1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the budgeting sub-system which is responsible for UBIFS 25 * space management. 26 * 27 * Factors such as compression, wasted space at the ends of LEBs, space in other 28 * journal heads, the effect of updates on the index, and so on, make it 29 * impossible to accurately predict the amount of space needed. Consequently 30 * approximations are used. 31 */ 32 33 #include "ubifs.h" 34 #include <linux/writeback.h> 35 #include <asm/div64.h> 36 37 /* 38 * When pessimistic budget calculations say that there is no enough space, 39 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 40 * or committing. The below constants define maximum number of times UBIFS 41 * repeats the operations. 42 */ 43 #define MAX_SHRINK_RETRIES 8 44 #define MAX_GC_RETRIES 4 45 #define MAX_CMT_RETRIES 2 46 #define MAX_NOSPC_RETRIES 1 47 48 /* 49 * The below constant defines amount of dirty pages which should be written 50 * back at when trying to shrink the liability. 51 */ 52 #define NR_TO_WRITE 16 53 54 /** 55 * struct retries_info - information about re-tries while making free space. 56 * @prev_liability: previous liability 57 * @shrink_cnt: how many times the liability was shrinked 58 * @shrink_retries: count of liability shrink re-tries (increased when 59 * liability does not shrink) 60 * @try_gc: GC should be tried first 61 * @gc_retries: how many times GC was run 62 * @cmt_retries: how many times commit has been done 63 * @nospc_retries: how many times GC returned %-ENOSPC 64 * 65 * Since we consider budgeting to be the fast-path, and this structure has to 66 * be allocated on stack and zeroed out, we make it smaller using bit-fields. 67 */ 68 struct retries_info { 69 long long prev_liability; 70 unsigned int shrink_cnt; 71 unsigned int shrink_retries:5; 72 unsigned int try_gc:1; 73 unsigned int gc_retries:4; 74 unsigned int cmt_retries:3; 75 unsigned int nospc_retries:1; 76 }; 77 78 /** 79 * shrink_liability - write-back some dirty pages/inodes. 80 * @c: UBIFS file-system description object 81 * @nr_to_write: how many dirty pages to write-back 82 * 83 * This function shrinks UBIFS liability by means of writing back some amount 84 * of dirty inodes and their pages. Returns the amount of pages which were 85 * written back. The returned value does not include dirty inodes which were 86 * synchronized. 87 * 88 * Note, this function synchronizes even VFS inodes which are locked 89 * (@i_mutex) by the caller of the budgeting function, because write-back does 90 * not touch @i_mutex. 91 */ 92 static int shrink_liability(struct ubifs_info *c, int nr_to_write) 93 { 94 int nr_written; 95 struct writeback_control wbc = { 96 .sync_mode = WB_SYNC_NONE, 97 .range_end = LLONG_MAX, 98 .nr_to_write = nr_to_write, 99 }; 100 101 generic_sync_sb_inodes(c->vfs_sb, &wbc); 102 nr_written = nr_to_write - wbc.nr_to_write; 103 104 if (!nr_written) { 105 /* 106 * Re-try again but wait on pages/inodes which are being 107 * written-back concurrently (e.g., by pdflush). 108 */ 109 memset(&wbc, 0, sizeof(struct writeback_control)); 110 wbc.sync_mode = WB_SYNC_ALL; 111 wbc.range_end = LLONG_MAX; 112 wbc.nr_to_write = nr_to_write; 113 generic_sync_sb_inodes(c->vfs_sb, &wbc); 114 nr_written = nr_to_write - wbc.nr_to_write; 115 } 116 117 dbg_budg("%d pages were written back", nr_written); 118 return nr_written; 119 } 120 121 122 /** 123 * run_gc - run garbage collector. 124 * @c: UBIFS file-system description object 125 * 126 * This function runs garbage collector to make some more free space. Returns 127 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 128 * negative error code in case of failure. 