xref: /openbmc/linux/fs/ubifs/budget.c (revision 384740dc)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the budgeting sub-system which is responsible for UBIFS
25  * space management.
26  *
27  * Factors such as compression, wasted space at the ends of LEBs, space in other
28  * journal heads, the effect of updates on the index, and so on, make it
29  * impossible to accurately predict the amount of space needed. Consequently
30  * approximations are used.
31  */
32 
33 #include "ubifs.h"
34 #include <linux/writeback.h>
35 #include <asm/div64.h>
36 
37 /*
38  * When pessimistic budget calculations say that there is no enough space,
39  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40  * or committing. The below constants define maximum number of times UBIFS
41  * repeats the operations.
42  */
43 #define MAX_SHRINK_RETRIES 8
44 #define MAX_GC_RETRIES     4
45 #define MAX_CMT_RETRIES    2
46 #define MAX_NOSPC_RETRIES  1
47 
48 /*
49  * The below constant defines amount of dirty pages which should be written
50  * back at when trying to shrink the liability.
51  */
52 #define NR_TO_WRITE 16
53 
54 /**
55  * struct retries_info - information about re-tries while making free space.
56  * @prev_liability: previous liability
57  * @shrink_cnt: how many times the liability was shrinked
58  * @shrink_retries: count of liability shrink re-tries (increased when
59  *                  liability does not shrink)
60  * @try_gc: GC should be tried first
61  * @gc_retries: how many times GC was run
62  * @cmt_retries: how many times commit has been done
63  * @nospc_retries: how many times GC returned %-ENOSPC
64  *
65  * Since we consider budgeting to be the fast-path, and this structure has to
66  * be allocated on stack and zeroed out, we make it smaller using bit-fields.
67  */
68 struct retries_info {
69 	long long prev_liability;
70 	unsigned int shrink_cnt;
71 	unsigned int shrink_retries:5;
72 	unsigned int try_gc:1;
73 	unsigned int gc_retries:4;
74 	unsigned int cmt_retries:3;
75 	unsigned int nospc_retries:1;
76 };
77 
78 /**
79  * shrink_liability - write-back some dirty pages/inodes.
80  * @c: UBIFS file-system description object
81  * @nr_to_write: how many dirty pages to write-back
82  *
83  * This function shrinks UBIFS liability by means of writing back some amount
84  * of dirty inodes and their pages. Returns the amount of pages which were
85  * written back. The returned value does not include dirty inodes which were
86  * synchronized.
87  *
88  * Note, this function synchronizes even VFS inodes which are locked
89  * (@i_mutex) by the caller of the budgeting function, because write-back does
90  * not touch @i_mutex.
91  */
92 static int shrink_liability(struct ubifs_info *c, int nr_to_write)
93 {
94 	int nr_written;
95 	struct writeback_control wbc = {
96 		.sync_mode   = WB_SYNC_NONE,
97 		.range_end   = LLONG_MAX,
98 		.nr_to_write = nr_to_write,
99 	};
100 
101 	generic_sync_sb_inodes(c->vfs_sb, &wbc);
102 	nr_written = nr_to_write - wbc.nr_to_write;
103 
104 	if (!nr_written) {
105 		/*
106 		 * Re-try again but wait on pages/inodes which are being
107 		 * written-back concurrently (e.g., by pdflush).
108 		 */
109 		memset(&wbc, 0, sizeof(struct writeback_control));
110 		wbc.sync_mode   = WB_SYNC_ALL;
111 		wbc.range_end   = LLONG_MAX;
112 		wbc.nr_to_write = nr_to_write;
113 		generic_sync_sb_inodes(c->vfs_sb, &wbc);
114 		nr_written = nr_to_write - wbc.nr_to_write;
115 	}
116 
117 	dbg_budg("%d pages were written back", nr_written);
118 	return nr_written;
119 }
120 
121 
122 /**
123  * run_gc - run garbage collector.
124  * @c: UBIFS file-system description object
125  *
126  * This function runs garbage collector to make some more free space. Returns
127  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
128  * negative error code in case of failure.
