1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements the budgeting sub-system which is responsible for UBIFS 13 * space management. 14 * 15 * Factors such as compression, wasted space at the ends of LEBs, space in other 16 * journal heads, the effect of updates on the index, and so on, make it 17 * impossible to accurately predict the amount of space needed. Consequently 18 * approximations are used. 19 */ 20 21 #include "ubifs.h" 22 #include <linux/writeback.h> 23 #include <linux/math64.h> 24 25 /* 26 * When pessimistic budget calculations say that there is no enough space, 27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 28 * or committing. The below constant defines maximum number of times UBIFS 29 * repeats the operations. 30 */ 31 #define MAX_MKSPC_RETRIES 3 32 33 /* 34 * The below constant defines amount of dirty pages which should be written 35 * back at when trying to shrink the liability. 36 */ 37 #define NR_TO_WRITE 16 38 39 /** 40 * shrink_liability - write-back some dirty pages/inodes. 41 * @c: UBIFS file-system description object 42 * @nr_to_write: how many dirty pages to write-back 43 * 44 * This function shrinks UBIFS liability by means of writing back some amount 45 * of dirty inodes and their pages. 46 * 47 * Note, this function synchronizes even VFS inodes which are locked 48 * (@i_mutex) by the caller of the budgeting function, because write-back does 49 * not touch @i_mutex. 50 */ 51 static void shrink_liability(struct ubifs_info *c, int nr_to_write) 52 { 53 down_read(&c->vfs_sb->s_umount); 54 writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE); 55 up_read(&c->vfs_sb->s_umount); 56 } 57 58 /** 59 * run_gc - run garbage collector. 60 * @c: UBIFS file-system description object 61 * 62 * This function runs garbage collector to make some more free space. Returns 63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 64 * negative error code in case of failure. 65 */ 66 static int run_gc(struct ubifs_info *c) 67 { 68 int lnum; 69 70 /* Make some free space by garbage-collecting dirty space */ 71 down_read(&c->commit_sem); 72 lnum = ubifs_garbage_collect(c, 1); 73 up_read(&c->commit_sem); 74 if (lnum < 0) 75 return lnum; 76 77 /* GC freed one LEB, return it to lprops */ 78 dbg_budg("GC freed LEB %d", lnum); 79 return ubifs_return_leb(c, lnum); 80 } 81 82 /** 83 * get_liability - calculate current liability. 84 * @c: UBIFS file-system description object 85 * 86 * This function calculates and returns current UBIFS liability, i.e. the 87 * amount of bytes UBIFS has "promised" to write to the media. 88 */ 89 static long long get_liability(struct ubifs_info *c) 90 { 91 long long liab; 92 93 spin_lock(&c->space_lock); 94 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; 95 spin_unlock(&c->space_lock); 96 return liab; 97 } 98 99 /** 100 * make_free_space - make more free space on the file-system. 101 * @c: UBIFS file-system description object 102 * 103 * This function is called when an operation cannot be budgeted because there 104 * is supposedly no free space. But in most cases there is some free space: 105 * o budgeting is pessimistic, so it always budgets more than it is actually 106 * needed, so shrinking the liability is one way to make free space - the 107 * cached data will take less space then it was budgeted for; 108 * o GC may turn some dark space into free space (budgeting treats dark space 109 * as not available); 110 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 111 * 112 * So this function tries to do the above. Returns %-EAGAIN if some free space 113 * was presumably made and the caller has to re-try budgeting the operation. 114 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 115 * codes on failures. 