129 */ 130 static int run_gc(struct ubifs_info *c) 131 { 132 int err, lnum; 133 134 /* Make some free space by garbage-collecting dirty space */ 135 down_read(&c->commit_sem); 136 lnum = ubifs_garbage_collect(c, 1); 137 up_read(&c->commit_sem); 138 if (lnum < 0) 139 return lnum; 140 141 /* GC freed one LEB, return it to lprops */ 142 dbg_budg("GC freed LEB %d", lnum); 143 err = ubifs_return_leb(c, lnum); 144 if (err) 145 return err; 146 return 0; 147 } 148 149 /** 150 * make_free_space - make more free space on the file-system. 151 * @c: UBIFS file-system description object 152 * @ri: information about previous invocations of this function 153 * 154 * This function is called when an operation cannot be budgeted because there 155 * is supposedly no free space. But in most cases there is some free space: 156 * o budgeting is pessimistic, so it always budgets more then it is actually 157 * needed, so shrinking the liability is one way to make free space - the 158 * cached data will take less space then it was budgeted for; 159 * o GC may turn some dark space into free space (budgeting treats dark space 160 * as not available); 161 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 162 * 163 * So this function tries to do the above. Returns %-EAGAIN if some free space 164 * was presumably made and the caller has to re-try budgeting the operation. 165 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 166 * codes on failures. 167 */ 168 static int make_free_space(struct ubifs_info *c, struct retries_info *ri) 169 { 170 int err; 171 172 /* 173 * If we have some dirty pages and inodes (liability), try to write 174 * them back unless this was tried too many times without effect 175 * already. 176 */ 177 if (ri->shrink_retries < MAX_SHRINK_RETRIES && !ri->try_gc) { 178 long long liability; 179 180 spin_lock(&c->space_lock); 181 liability = c->budg_idx_growth + c->budg_data_growth + 182 c->budg_dd_growth; 183 spin_unlock(&c->space_lock); 184 185 if (ri->prev_liability >= liability) { 186 /* Liability does not shrink, next time try GC then */ 187 ri->shrink_retries += 1; 188 if (ri->gc_retries < MAX_GC_RETRIES) 189 ri->try_gc = 1; 190 dbg_budg("liability did not shrink: retries %d of %d", 191 ri->shrink_retries, MAX_SHRINK_RETRIES); 192 } 193 194 dbg_budg("force write-back (count %d)", ri->shrink_cnt); 195 shrink_liability(c, NR_TO_WRITE + ri->shrink_cnt); 196 197 ri->prev_liability = liability; 198 ri->shrink_cnt += 1; 199 return -EAGAIN; 200 } 201 202 /* 203 * Try to run garbage collector unless it was already tried too many 204 * times. 205 */ 206 if (ri->gc_retries < MAX_GC_RETRIES) { 207 ri->gc_retries += 1; 208 dbg_budg("run GC, retries %d of %d", 209 ri->gc_retries, MAX_GC_RETRIES); 210 211 ri->try_gc = 0; 212 err = run_gc(c); 213 if (!err) 214 return -EAGAIN; 215 216 if (err == -EAGAIN) { 217 dbg_budg("GC asked to commit"); 218 err = ubifs_run_commit(c); 219 if (err) 220 return err; 221 return -EAGAIN; 222 } 223 224 if (err != -ENOSPC) 225 return err; 226 227 /* 228 * GC could not make any progress. If this is the first time, 229 * then it makes sense to try to commit, because it might make 230 * some dirty space. 231 */ 232 dbg_budg("GC returned -ENOSPC, retries %d", 233 ri->nospc_retries); 234 if (ri->nospc_retries >= MAX_NOSPC_RETRIES) 235 return err; 236 ri->nospc_retries += 1; 237 } 238 239 /* Neither GC nor write-back helped, try to commit */ 240 if (ri->cmt_retries < MAX_CMT_RETRIES) { 241 ri->cmt_retries += 1; 242 dbg_budg("run commit, retries %d of %d", 243 ri->cmt_retries, MAX_CMT_RETRIES); 244 err = ubifs_run_commit(c); 245 if (err) 246 return err; 247 return -EAGAIN; 248 } 249 return -ENOSPC; 250 } 251 252 /** 253 * ubifs_calc_min_idx_lebs - calculate amount of eraseblocks for the index. 254 * @c: UBIFS file-system description object 255 * 256 * This function calculates and returns the number of eraseblocks which should 257 * be kept for index usage. 