129  */
130 static int run_gc(struct ubifs_info *c)
131 {
132 	int err, lnum;
133 
134 	/* Make some free space by garbage-collecting dirty space */
135 	down_read(&c->commit_sem);
136 	lnum = ubifs_garbage_collect(c, 1);
137 	up_read(&c->commit_sem);
138 	if (lnum < 0)
139 		return lnum;
140 
141 	/* GC freed one LEB, return it to lprops */
142 	dbg_budg("GC freed LEB %d", lnum);
143 	err = ubifs_return_leb(c, lnum);
144 	if (err)
145 		return err;
146 	return 0;
147 }
148 
149 /**
150  * make_free_space - make more free space on the file-system.
151  * @c: UBIFS file-system description object
152  * @ri: information about previous invocations of this function
153  *
154  * This function is called when an operation cannot be budgeted because there
155  * is supposedly no free space. But in most cases there is some free space:
156  *   o budgeting is pessimistic, so it always budgets more then it is actually
157  *     needed, so shrinking the liability is one way to make free space - the
158  *     cached data will take less space then it was budgeted for;
159  *   o GC may turn some dark space into free space (budgeting treats dark space
160  *     as not available);
161  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
162  *
163  * So this function tries to do the above. Returns %-EAGAIN if some free space
164  * was presumably made and the caller has to re-try budgeting the operation.
165  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
166  * codes on failures.
167  */
168 static int make_free_space(struct ubifs_info *c, struct retries_info *ri)
169 {
170 	int err;
171 
172 	/*
173 	 * If we have some dirty pages and inodes (liability), try to write
174 	 * them back unless this was tried too many times without effect
175 	 * already.
176 	 */
177 	if (ri->shrink_retries < MAX_SHRINK_RETRIES && !ri->try_gc) {
178 		long long liability;
179 
180 		spin_lock(&c->space_lock);
181 		liability = c->budg_idx_growth + c->budg_data_growth +
182 			    c->budg_dd_growth;
183 		spin_unlock(&c->space_lock);
184 
185 		if (ri->prev_liability >= liability) {
186 			/* Liability does not shrink, next time try GC then */
187 			ri->shrink_retries += 1;
188 			if (ri->gc_retries < MAX_GC_RETRIES)
189 				ri->try_gc = 1;
190 			dbg_budg("liability did not shrink: retries %d of %d",
191 				 ri->shrink_retries, MAX_SHRINK_RETRIES);
192 		}
193 
194 		dbg_budg("force write-back (count %d)", ri->shrink_cnt);
195 		shrink_liability(c, NR_TO_WRITE + ri->shrink_cnt);
196 
197 		ri->prev_liability = liability;
198 		ri->shrink_cnt += 1;
199 		return -EAGAIN;
200 	}
201 
202 	/*
203 	 * Try to run garbage collector unless it was already tried too many
204 	 * times.
205 	 */
206 	if (ri->gc_retries < MAX_GC_RETRIES) {
207 		ri->gc_retries += 1;
208 		dbg_budg("run GC, retries %d of %d",
209 			 ri->gc_retries, MAX_GC_RETRIES);
210 
211 		ri->try_gc = 0;
212 		err = run_gc(c);
213 		if (!err)
214 			return -EAGAIN;
215 
216 		if (err == -EAGAIN) {
217 			dbg_budg("GC asked to commit");
218 			err = ubifs_run_commit(c);
219 			if (err)
220 				return err;
221 			return -EAGAIN;
222 		}
223 
224 		if (err != -ENOSPC)
225 			return err;
226 
227 		/*
228 		 * GC could not make any progress. If this is the first time,
229 		 * then it makes sense to try to commit, because it might make
230 		 * some dirty space.
231 		 */
232 		dbg_budg("GC returned -ENOSPC, retries %d",
233 			 ri->nospc_retries);
234 		if (ri->nospc_retries >= MAX_NOSPC_RETRIES)
235 			return err;
236 		ri->nospc_retries += 1;
237 	}
238 
239 	/* Neither GC nor write-back helped, try to commit */
240 	if (ri->cmt_retries < MAX_CMT_RETRIES) {
241 		ri->cmt_retries += 1;
242 		dbg_budg("run commit, retries %d of %d",
243 			 ri->cmt_retries, MAX_CMT_RETRIES);
244 		err = ubifs_run_commit(c);
245 		if (err)
246 			return err;
247 		return -EAGAIN;
248 	}
249 	return -ENOSPC;
250 }
251 
252 /**
253  * ubifs_calc_min_idx_lebs - calculate amount of eraseblocks for the index.