116 */ 117 static int make_free_space(struct ubifs_info *c) 118 { 119 int err, retries = 0; 120 long long liab1, liab2; 121 122 do { 123 liab1 = get_liability(c); 124 /* 125 * We probably have some dirty pages or inodes (liability), try 126 * to write them back. 127 */ 128 dbg_budg("liability %lld, run write-back", liab1); 129 shrink_liability(c, NR_TO_WRITE); 130 131 liab2 = get_liability(c); 132 if (liab2 < liab1) 133 return -EAGAIN; 134 135 dbg_budg("new liability %lld (not shrunk)", liab2); 136 137 /* Liability did not shrink again, try GC */ 138 dbg_budg("Run GC"); 139 err = run_gc(c); 140 if (!err) 141 return -EAGAIN; 142 143 if (err != -EAGAIN && err != -ENOSPC) 144 /* Some real error happened */ 145 return err; 146 147 dbg_budg("Run commit (retries %d)", retries); 148 err = ubifs_run_commit(c); 149 if (err) 150 return err; 151 } while (retries++ < MAX_MKSPC_RETRIES); 152 153 return -ENOSPC; 154 } 155 156 /** 157 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. 158 * @c: UBIFS file-system description object 159 * 160 * This function calculates and returns the number of LEBs which should be kept 161 * for index usage. 162 */ 163 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 164 { 165 int idx_lebs; 166 long long idx_size; 167 168 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; 169 /* And make sure we have thrice the index size of space reserved */ 170 idx_size += idx_size << 1; 171 /* 172 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 173 * pair, nor similarly the two variables for the new index size, so we 174 * have to do this costly 64-bit division on fast-path. 175 */ 176 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); 177 /* 178 * The index head is not available for the in-the-gaps method, so add an 179 * extra LEB to compensate. 180 */ 181 idx_lebs += 1; 182 if (idx_lebs < MIN_INDEX_LEBS) 183 idx_lebs = MIN_INDEX_LEBS; 184 return idx_lebs; 185 } 186 187 /** 188 * ubifs_calc_available - calculate available FS space. 189 * @c: UBIFS file-system description object 190 * @min_idx_lebs: minimum number of LEBs reserved for the index 191 * 192 * This function calculates and returns amount of FS space available for use. 193 */ 194 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 195 { 196 int subtract_lebs; 197 long long available; 198 199 available = c->main_bytes - c->lst.total_used; 200 201 /* 202 * Now 'available' contains theoretically available flash space 203 * assuming there is no index, so we have to subtract the space which 204 * is reserved for the index. 205 */ 206 subtract_lebs = min_idx_lebs; 207 208 /* Take into account that GC reserves one LEB for its own needs */ 209 subtract_lebs += 1; 210 211 /* 212 * Since different write types go to different heads, we should 213 * reserve one leb for each head. 214 */ 215 subtract_lebs += c->jhead_cnt; 216 217 /* We also reserve one LEB for deletions, which bypass budgeting */ 218 subtract_lebs += 1; 219 220 available -= (long long)subtract_lebs * c->leb_size; 221 222 /* Subtract the dead space which is not available for use */ 223 available -= c->lst.total_dead; 224 225 /* 226 * Subtract dark space, which might or might not be usable - it depends 227 * on the data which we have on the media and which will be written. If 228 * this is a lot of uncompressed or not-compressible data, the dark 229 * space cannot be used. 230 */ 231 available -= c->lst.total_dark; 232 233 /* 234 * However, there is more dark space. The index may be bigger than 235 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 236 * their dark space is not included in total_dark, so it is subtracted 237 * here. 238 */ 239 if (c->lst.idx_lebs > min_idx_lebs) { 240 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 241 available -= subtract_lebs * c->dark_wm; 242 } 243 244 /* The calculations are rough and may end up with a negative number */ 245 return available > 0 ? available : 0; 246 } 247 248 /** 249 * can_use_rp - check whether the user is allowed to use reserved pool. 250 * @c: UBIFS file-system description object 251 * 252 * UBIFS has so-called "reserved pool" which is flash space reserved 253 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 254 * This function checks whether current user is allowed to use reserved pool. 255 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 256 */ 257 static int can_use_rp(struct ubifs_info *c) 258 { 259 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || 260 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) 261 return 1; 262 return 0; 263 } 264 265 /** 266 * do_budget_space - reserve flash space for index and data growth. 