xref: /openbmc/linux/fs/ubifs/auth.c (revision aeefc1a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2018 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  */
7 
8 /*
9  * This file implements various helper functions for UBIFS authentication support
10  */
11 
12 #include <linux/crypto.h>
13 #include <linux/verification.h>
14 #include <crypto/hash.h>
15 #include <crypto/algapi.h>
16 #include <keys/user-type.h>
17 #include <keys/asymmetric-type.h>
18 
19 #include "ubifs.h"
20 
21 /**
22  * ubifs_node_calc_hash - calculate the hash of a UBIFS node
23  * @c: UBIFS file-system description object
24  * @node: the node to calculate a hash for
25  * @hash: the returned hash
26  *
27  * Returns 0 for success or a negative error code otherwise.
28  */
29 int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *node,
30 			    u8 *hash)
31 {
32 	const struct ubifs_ch *ch = node;
33 
34 	return crypto_shash_tfm_digest(c->hash_tfm, node, le32_to_cpu(ch->len),
35 				       hash);
36 }
37 
38 /**
39  * ubifs_hash_calc_hmac - calculate a HMAC from a hash
40  * @c: UBIFS file-system description object
41  * @hash: the node to calculate a HMAC for
42  * @hmac: the returned HMAC
43  *
44  * Returns 0 for success or a negative error code otherwise.
45  */
46 static int ubifs_hash_calc_hmac(const struct ubifs_info *c, const u8 *hash,
47 				 u8 *hmac)
48 {
49 	return crypto_shash_tfm_digest(c->hmac_tfm, hash, c->hash_len, hmac);
50 }
51 
52 /**
53  * ubifs_prepare_auth_node - Prepare an authentication node
54  * @c: UBIFS file-system description object
55  * @node: the node to calculate a hash for
56  * @inhash: input hash of previous nodes
57  *
58  * This function prepares an authentication node for writing onto flash.
59  * It creates a HMAC from the given input hash and writes it to the node.
60  *
61  * Returns 0 for success or a negative error code otherwise.
62  */
63 int ubifs_prepare_auth_node(struct ubifs_info *c, void *node,
64 			     struct shash_desc *inhash)
65 {
66 	struct ubifs_auth_node *auth = node;
67 	u8 hash[UBIFS_HASH_ARR_SZ];
68 	int err;
69 
70 	{
71 		SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
72 
73 		hash_desc->tfm = c->hash_tfm;
74 		ubifs_shash_copy_state(c, inhash, hash_desc);
75 
76 		err = crypto_shash_final(hash_desc, hash);
77 		if (err)
78 			return err;
79 	}
80 
81 	err = ubifs_hash_calc_hmac(c, hash, auth->hmac);
82 	if (err)
83 		return err;
84 
85 	auth->ch.node_type = UBIFS_AUTH_NODE;
86 	ubifs_prepare_node(c, auth, ubifs_auth_node_sz(c), 0);
87 	return 0;
88 }
89 
90 static struct shash_desc *ubifs_get_desc(const struct ubifs_info *c,
91 					 struct crypto_shash *tfm)
92 {
93 	struct shash_desc *desc;
94 	int err;
95 
96 	if (!ubifs_authenticated(c))
97 		return NULL;
98 
99 	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL);
100 	if (!desc)
101 		return ERR_PTR(-ENOMEM);
102 
103 	desc->tfm = tfm;
104 
105 	err = crypto_shash_init(desc);
106 	if (err) {
107 		kfree(desc);
108 		return ERR_PTR(err);
109 	}
110 
111 	return desc;
112 }
113 
114 /**
115  * __ubifs_hash_get_desc - get a descriptor suitable for hashing a node
116  * @c: UBIFS file-system description object
117  *
118  * This function returns a descriptor suitable for hashing a node. Free after use
119  * with kfree.