254  * @c: UBIFS file-system description object
255  *
256  * This function calculates and returns the number of eraseblocks which should
257  * be kept for index usage.
258  */
259 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
260 {
261 	int ret;
262 	uint64_t idx_size;
263 
264 	idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
265 
266 	/* And make sure we have thrice the index size of space reserved */
267 	idx_size = idx_size + (idx_size << 1);
268 
269 	/*
270 	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
271 	 * pair, nor similarly the two variables for the new index size, so we
272 	 * have to do this costly 64-bit division on fast-path.
273 	 */
274 	if (do_div(idx_size, c->leb_size - c->max_idx_node_sz))
275 		ret = idx_size + 1;
276 	else
277 		ret = idx_size;
278 	/*
279 	 * The index head is not available for the in-the-gaps method, so add an
280 	 * extra LEB to compensate.
281 	 */
282 	ret += 1;
283 	/*
284 	 * At present the index needs at least 2 LEBs: one for the index head
285 	 * and one for in-the-gaps method (which currently does not cater for
286 	 * the index head and so excludes it from consideration).
287 	 */
288 	if (ret < 2)
289 		ret = 2;
290 	return ret;
291 }
292 
293 /**
294  * ubifs_calc_available - calculate available FS space.
295  * @c: UBIFS file-system description object
296  * @min_idx_lebs: minimum number of LEBs reserved for the index
297  *
298  * This function calculates and returns amount of FS space available for use.
299  */
300 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
301 {
302 	int subtract_lebs;
303 	long long available;
304 
305 	available = c->main_bytes - c->lst.total_used;
306 
307 	/*
308 	 * Now 'available' contains theoretically available flash space
309 	 * assuming there is no index, so we have to subtract the space which
310 	 * is reserved for the index.
311 	 */
312 	subtract_lebs = min_idx_lebs;
313 
314 	/* Take into account that GC reserves one LEB for its own needs */
315 	subtract_lebs += 1;
316 
317 	/*
318 	 * The GC journal head LEB is not really accessible. And since
319 	 * different write types go to different heads, we may count only on
320 	 * one head's space.
321 	 */
322 	subtract_lebs += c->jhead_cnt - 1;
323 
324 	/* We also reserve one LEB for deletions, which bypass budgeting */
325 	subtract_lebs += 1;
326 
327 	available -= (long long)subtract_lebs * c->leb_size;
328 
329 	/* Subtract the dead space which is not available for use */
330 	available -= c->lst.total_dead;
331 
332 	/*
333 	 * Subtract dark space, which might or might not be usable - it depends
334 	 * on the data which we have on the media and which will be written. If
335 	 * this is a lot of uncompressed or not-compressible data, the dark
336 	 * space cannot be used.
337 	 */
338 	available -= c->lst.total_dark;
339 
340 	/*
341 	 * However, there is more dark space. The index may be bigger than
342 	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
343 	 * their dark space is not included in total_dark, so it is subtracted
344 	 * here.
345 	 */
346 	if (c->lst.idx_lebs > min_idx_lebs) {
347 		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
348 		available -= subtract_lebs * c->dark_wm;
349 	}
350 
351 	/* The calculations are rough and may end up with a negative number */
352 	return available > 0 ? available : 0;
353 }
354 
355 /**
356  * can_use_rp - check whether the user is allowed to use reserved pool.
357  * @c: UBIFS file-system description object
358  *
359  * UBIFS has so-called "reserved pool" which is flash space reserved
360  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
361  * This function checks whether current user is allowed to use reserved pool.
362  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
363  */
364 static int can_use_rp(struct ubifs_info *c)
365 {
366 	if (current->fsuid == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
367 	    (c->rp_gid != 0 && in_group_p(c->rp_gid)))
368 		return 1;
369 	return 0;
370 }
371 
372 /**
373  * do_budget_space - reserve flash space for index and data growth.