267 * @c: UBIFS file-system description object 268 * 269 * This function makes sure UBIFS has enough free LEBs for index growth and 270 * data. 271 * 272 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 273 * would take if it was consolidated and written to the flash. This guarantees 274 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 275 * be able to commit dirty index. So this function basically adds amount of 276 * budgeted index space to the size of the current index, multiplies this by 3, 277 * and makes sure this does not exceed the amount of free LEBs. 278 * 279 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: 280 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 281 * be large, because UBIFS does not do any index consolidation as long as 282 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 283 * will contain a lot of dirt. 284 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, 285 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. 286 * 287 * This function returns zero in case of success, and %-ENOSPC in case of 288 * failure. 289 */ 290 static int do_budget_space(struct ubifs_info *c) 291 { 292 long long outstanding, available; 293 int lebs, rsvd_idx_lebs, min_idx_lebs; 294 295 /* First budget index space */ 296 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 297 298 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 299 if (min_idx_lebs > c->lst.idx_lebs) 300 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 301 else 302 rsvd_idx_lebs = 0; 303 304 /* 305 * The number of LEBs that are available to be used by the index is: 306 * 307 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 308 * @c->lst.taken_empty_lebs 309 * 310 * @c->lst.empty_lebs are available because they are empty. 311 * @c->freeable_cnt are available because they contain only free and 312 * dirty space, @c->idx_gc_cnt are available because they are index 313 * LEBs that have been garbage collected and are awaiting the commit 314 * before they can be used. And the in-the-gaps method will grab these 315 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have 316 * already been allocated for some purpose. 317 * 318 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because 319 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they 320 * are taken until after the commit). 321 * 322 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one 323 * because of the way we serialize LEB allocations and budgeting. See a 324 * comment in 'ubifs_find_free_space()'. 325 */ 326 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 327 c->lst.taken_empty_lebs; 328 if (unlikely(rsvd_idx_lebs > lebs)) { 329 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", 330 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); 331 return -ENOSPC; 332 } 333 334 available = ubifs_calc_available(c, min_idx_lebs); 335 outstanding = c->bi.data_growth + c->bi.dd_growth; 336 337 if (unlikely(available < outstanding)) { 338 dbg_budg("out of data space: available %lld, outstanding %lld", 339 available, outstanding); 340 return -ENOSPC; 341 } 342 343 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 344 return -ENOSPC; 345 346 c->bi.min_idx_lebs = min_idx_lebs; 347 return 0; 348 } 349 350 /** 351 * calc_idx_growth - calculate approximate index growth from budgeting request. 352 * @c: UBIFS file-system description object 353 * @req: budgeting request 354 * 355 * For now we assume each new node adds one znode. But this is rather poor 356 * approximation, though. 357 */ 358 static int calc_idx_growth(const struct ubifs_info *c, 359 const struct ubifs_budget_req *req) 360 { 361 int znodes; 362 363 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 364 req->new_dent; 365 return znodes * c->max_idx_node_sz; 366 } 367 368 /** 369 * calc_data_growth - calculate approximate amount of new data from budgeting 370 * request. 