258 */ 259 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 260 { 261 int ret; 262 uint64_t idx_size; 263 264 idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx; 265 266 /* And make sure we have thrice the index size of space reserved */ 267 idx_size = idx_size + (idx_size << 1); 268 269 /* 270 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 271 * pair, nor similarly the two variables for the new index size, so we 272 * have to do this costly 64-bit division on fast-path. 273 */ 274 if (do_div(idx_size, c->leb_size - c->max_idx_node_sz)) 275 ret = idx_size + 1; 276 else 277 ret = idx_size; 278 /* 279 * The index head is not available for the in-the-gaps method, so add an 280 * extra LEB to compensate. 281 */ 282 ret += 1; 283 /* 284 * At present the index needs at least 2 LEBs: one for the index head 285 * and one for in-the-gaps method (which currently does not cater for 286 * the index head and so excludes it from consideration). 287 */ 288 if (ret < 2) 289 ret = 2; 290 return ret; 291 } 292 293 /** 294 * ubifs_calc_available - calculate available FS space. 295 * @c: UBIFS file-system description object 296 * @min_idx_lebs: minimum number of LEBs reserved for the index 297 * 298 * This function calculates and returns amount of FS space available for use. 299 */ 300 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 301 { 302 int subtract_lebs; 303 long long available; 304 305 available = c->main_bytes - c->lst.total_used; 306 307 /* 308 * Now 'available' contains theoretically available flash space 309 * assuming there is no index, so we have to subtract the space which 310 * is reserved for the index. 311 */ 312 subtract_lebs = min_idx_lebs; 313 314 /* Take into account that GC reserves one LEB for its own needs */ 315 subtract_lebs += 1; 316 317 /* 318 * The GC journal head LEB is not really accessible. And since 319 * different write types go to different heads, we may count only on 320 * one head's space. 321 */ 322 subtract_lebs += c->jhead_cnt - 1; 323 324 /* We also reserve one LEB for deletions, which bypass budgeting */ 325 subtract_lebs += 1; 326 327 available -= (long long)subtract_lebs * c->leb_size; 328 329 /* Subtract the dead space which is not available for use */ 330 available -= c->lst.total_dead; 331 332 /* 333 * Subtract dark space, which might or might not be usable - it depends 334 * on the data which we have on the media and which will be written. If 335 * this is a lot of uncompressed or not-compressible data, the dark 336 * space cannot be used. 337 */ 338 available -= c->lst.total_dark; 339 340 /* 341 * However, there is more dark space. The index may be bigger than 342 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 343 * their dark space is not included in total_dark, so it is subtracted 344 * here. 345 */ 346 if (c->lst.idx_lebs > min_idx_lebs) { 347 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 348 available -= subtract_lebs * c->dark_wm; 349 } 350 351 /* The calculations are rough and may end up with a negative number */ 352 return available > 0 ? available : 0; 353 } 354 355 /** 356 * can_use_rp - check whether the user is allowed to use reserved pool. 357 * @c: UBIFS file-system description object 358 * 359 * UBIFS has so-called "reserved pool" which is flash space reserved 360 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 361 * This function checks whether current user is allowed to use reserved pool. 362 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 363 */ 364 static int can_use_rp(struct ubifs_info *c) 365 { 366 if (current->fsuid == c->rp_uid || capable(CAP_SYS_RESOURCE) || 367 (c->rp_gid != 0 && in_group_p(c->rp_gid))) 368 return 1; 369 return 0; 370 } 371 372 /** 373 * do_budget_space - reserve flash space for index and data growth. 374 * @c: UBIFS file-system description object 375 * 376 * This function makes sure UBIFS has enough free eraseblocks for index growth 377 * and data. 378 * 379 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 380 * would take if it was consolidated and written to the flash. This guarantees 381 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 382 * be able to commit dirty index. So this function basically adds amount of 383 * budgeted index space to the size of the current index, multiplies this by 3, 384 * and makes sure this does not exceed the amount of free eraseblocks. 