374  * @c: UBIFS file-system description object
375  *
376  * This function makes sure UBIFS has enough free eraseblocks for index growth
377  * and data.
378  *
379  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
380  * would take if it was consolidated and written to the flash. This guarantees
381  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
382  * be able to commit dirty index. So this function basically adds amount of
383  * budgeted index space to the size of the current index, multiplies this by 3,
384  * and makes sure this does not exceed the amount of free eraseblocks.
385  *
386  * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
387  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
388  *    be large, because UBIFS does not do any index consolidation as long as
389  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
390  *    will contain a lot of dirt.
391  * o @c->min_idx_lebs is the the index presumably takes. IOW, the index may be
392  *   consolidated to take up to @c->min_idx_lebs LEBs.
393  *
394  * This function returns zero in case of success, and %-ENOSPC in case of
395  * failure.
396  */
397 static int do_budget_space(struct ubifs_info *c)
398 {
399 	long long outstanding, available;
400 	int lebs, rsvd_idx_lebs, min_idx_lebs;
401 
402 	/* First budget index space */
403 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
404 
405 	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
406 	if (min_idx_lebs > c->lst.idx_lebs)
407 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
408 	else
409 		rsvd_idx_lebs = 0;
410 
411 	/*
412 	 * The number of LEBs that are available to be used by the index is:
413 	 *
414 	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
415 	 *    @c->lst.taken_empty_lebs
416 	 *
417 	 * @empty_lebs are available because they are empty. @freeable_cnt are
418 	 * available because they contain only free and dirty space and the
419 	 * index allocation always occurs after wbufs are synch'ed.
420 	 * @idx_gc_cnt are available because they are index LEBs that have been
421 	 * garbage collected (including trivial GC) and are awaiting the commit
422 	 * before they can be unmapped - note that the in-the-gaps method will
423 	 * grab these if it needs them. @taken_empty_lebs are empty_lebs that
424 	 * have already been allocated for some purpose (also includes those
425 	 * LEBs on the @idx_gc list).
426 	 *
427 	 * Note, @taken_empty_lebs may temporarily be higher by one because of
428 	 * the way we serialize LEB allocations and budgeting. See a comment in
429 	 * 'ubifs_find_free_space()'.
430 	 */
431 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
432 	       c->lst.taken_empty_lebs;
433 	if (unlikely(rsvd_idx_lebs > lebs)) {
434 		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
435 			 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
436 			 rsvd_idx_lebs);
437 		return -ENOSPC;
438 	}
439 
440 	available = ubifs_calc_available(c, min_idx_lebs);
441 	outstanding = c->budg_data_growth + c->budg_dd_growth;
442 
443 	if (unlikely(available < outstanding)) {
444 		dbg_budg("out of data space: available %lld, outstanding %lld",
445 			 available, outstanding);
446 		return -ENOSPC;
447 	}
448 
449 	if (available - outstanding <= c->rp_size && !can_use_rp(c))
450 		return -ENOSPC;
451 
452 	c->min_idx_lebs = min_idx_lebs;
453 	return 0;
454 }
455 
456 /**
457  * calc_idx_growth - calculate approximate index growth from budgeting request.
458  * @c: UBIFS file-system description object
459  * @req: budgeting request
460  *
461  * For now we assume each new node adds one znode. But this is rather poor
462  * approximation, though.
463  */
464 static int calc_idx_growth(const struct ubifs_info *c,
465 			   const struct ubifs_budget_req *req)
466 {
467 	int znodes;
468 
469 	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
470 		 req->new_dent;
471 	return znodes * c->max_idx_node_sz;
472 }
473 
474 /**
475  * calc_data_growth - calculate approximate amount of new data from budgeting
476  * request.
477  * @c: UBIFS file-system description object
478  * @req: budgeting request
479  */
480 static int calc_data_growth(const struct ubifs_info *c,
481 			    const struct ubifs_budget_req *req)
482 {
483 	int data_growth;
484 
485 	data_growth = req->new_ino  ? c->inode_budget : 0;
486 	if (req->new_page)
487 		data_growth += c->page_budget;
488 	if (req->new_dent)
489 		data_growth += c->dent_budget;
490 	data_growth += req->new_ino_d;
491 	return data_growth;
492 }
493 
494 /**
495  * calc_dd_growth - calculate approximate amount of data which makes other data
496  * dirty from budgeting request.