371 * @c: UBIFS file-system description object 372 * @req: budgeting request 373 */ 374 static int calc_data_growth(const struct ubifs_info *c, 375 const struct ubifs_budget_req *req) 376 { 377 int data_growth; 378 379 data_growth = req->new_ino ? c->bi.inode_budget : 0; 380 if (req->new_page) 381 data_growth += c->bi.page_budget; 382 if (req->new_dent) 383 data_growth += c->bi.dent_budget; 384 data_growth += req->new_ino_d; 385 return data_growth; 386 } 387 388 /** 389 * calc_dd_growth - calculate approximate amount of data which makes other data 390 * dirty from budgeting request. 391 * @c: UBIFS file-system description object 392 * @req: budgeting request 393 */ 394 static int calc_dd_growth(const struct ubifs_info *c, 395 const struct ubifs_budget_req *req) 396 { 397 int dd_growth; 398 399 dd_growth = req->dirtied_page ? c->bi.page_budget : 0; 400 401 if (req->dirtied_ino) 402 dd_growth += c->bi.inode_budget * req->dirtied_ino; 403 if (req->mod_dent) 404 dd_growth += c->bi.dent_budget; 405 dd_growth += req->dirtied_ino_d; 406 return dd_growth; 407 } 408 409 /** 410 * ubifs_budget_space - ensure there is enough space to complete an operation. 411 * @c: UBIFS file-system description object 412 * @req: budget request 413 * 414 * This function allocates budget for an operation. It uses pessimistic 415 * approximation of how much flash space the operation needs. The goal of this 416 * function is to make sure UBIFS always has flash space to flush all dirty 417 * pages, dirty inodes, and dirty znodes (liability). This function may force 418 * commit, garbage-collection or write-back. Returns zero in case of success, 419 * %-ENOSPC if there is no free space and other negative error codes in case of 420 * failures. 421 */ 422 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 423 { 424 int err, idx_growth, data_growth, dd_growth, retried = 0; 425 426 ubifs_assert(c, req->new_page <= 1); 427 ubifs_assert(c, req->dirtied_page <= 1); 428 ubifs_assert(c, req->new_dent <= 1); 429 ubifs_assert(c, req->mod_dent <= 1); 430 ubifs_assert(c, req->new_ino <= 1); 431 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 432 ubifs_assert(c, req->dirtied_ino <= 4); 433 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 434 ubifs_assert(c, !(req->new_ino_d & 7)); 435 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 436 437 data_growth = calc_data_growth(c, req); 438 dd_growth = calc_dd_growth(c, req); 439 if (!data_growth && !dd_growth) 440 return 0; 441 idx_growth = calc_idx_growth(c, req); 442 443 again: 444 spin_lock(&c->space_lock); 445 ubifs_assert(c, c->bi.idx_growth >= 0); 446 ubifs_assert(c, c->bi.data_growth >= 0); 447 ubifs_assert(c, c->bi.dd_growth >= 0); 448 449 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { 450 dbg_budg("no space"); 451 spin_unlock(&c->space_lock); 452 return -ENOSPC; 453 } 454 455 c->bi.idx_growth += idx_growth; 456 c->bi.data_growth += data_growth; 457 c->bi.dd_growth += dd_growth; 458 459 err = do_budget_space(c); 460 if (likely(!err)) { 461 req->idx_growth = idx_growth; 462 req->data_growth = data_growth; 463 req->dd_growth = dd_growth; 464 spin_unlock(&c->space_lock); 465 return 0; 466 } 467 468 /* Restore the old values */ 469 c->bi.idx_growth -= idx_growth; 470 c->bi.data_growth -= data_growth; 471 c->bi.dd_growth -= dd_growth; 472 spin_unlock(&c->space_lock); 473 474 if (req->fast) { 475 dbg_budg("no space for fast budgeting"); 476 return err; 477 } 478 479 err = make_free_space(c); 480 cond_resched(); 481 if (err == -EAGAIN) { 482 dbg_budg("try again"); 483 goto again; 484 } else if (err == -ENOSPC) { 485 if (!retried) { 486 retried = 1; 487 dbg_budg("-ENOSPC, but anyway try once again"); 488 goto again; 489 } 490 dbg_budg("FS is full, -ENOSPC"); 491 c->bi.nospace = 1; 492 if (can_use_rp(c) || c->rp_size == 0) 493 c->bi.nospace_rp = 1; 494 smp_wmb(); 495 } else 496 ubifs_err(c, "cannot budget space, error %d", err); 497 return err; 498 } 499 500 /** 501 * ubifs_release_budget - release budgeted free space. 