385 * 386 * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables: 387 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 388 * be large, because UBIFS does not do any index consolidation as long as 389 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 390 * will contain a lot of dirt. 391 * o @c->min_idx_lebs is the the index presumably takes. IOW, the index may be 392 * consolidated to take up to @c->min_idx_lebs LEBs. 393 * 394 * This function returns zero in case of success, and %-ENOSPC in case of 395 * failure. 396 */ 397 static int do_budget_space(struct ubifs_info *c) 398 { 399 long long outstanding, available; 400 int lebs, rsvd_idx_lebs, min_idx_lebs; 401 402 /* First budget index space */ 403 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 404 405 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 406 if (min_idx_lebs > c->lst.idx_lebs) 407 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 408 else 409 rsvd_idx_lebs = 0; 410 411 /* 412 * The number of LEBs that are available to be used by the index is: 413 * 414 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 415 * @c->lst.taken_empty_lebs 416 * 417 * @empty_lebs are available because they are empty. @freeable_cnt are 418 * available because they contain only free and dirty space and the 419 * index allocation always occurs after wbufs are synch'ed. 420 * @idx_gc_cnt are available because they are index LEBs that have been 421 * garbage collected (including trivial GC) and are awaiting the commit 422 * before they can be unmapped - note that the in-the-gaps method will 423 * grab these if it needs them. @taken_empty_lebs are empty_lebs that 424 * have already been allocated for some purpose (also includes those 425 * LEBs on the @idx_gc list). 426 * 427 * Note, @taken_empty_lebs may temporarily be higher by one because of 428 * the way we serialize LEB allocations and budgeting. See a comment in 429 * 'ubifs_find_free_space()'. 430 */ 431 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 432 c->lst.taken_empty_lebs; 433 if (unlikely(rsvd_idx_lebs > lebs)) { 434 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), " 435 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs, 436 rsvd_idx_lebs); 437 return -ENOSPC; 438 } 439 440 available = ubifs_calc_available(c, min_idx_lebs); 441 outstanding = c->budg_data_growth + c->budg_dd_growth; 442 443 if (unlikely(available < outstanding)) { 444 dbg_budg("out of data space: available %lld, outstanding %lld", 445 available, outstanding); 446 return -ENOSPC; 447 } 448 449 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 450 return -ENOSPC; 451 452 c->min_idx_lebs = min_idx_lebs; 453 return 0; 454 } 455 456 /** 457 * calc_idx_growth - calculate approximate index growth from budgeting request. 458 * @c: UBIFS file-system description object 459 * @req: budgeting request 460 * 461 * For now we assume each new node adds one znode. But this is rather poor 462 * approximation, though. 463 */ 464 static int calc_idx_growth(const struct ubifs_info *c, 465 const struct ubifs_budget_req *req) 466 { 467 int znodes; 468 469 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 470 req->new_dent; 471 return znodes * c->max_idx_node_sz; 472 } 473 474 /** 475 * calc_data_growth - calculate approximate amount of new data from budgeting 476 * request. 477 * @c: UBIFS file-system description object 478 * @req: budgeting request 479 */ 480 static int calc_data_growth(const struct ubifs_info *c, 481 const struct ubifs_budget_req *req) 482 { 483 int data_growth; 484 485 data_growth = req->new_ino ? c->inode_budget : 0; 486 if (req->new_page) 487 data_growth += c->page_budget; 488 if (req->new_dent) 489 data_growth += c->dent_budget; 490 data_growth += req->new_ino_d; 491 return data_growth; 492 } 493 494 /** 495 * calc_dd_growth - calculate approximate amount of data which makes other data 496 * dirty from budgeting request. 