(&c->space_lock);
716 
717 	return free;
718 }
719