120  */
121 struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c)
122 {
123 	return ubifs_get_desc(c, c->hash_tfm);
124 }
125 
126 /**
127  * ubifs_bad_hash - Report hash mismatches
128  * @c: UBIFS file-system description object
129  * @node: the node
130  * @hash: the expected hash
131  * @lnum: the LEB @node was read from
132  * @offs: offset in LEB @node was read from
133  *
134  * This function reports a hash mismatch when a node has a different hash than
135  * expected.
136  */
137 void ubifs_bad_hash(const struct ubifs_info *c, const void *node, const u8 *hash,
138 		    int lnum, int offs)
139 {
140 	int len = min(c->hash_len, 20);
141 	int cropped = len != c->hash_len;
142 	const char *cont = cropped ? "..." : "";
143 
144 	u8 calc[UBIFS_HASH_ARR_SZ];
145 
146 	__ubifs_node_calc_hash(c, node, calc);
147 
148 	ubifs_err(c, "hash mismatch on node at LEB %d:%d", lnum, offs);
149 	ubifs_err(c, "hash expected:   %*ph%s", len, hash, cont);
150 	ubifs_err(c, "hash calculated: %*ph%s", len, calc, cont);
151 }
152 
153 /**
154  * __ubifs_node_check_hash - check the hash of a node against given hash
155  * @c: UBIFS file-system description object
156  * @node: the node
157  * @expected: the expected hash
158  *
159  * This function calculates a hash over a node and compares it to the given hash.
160  * Returns 0 if both hashes are equal or authentication is disabled, otherwise a
161  * negative error code is returned.
162  */
163 int __ubifs_node_check_hash(const struct ubifs_info *c, const void *node,
164 			    const u8 *expected)
165 {
166 	u8 calc[UBIFS_HASH_ARR_SZ];
167 	int err;
168 
169 	err = __ubifs_node_calc_hash(c, node, calc);
170 	if (err)
171 		return err;
172 
173 	if (ubifs_check_hash(c, expected, calc))
174 		return -EPERM;
175 
176 	return 0;
177 }
178 
179 /**
180  * ubifs_sb_verify_signature - verify the signature of a superblock
181  * @c: UBIFS file-system description object
182  * @sup: The superblock node
183  *
184  * To support offline signed images the superblock can be signed with a
185  * PKCS#7 signature. The signature is placed directly behind the superblock
186  * node in an ubifs_sig_node.
187  *
188  * Returns 0 when the signature can be successfully verified or a negative
189  * error code if not.
190  */
191 int ubifs_sb_verify_signature(struct ubifs_info *c,
192 			      const struct ubifs_sb_node *sup)
193 {
194 	int err;
195 	struct ubifs_scan_leb *sleb;
196 	struct ubifs_scan_node *snod;
197 	const struct ubifs_sig_node *signode;
198 
199 	sleb = ubifs_scan(c, UBIFS_SB_LNUM, UBIFS_SB_NODE_SZ, c->sbuf, 0);
200 	if (IS_ERR(sleb)) {
201 		err = PTR_ERR(sleb);
202 		return err;
203 	}
204 
205 	if (sleb->nodes_cnt == 0) {
206 		ubifs_err(c, "Unable to find signature node");
207 		err = -EINVAL;
208 		goto out_destroy;
209 	}
210 
211 	snod = list_first_entry(&sleb->nodes, struct ubifs_scan_node, list);
212 
213 	if (snod->type != UBIFS_SIG_NODE) {
214 		ubifs_err(c, "Signature node is of wrong type");
215 		err = -EINVAL;
216 		goto out_destroy;
217 	}
218 
219 	signode = snod->node;
220 
221 	if (le32_to_cpu(signode->len) > snod->len + sizeof(struct ubifs_sig_node)) {
222 		ubifs_err(c, "invalid signature len %d", le32_to_cpu(signode->len));
223 		err = -EINVAL;
224 		goto out_destroy;
225 	}
226 
227 	if (le32_to_cpu(signode->type) != UBIFS_SIGNATURE_TYPE_PKCS7) {
228 		ubifs_err(c, "Signature type %d is not supported\n",
229 			  le32_to_cpu(signode->type));
230 		err = -EINVAL;
231 		goto out_destroy;
232 	}
233 
234 	err = verify_pkcs7_signature(sup, sizeof(struct ubifs_sb_node),
235 				     signode->sig, le32_to_cpu(signode->len),
236 				     NULL, VERIFYING_UNSPECIFIED_SIGNATURE,
237 				     NULL, NULL);
238 
239 	if (err)
240 		ubifs_err(c, "Failed to verify signature");
241 	else
242 		ubifs_msg(c, "Successfully verified super block signature");
243 
244 out_destroy:
245 	ubifs_scan_destroy(sleb);
246 
247 	return err;
248 }
249 
250 /**
251  * ubifs_init_authentication - initialize UBIFS authentication support
252  * @c: UBIFS file-system description object
253  *
254  * This function returns 0 for success or a negative error code otherwise.