497  * @c: UBIFS file-system description object
498  * @req: budgeting request
499  */
500 static int calc_dd_growth(const struct ubifs_info *c,
501 			  const struct ubifs_budget_req *req)
502 {
503 	int dd_growth;
504 
505 	dd_growth = req->dirtied_page ? c->page_budget : 0;
506 
507 	if (req->dirtied_ino)
508 		dd_growth += c->inode_budget << (req->dirtied_ino - 1);
509 	if (req->mod_dent)
510 		dd_growth += c->dent_budget;
511 	dd_growth += req->dirtied_ino_d;
512 	return dd_growth;
513 }
514 
515 /**
516  * ubifs_budget_space - ensure there is enough space to complete an operation.
517  * @c: UBIFS file-system description object
518  * @req: budget request
519  *
520  * This function allocates budget for an operation. It uses pessimistic
521  * approximation of how much flash space the operation needs. The goal of this
522  * function is to make sure UBIFS always has flash space to flush all dirty
523  * pages, dirty inodes, and dirty znodes (liability). This function may force
524  * commit, garbage-collection or write-back. Returns zero in case of success,
525  * %-ENOSPC if there is no free space and other negative error codes in case of
526  * failures.
527  */
528 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
529 {
530 	int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
531 	int err, idx_growth, data_growth, dd_growth;
532 	struct retries_info ri;
533 
534 	ubifs_assert(req->new_page <= 1);
535 	ubifs_assert(req->dirtied_page <= 1);
536 	ubifs_assert(req->new_dent <= 1);
537 	ubifs_assert(req->mod_dent <= 1);
538 	ubifs_assert(req->new_ino <= 1);
539 	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
540 	ubifs_assert(req->dirtied_ino <= 4);
541 	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
542 	ubifs_assert(!(req->new_ino_d & 7));
543 	ubifs_assert(!(req->dirtied_ino_d & 7));
544 
545 	data_growth = calc_data_growth(c, req);
546 	dd_growth = calc_dd_growth(c, req);
547 	if (!data_growth && !dd_growth)
548 		return 0;
549 	idx_growth = calc_idx_growth(c, req);
550 	memset(&ri, 0, sizeof(struct retries_info));
551 
552 again:
553 	spin_lock(&c->space_lock);
554 	ubifs_assert(c->budg_idx_growth >= 0);
555 	ubifs_assert(c->budg_data_growth >= 0);
556 	ubifs_assert(c->budg_dd_growth >= 0);
557 
558 	if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
559 		dbg_budg("no space");
560 		spin_unlock(&c->space_lock);
561 		return -ENOSPC;
562 	}
563 
564 	c->budg_idx_growth += idx_growth;
565 	c->budg_data_growth += data_growth;
566 	c->budg_dd_growth += dd_growth;
567 
568 	err = do_budget_space(c);
569 	if (likely(!err)) {
570 		req->idx_growth = idx_growth;
571 		req->data_growth = data_growth;
572 		req->dd_growth = dd_growth;
573 		spin_unlock(&c->space_lock);
574 		return 0;
575 	}
576 
577 	/* Restore the old values */
578 	c->budg_idx_growth -= idx_growth;
579 	c->budg_data_growth -= data_growth;
580 	c->budg_dd_growth -= dd_growth;
581 	spin_unlock(&c->space_lock);
582 
583 	if (req->fast) {
584 		dbg_budg("no space for fast budgeting");
585 		return err;
586 	}
587 
588 	err = make_free_space(c, &ri);
589 	if (err == -EAGAIN) {
590 		dbg_budg("try again");
591 		cond_resched();
592 		goto again;
593 	} else if (err == -ENOSPC) {
594 		dbg_budg("FS is full, -ENOSPC");
595 		c->nospace = 1;
596 		if (can_use_rp(c) || c->rp_size == 0)
597 			c->nospace_rp = 1;
598 		smp_wmb();
599 	} else
600 		ubifs_err("cannot budget space, error %d", err);
601 	return err;
602 }
603 
604 /**
605  * ubifs_release_budget - release budgeted free space.