502 * @c: UBIFS file-system description object 503 * @req: budget request 504 * 505 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 506 * since the index changes (which were budgeted for in @req->idx_growth) will 507 * only be written to the media on commit, this function moves the index budget 508 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed 509 * by the commit operation. 510 */ 511 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 512 { 513 ubifs_assert(c, req->new_page <= 1); 514 ubifs_assert(c, req->dirtied_page <= 1); 515 ubifs_assert(c, req->new_dent <= 1); 516 ubifs_assert(c, req->mod_dent <= 1); 517 ubifs_assert(c, req->new_ino <= 1); 518 ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA); 519 ubifs_assert(c, req->dirtied_ino <= 4); 520 ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 521 ubifs_assert(c, !(req->new_ino_d & 7)); 522 ubifs_assert(c, !(req->dirtied_ino_d & 7)); 523 if (!req->recalculate) { 524 ubifs_assert(c, req->idx_growth >= 0); 525 ubifs_assert(c, req->data_growth >= 0); 526 ubifs_assert(c, req->dd_growth >= 0); 527 } 528 529 if (req->recalculate) { 530 req->data_growth = calc_data_growth(c, req); 531 req->dd_growth = calc_dd_growth(c, req); 532 req->idx_growth = calc_idx_growth(c, req); 533 } 534 535 if (!req->data_growth && !req->dd_growth) 536 return; 537 538 c->bi.nospace = c->bi.nospace_rp = 0; 539 smp_wmb(); 540 541 spin_lock(&c->space_lock); 542 c->bi.idx_growth -= req->idx_growth; 543 c->bi.uncommitted_idx += req->idx_growth; 544 c->bi.data_growth -= req->data_growth; 545 c->bi.dd_growth -= req->dd_growth; 546 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 547 548 ubifs_assert(c, c->bi.idx_growth >= 0); 549 ubifs_assert(c, c->bi.data_growth >= 0); 550 ubifs_assert(c, c->bi.dd_growth >= 0); 551 ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs); 552 ubifs_assert(c, !(c->bi.idx_growth & 7)); 553 ubifs_assert(c, !(c->bi.data_growth & 7)); 554 ubifs_assert(c, !(c->bi.dd_growth & 7)); 555 spin_unlock(&c->space_lock); 556 } 557 558 /** 559 * ubifs_convert_page_budget - convert budget of a new page. 560 * @c: UBIFS file-system description object 561 * 562 * This function converts budget which was allocated for a new page of data to 563 * the budget of changing an existing page of data. The latter is smaller than 564 * the former, so this function only does simple re-calculation and does not 565 * involve any write-back. 566 */ 567 void ubifs_convert_page_budget(struct ubifs_info *c) 568 { 569 spin_lock(&c->space_lock); 570 /* Release the index growth reservation */ 571 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 572 /* Release the data growth reservation */ 573 c->bi.data_growth -= c->bi.page_budget; 574 /* Increase the dirty data growth reservation instead */ 575 c->bi.dd_growth += c->bi.page_budget; 576 /* And re-calculate the indexing space reservation */ 577 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 578 spin_unlock(&c->space_lock); 579 } 580 581 /** 582 * ubifs_release_dirty_inode_budget - release dirty inode budget. 583 * @c: UBIFS file-system description object 584 * @ui: UBIFS inode to release the budget for 585 * 586 * This function releases budget corresponding to a dirty inode. It is usually 587 * called when after the inode has been written to the media and marked as 588 * clean. It also causes the "no space" flags to be cleared. 589 */ 590 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 591 struct ubifs_inode *ui) 592 { 593 struct ubifs_budget_req req; 594 595 memset(&req, 0, sizeof(struct ubifs_budget_req)); 596 /* The "no space" flags will be cleared because dd_growth is > 0 */ 597 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); 598 ubifs_release_budget(c, &req); 599 } 600 601 /** 602 * ubifs_reported_space - calculate reported free space. 603 * @c: the UBIFS file-system description object 604 * @free: amount of free space 605 * 606 * This function calculates amount of free space which will be reported to 607 * user-space. User-space application tend to expect that if the file-system 608 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 609 * are able to write a file of size N. UBIFS attaches node headers to each data 610 * node and it has to write indexing nodes as well. This introduces additional 611 * overhead, and UBIFS has to report slightly less free space to meet the above 612 * expectations. 