497 * @c: UBIFS file-system description object 498 * @req: budgeting request 499 */ 500 static int calc_dd_growth(const struct ubifs_info *c, 501 const struct ubifs_budget_req *req) 502 { 503 int dd_growth; 504 505 dd_growth = req->dirtied_page ? c->page_budget : 0; 506 507 if (req->dirtied_ino) 508 dd_growth += c->inode_budget << (req->dirtied_ino - 1); 509 if (req->mod_dent) 510 dd_growth += c->dent_budget; 511 dd_growth += req->dirtied_ino_d; 512 return dd_growth; 513 } 514 515 /** 516 * ubifs_budget_space - ensure there is enough space to complete an operation. 517 * @c: UBIFS file-system description object 518 * @req: budget request 519 * 520 * This function allocates budget for an operation. It uses pessimistic 521 * approximation of how much flash space the operation needs. The goal of this 522 * function is to make sure UBIFS always has flash space to flush all dirty 523 * pages, dirty inodes, and dirty znodes (liability). This function may force 524 * commit, garbage-collection or write-back. Returns zero in case of success, 525 * %-ENOSPC if there is no free space and other negative error codes in case of 526 * failures. 527 */ 528 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 529 { 530 int uninitialized_var(cmt_retries), uninitialized_var(wb_retries); 531 int err, idx_growth, data_growth, dd_growth; 532 struct retries_info ri; 533 534 ubifs_assert(req->new_page <= 1); 535 ubifs_assert(req->dirtied_page <= 1); 536 ubifs_assert(req->new_dent <= 1); 537 ubifs_assert(req->mod_dent <= 1); 538 ubifs_assert(req->new_ino <= 1); 539 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 540 ubifs_assert(req->dirtied_ino <= 4); 541 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 542 ubifs_assert(!(req->new_ino_d & 7)); 543 ubifs_assert(!(req->dirtied_ino_d & 7)); 544 545 data_growth = calc_data_growth(c, req); 546 dd_growth = calc_dd_growth(c, req); 547 if (!data_growth && !dd_growth) 548 return 0; 549 idx_growth = calc_idx_growth(c, req); 550 memset(&ri, 0, sizeof(struct retries_info)); 551 552 again: 553 spin_lock(&c->space_lock); 554 ubifs_assert(c->budg_idx_growth >= 0); 555 ubifs_assert(c->budg_data_growth >= 0); 556 ubifs_assert(c->budg_dd_growth >= 0); 557 558 if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) { 559 dbg_budg("no space"); 560 spin_unlock(&c->space_lock); 561 return -ENOSPC; 562 } 563 564 c->budg_idx_growth += idx_growth; 565 c->budg_data_growth += data_growth; 566 c->budg_dd_growth += dd_growth; 567 568 err = do_budget_space(c); 569 if (likely(!err)) { 570 req->idx_growth = idx_growth; 571 req->data_growth = data_growth; 572 req->dd_growth = dd_growth; 573 spin_unlock(&c->space_lock); 574 return 0; 575 } 576 577 /* Restore the old values */ 578 c->budg_idx_growth -= idx_growth; 579 c->budg_data_growth -= data_growth; 580 c->budg_dd_growth -= dd_growth; 581 spin_unlock(&c->space_lock); 582 583 if (req->fast) { 584 dbg_budg("no space for fast budgeting"); 585 return err; 586 } 587 588 err = make_free_space(c, &ri); 589 if (err == -EAGAIN) { 590 dbg_budg("try again"); 591 cond_resched(); 592 goto again; 593 } else if (err == -ENOSPC) { 594 dbg_budg("FS is full, -ENOSPC"); 595 c->nospace = 1; 596 if (can_use_rp(c) || c->rp_size == 0) 597 c->nospace_rp = 1; 598 smp_wmb(); 599 } else 600 ubifs_err("cannot budget space, error %d", err); 601 return err; 602 } 603 604 /** 605 * ubifs_release_budget - release budgeted free space. 606 * @c: UBIFS file-system description object 607 * @req: budget request 608 * 609 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 610 * since the index changes (which were budgeted for in @req->idx_growth) will 611 * only be written to the media on commit, this function moves the index budget 612 * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be 613 * zeroed by the commit operation. 