606  * @c: UBIFS file-system description object
607  * @req: budget request
608  *
609  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
610  * since the index changes (which were budgeted for in @req->idx_growth) will
611  * only be written to the media on commit, this function moves the index budget
612  * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be
613  * zeroed by the commit operation.
614  */
615 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
616 {
617 	ubifs_assert(req->new_page <= 1);
618 	ubifs_assert(req->dirtied_page <= 1);
619 	ubifs_assert(req->new_dent <= 1);
620 	ubifs_assert(req->mod_dent <= 1);
621 	ubifs_assert(req->new_ino <= 1);
622 	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
623 	ubifs_assert(req->dirtied_ino <= 4);
624 	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
625 	ubifs_assert(!(req->new_ino_d & 7));
626 	ubifs_assert(!(req->dirtied_ino_d & 7));
627 	if (!req->recalculate) {
628 		ubifs_assert(req->idx_growth >= 0);
629 		ubifs_assert(req->data_growth >= 0);
630 		ubifs_assert(req->dd_growth >= 0);
631 	}
632 
633 	if (req->recalculate) {
634 		req->data_growth = calc_data_growth(c, req);
635 		req->dd_growth = calc_dd_growth(c, req);
636 		req->idx_growth = calc_idx_growth(c, req);
637 	}
638 
639 	if (!req->data_growth && !req->dd_growth)
640 		return;
641 
642 	c->nospace = c->nospace_rp = 0;
643 	smp_wmb();
644 
645 	spin_lock(&c->space_lock);
646 	c->budg_idx_growth -= req->idx_growth;
647 	c->budg_uncommitted_idx += req->idx_growth;
648 	c->budg_data_growth -= req->data_growth;
649 	c->budg_dd_growth -= req->dd_growth;
650 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
651 
652 	ubifs_assert(c->budg_idx_growth >= 0);
653 	ubifs_assert(c->budg_data_growth >= 0);
654 	ubifs_assert(c->budg_dd_growth >= 0);
655 	ubifs_assert(c->min_idx_lebs < c->main_lebs);
656 	ubifs_assert(!(c->budg_idx_growth & 7));
657 	ubifs_assert(!(c->budg_data_growth & 7));
658 	ubifs_assert(!(c->budg_dd_growth & 7));
659 	spin_unlock(&c->space_lock);
660 }
661 
662 /**
663  * ubifs_convert_page_budget - convert budget of a new page.
664  * @c: UBIFS file-system description object
665  *
666  * This function converts budget which was allocated for a new page of data to
667  * the budget of changing an existing page of data. The latter is smaller then
668  * the former, so this function only does simple re-calculation and does not
669  * involve any write-back.
670  */
671 void ubifs_convert_page_budget(struct ubifs_info *c)
672 {
673 	spin_lock(&c->space_lock);
674 	/* Release the index growth reservation */
675 	c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
676 	/* Release the data growth reservation */
677 	c->budg_data_growth -= c->page_budget;
678 	/* Increase the dirty data growth reservation instead */
679 	c->budg_dd_growth += c->page_budget;
680 	/* And re-calculate the indexing space reservation */
681 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
682 	spin_unlock(&c->space_lock);
683 }
684 
685 /**
686  * ubifs_release_dirty_inode_budget - release dirty inode budget.
687  * @c: UBIFS file-system description object
688  * @ui: UBIFS inode to release the budget for
689  *
690  * This function releases budget corresponding to a dirty inode. It is usually
691  * called when after the inode has been written to the media and marked as
692  * clean.
693  */
694 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
695 				      struct ubifs_inode *ui)
696 {
697 	struct ubifs_budget_req req;
698 
699 	memset(&req, 0, sizeof(struct ubifs_budget_req));
700 	req.dd_growth = c->inode_budget + ALIGN(ui->data_len, 8);
701 	ubifs_release_budget(c, &req);
702 }
703 
704 /**
705  * ubifs_reported_space - calculate reported free space.