613 * 614 * This function assumes free space is made up of uncompressed data nodes and 615 * full index nodes (one per data node, tripled because we always allow enough 616 * space to write the index thrice). 617 * 618 * Note, the calculation is pessimistic, which means that most of the time 619 * UBIFS reports less space than it actually has. 620 */ 621 long long ubifs_reported_space(const struct ubifs_info *c, long long free) 622 { 623 int divisor, factor, f; 624 625 /* 626 * Reported space size is @free * X, where X is UBIFS block size 627 * divided by UBIFS block size + all overhead one data block 628 * introduces. The overhead is the node header + indexing overhead. 629 * 630 * Indexing overhead calculations are based on the following formula: 631 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 632 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 633 * as less than maximum fanout, we assume that each data node 634 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 635 * Note, the multiplier 3 is because UBIFS reserves thrice as more space 636 * for the index. 637 */ 638 f = c->fanout > 3 ? c->fanout >> 1 : 2; 639 factor = UBIFS_BLOCK_SIZE; 640 divisor = UBIFS_MAX_DATA_NODE_SZ; 641 divisor += (c->max_idx_node_sz * 3) / (f - 1); 642 free *= factor; 643 return div_u64(free, divisor); 644 } 645 646 /** 647 * ubifs_get_free_space_nolock - return amount of free space. 648 * @c: UBIFS file-system description object 649 * 650 * This function calculates amount of free space to report to user-space. 651 * 652 * Because UBIFS may introduce substantial overhead (the index, node headers, 653 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of 654 * free flash space it has (well, because not all dirty space is reclaimable, 655 * UBIFS does not actually know the real amount). If UBIFS did so, it would 656 * bread user expectations about what free space is. Users seem to accustomed 657 * to assume that if the file-system reports N bytes of free space, they would 658 * be able to fit a file of N bytes to the FS. This almost works for 659 * traditional file-systems, because they have way less overhead than UBIFS. 660 * So, to keep users happy, UBIFS tries to take the overhead into account. 661 */ 662 long long ubifs_get_free_space_nolock(struct ubifs_info *c) 663 { 664 int rsvd_idx_lebs, lebs; 665 long long available, outstanding, free; 666 667 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 668 outstanding = c->bi.data_growth + c->bi.dd_growth; 669 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 670 671 /* 672 * When reporting free space to user-space, UBIFS guarantees that it is 673 * possible to write a file of free space size. This means that for 674 * empty LEBs we may use more precise calculations than 675 * 'ubifs_calc_available()' is using. Namely, we know that in empty 676 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 677 * Thus, amend the available space. 678 * 679 * Note, the calculations below are similar to what we have in 680 * 'do_budget_space()', so refer there for comments. 681 */ 682 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 683 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 684 else 685 rsvd_idx_lebs = 0; 686 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 687 c->lst.taken_empty_lebs; 688 lebs -= rsvd_idx_lebs; 689 available += lebs * (c->dark_wm - c->leb_overhead); 690 691 if (available > outstanding) 692 free = ubifs_reported_space(c, available - outstanding); 693 else 694 free = 0; 695 return free; 696 } 697 698 /** 699 * ubifs_get_free_space - return amount of free space. 700 * @c: UBIFS file-system description object 701 * 702 * This function calculates and returns amount of free space to report to 703 * user-space. 704 */ 705 long long ubifs_get_free_space(struct ubifs_info *c) 706 { 707 long long free; 708 709 spin_lock(&c->space_lock); 710 free = ubifs_get_free_space_nolock(c); 711 spin_unlock(&c->space_lock); 712 713 return free; 714 } 715