614 */ 615 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 616 { 617 ubifs_assert(req->new_page <= 1); 618 ubifs_assert(req->dirtied_page <= 1); 619 ubifs_assert(req->new_dent <= 1); 620 ubifs_assert(req->mod_dent <= 1); 621 ubifs_assert(req->new_ino <= 1); 622 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 623 ubifs_assert(req->dirtied_ino <= 4); 624 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 625 ubifs_assert(!(req->new_ino_d & 7)); 626 ubifs_assert(!(req->dirtied_ino_d & 7)); 627 if (!req->recalculate) { 628 ubifs_assert(req->idx_growth >= 0); 629 ubifs_assert(req->data_growth >= 0); 630 ubifs_assert(req->dd_growth >= 0); 631 } 632 633 if (req->recalculate) { 634 req->data_growth = calc_data_growth(c, req); 635 req->dd_growth = calc_dd_growth(c, req); 636 req->idx_growth = calc_idx_growth(c, req); 637 } 638 639 if (!req->data_growth && !req->dd_growth) 640 return; 641 642 c->nospace = c->nospace_rp = 0; 643 smp_wmb(); 644 645 spin_lock(&c->space_lock); 646 c->budg_idx_growth -= req->idx_growth; 647 c->budg_uncommitted_idx += req->idx_growth; 648 c->budg_data_growth -= req->data_growth; 649 c->budg_dd_growth -= req->dd_growth; 650 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 651 652 ubifs_assert(c->budg_idx_growth >= 0); 653 ubifs_assert(c->budg_data_growth >= 0); 654 ubifs_assert(c->budg_dd_growth >= 0); 655 ubifs_assert(c->min_idx_lebs < c->main_lebs); 656 ubifs_assert(!(c->budg_idx_growth & 7)); 657 ubifs_assert(!(c->budg_data_growth & 7)); 658 ubifs_assert(!(c->budg_dd_growth & 7)); 659 spin_unlock(&c->space_lock); 660 } 661 662 /** 663 * ubifs_convert_page_budget - convert budget of a new page. 664 * @c: UBIFS file-system description object 665 * 666 * This function converts budget which was allocated for a new page of data to 667 * the budget of changing an existing page of data. The latter is smaller then 668 * the former, so this function only does simple re-calculation and does not 669 * involve any write-back. 670 */ 671 void ubifs_convert_page_budget(struct ubifs_info *c) 672 { 673 spin_lock(&c->space_lock); 674 /* Release the index growth reservation */ 675 c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 676 /* Release the data growth reservation */ 677 c->budg_data_growth -= c->page_budget; 678 /* Increase the dirty data growth reservation instead */ 679 c->budg_dd_growth += c->page_budget; 680 /* And re-calculate the indexing space reservation */ 681 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 682 spin_unlock(&c->space_lock); 683 } 684 685 /** 686 * ubifs_release_dirty_inode_budget - release dirty inode budget. 687 * @c: UBIFS file-system description object 688 * @ui: UBIFS inode to release the budget for 689 * 690 * This function releases budget corresponding to a dirty inode. It is usually 691 * called when after the inode has been written to the media and marked as 692 * clean. 693 */ 694 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 695 struct ubifs_inode *ui) 696 { 697 struct ubifs_budget_req req; 698 699 memset(&req, 0, sizeof(struct ubifs_budget_req)); 700 req.dd_growth = c->inode_budget + ALIGN(ui->data_len, 8); 701 ubifs_release_budget(c, &req); 702 } 703 704 /** 705 * ubifs_reported_space - calculate reported free space. 706 * @c: the UBIFS file-system description object 707 * @free: amount of free space 708 * 709 * This function calculates amount of free space which will be reported to 710 * user-space. User-space application tend to expect that if the file-system 711 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 712 * are able to write a file of size N. UBIFS attaches node headers to each data 713 * node and it has to write indexind nodes as well. This introduces additional 714 * overhead, and UBIFS it has to report sligtly less free space to meet the 715 * above expectetion. 