706  * @c: the UBIFS file-system description object
707  * @free: amount of free space
708  *
709  * This function calculates amount of free space which will be reported to
710  * user-space. User-space application tend to expect that if the file-system
711  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
712  * are able to write a file of size N. UBIFS attaches node headers to each data
713  * node and it has to write indexind nodes as well. This introduces additional
714  * overhead, and UBIFS it has to report sligtly less free space to meet the
715  * above expectetion.
716  *
717  * This function assumes free space is made up of uncompressed data nodes and
718  * full index nodes (one per data node, tripled because we always allow enough
719  * space to write the index thrice).
720  *
721  * Note, the calculation is pessimistic, which means that most of the time
722  * UBIFS reports less space than it actually has.
723  */
724 long long ubifs_reported_space(const struct ubifs_info *c, uint64_t free)
725 {
726 	int divisor, factor, f;
727 
728 	/*
729 	 * Reported space size is @free * X, where X is UBIFS block size
730 	 * divided by UBIFS block size + all overhead one data block
731 	 * introduces. The overhead is the node header + indexing overhead.
732 	 *
733 	 * Indexing overhead calculations are based on the following formula:
734 	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
735 	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
736 	 * as less than maximum fanout, we assume that each data node
737 	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
738 	 * Note, the multiplier 3 is because UBIFS reseves thrice as more space
739 	 * for the index.
740 	 */
741 	f = c->fanout > 3 ? c->fanout >> 1 : 2;
742 	factor = UBIFS_BLOCK_SIZE;
743 	divisor = UBIFS_MAX_DATA_NODE_SZ;
744 	divisor += (c->max_idx_node_sz * 3) / (f - 1);
745 	free *= factor;
746 	do_div(free, divisor);
747 	return free;
748 }
749 
750 /**
751  * ubifs_get_free_space - return amount of free space.
752  * @c: UBIFS file-system description object
753  *
754  * This function calculates amount of free space to report to user-space.
755  *
756  * Because UBIFS may introduce substantial overhead (the index, node headers,
757  * alighment, wastage at the end of eraseblocks, etc), it cannot report real
758  * amount of free flash space it has (well, because not all dirty space is
759  * reclamable, UBIFS does not actually know the real amount). If UBIFS did so,
760  * it would bread user expectetion about what free space is. Users seem to
761  * accustomed to assume that if the file-system reports N bytes of free space,
762  * they would be able to fit a file of N bytes to the FS. This almost works for
763  * traditional file-systems, because they have way less overhead than UBIFS.
764  * So, to keep users happy, UBIFS tries to take the overhead into account.
765  */
766 long long ubifs_get_free_space(struct ubifs_info *c)
767 {
768 	int min_idx_lebs, rsvd_idx_lebs, lebs;
769 	long long available, outstanding, free;
770 
771 	spin_lock(&c->space_lock);
772 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
773 	outstanding = c->budg_data_growth + c->budg_dd_growth;
774 
775 	/*
776 	 * Force the amount available to the total size reported if the used
777 	 * space is zero.
778 	 */
779 	if (c->lst.total_used <= UBIFS_INO_NODE_SZ && !outstanding) {
780 		spin_unlock(&c->space_lock);
781 		return (long long)c->block_cnt << UBIFS_BLOCK_SHIFT;
782 	}
783 
784 	available = ubifs_calc_available(c, min_idx_lebs);
785 
786 	/*
787 	 * When reporting free space to user-space, UBIFS guarantees that it is
788 	 * possible to write a file of free space size. This means that for
789 	 * empty LEBs we may use more precise calculations than
790 	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
791 	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
792 	 * Thus, amend the available space.
793 	 *
794 	 * Note, the calculations below are similar to what we have in
795 	 * 'do_budget_space()', so refer there for comments.
796 	 */
797 	if (min_idx_lebs > c->lst.idx_lebs)
798 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
799 	else
800 		rsvd_idx_lebs = 0;
801 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
802 	       c->lst.taken_empty_lebs;
803 	lebs -= rsvd_idx_lebs;
804 	available += lebs * (c->dark_wm - c->leb_overhead);
805 	spin_unlock(&c->space_lock);
806 
807 	if (available > outstanding)
808 		free = ubifs_reported_space(c, available - outstanding);
809 	else
810 		free = 0;
811 	return free;
812 }
813