716 * 717 * This function assumes free space is made up of uncompressed data nodes and 718 * full index nodes (one per data node, tripled because we always allow enough 719 * space to write the index thrice). 720 * 721 * Note, the calculation is pessimistic, which means that most of the time 722 * UBIFS reports less space than it actually has. 723 */ 724 long long ubifs_reported_space(const struct ubifs_info *c, uint64_t free) 725 { 726 int divisor, factor, f; 727 728 /* 729 * Reported space size is @free * X, where X is UBIFS block size 730 * divided by UBIFS block size + all overhead one data block 731 * introduces. The overhead is the node header + indexing overhead. 732 * 733 * Indexing overhead calculations are based on the following formula: 734 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 735 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 736 * as less than maximum fanout, we assume that each data node 737 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 738 * Note, the multiplier 3 is because UBIFS reseves thrice as more space 739 * for the index. 740 */ 741 f = c->fanout > 3 ? c->fanout >> 1 : 2; 742 factor = UBIFS_BLOCK_SIZE; 743 divisor = UBIFS_MAX_DATA_NODE_SZ; 744 divisor += (c->max_idx_node_sz * 3) / (f - 1); 745 free *= factor; 746 do_div(free, divisor); 747 return free; 748 } 749 750 /** 751 * ubifs_get_free_space - return amount of free space. 752 * @c: UBIFS file-system description object 753 * 754 * This function calculates amount of free space to report to user-space. 755 * 756 * Because UBIFS may introduce substantial overhead (the index, node headers, 757 * alighment, wastage at the end of eraseblocks, etc), it cannot report real 758 * amount of free flash space it has (well, because not all dirty space is 759 * reclamable, UBIFS does not actually know the real amount). If UBIFS did so, 760 * it would bread user expectetion about what free space is. Users seem to 761 * accustomed to assume that if the file-system reports N bytes of free space, 762 * they would be able to fit a file of N bytes to the FS. This almost works for 763 * traditional file-systems, because they have way less overhead than UBIFS. 764 * So, to keep users happy, UBIFS tries to take the overhead into account. 765 */ 766 long long ubifs_get_free_space(struct ubifs_info *c) 767 { 768 int min_idx_lebs, rsvd_idx_lebs, lebs; 769 long long available, outstanding, free; 770 771 spin_lock(&c->space_lock); 772 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 773 outstanding = c->budg_data_growth + c->budg_dd_growth; 774 775 /* 776 * Force the amount available to the total size reported if the used 777 * space is zero. 778 */ 779 if (c->lst.total_used <= UBIFS_INO_NODE_SZ && !outstanding) { 780 spin_unlock(&c->space_lock); 781 return (long long)c->block_cnt << UBIFS_BLOCK_SHIFT; 782 } 783 784 available = ubifs_calc_available(c, min_idx_lebs); 785 786 /* 787 * When reporting free space to user-space, UBIFS guarantees that it is 788 * possible to write a file of free space size. This means that for 789 * empty LEBs we may use more precise calculations than 790 * 'ubifs_calc_available()' is using. Namely, we know that in empty 791 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 792 * Thus, amend the available space. 793 * 794 * Note, the calculations below are similar to what we have in 795 * 'do_budget_space()', so refer there for comments. 796 */ 797 if (min_idx_lebs > c->lst.idx_lebs) 798 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 799 else 800 rsvd_idx_lebs = 0; 801 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 802 c->lst.taken_empty_lebs; 803 lebs -= rsvd_idx_lebs; 804 available += lebs * (c->dark_wm - c->leb_overhead); 805 spin_unlock(&c->space_lock); 806 807 if (available > outstanding) 808 free = ubifs_reported_space(c, available - outstanding); 809 else 810 free = 0; 811 return free; 812 } 813