255  */
256 int ubifs_init_authentication(struct ubifs_info *c)
257 {
258 	struct key *keyring_key;
259 	const struct user_key_payload *ukp;
260 	int err;
261 	char hmac_name[CRYPTO_MAX_ALG_NAME];
262 
263 	if (!c->auth_hash_name) {
264 		ubifs_err(c, "authentication hash name needed with authentication");
265 		return -EINVAL;
266 	}
267 
268 	c->auth_hash_algo = match_string(hash_algo_name, HASH_ALGO__LAST,
269 					 c->auth_hash_name);
270 	if ((int)c->auth_hash_algo < 0) {
271 		ubifs_err(c, "Unknown hash algo %s specified",
272 			  c->auth_hash_name);
273 		return -EINVAL;
274 	}
275 
276 	snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
277 		 c->auth_hash_name);
278 
279 	keyring_key = request_key(&key_type_logon, c->auth_key_name, NULL);
280 
281 	if (IS_ERR(keyring_key)) {
282 		ubifs_err(c, "Failed to request key: %ld",
283 			  PTR_ERR(keyring_key));
284 		return PTR_ERR(keyring_key);
285 	}
286 
287 	down_read(&keyring_key->sem);
288 
289 	if (keyring_key->type != &key_type_logon) {
290 		ubifs_err(c, "key type must be logon");
291 		err = -ENOKEY;
292 		goto out;
293 	}
294 
295 	ukp = user_key_payload_locked(keyring_key);
296 	if (!ukp) {
297 		/* key was revoked before we acquired its semaphore */
298 		err = -EKEYREVOKED;
299 		goto out;
300 	}
301 
302 	c->hash_tfm = crypto_alloc_shash(c->auth_hash_name, 0, 0);
303 	if (IS_ERR(c->hash_tfm)) {
304 		err = PTR_ERR(c->hash_tfm);
305 		ubifs_err(c, "Can not allocate %s: %d",
306 			  c->auth_hash_name, err);
307 		goto out;
308 	}
309 
310 	c->hash_len = crypto_shash_digestsize(c->hash_tfm);
311 	if (c->hash_len > UBIFS_HASH_ARR_SZ) {
312 		ubifs_err(c, "hash %s is bigger than maximum allowed hash size (%d > %d)",
313 			  c->auth_hash_name, c->hash_len, UBIFS_HASH_ARR_SZ);
314 		err = -EINVAL;
315 		goto out_free_hash;
316 	}
317 
318 	c->hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
319 	if (IS_ERR(c->hmac_tfm)) {
320 		err = PTR_ERR(c->hmac_tfm);
321 		ubifs_err(c, "Can not allocate %s: %d", hmac_name, err);
322 		goto out_free_hash;
323 	}
324 
325 	c->hmac_desc_len = crypto_shash_digestsize(c->hmac_tfm);
326 	if (c->hmac_desc_len > UBIFS_HMAC_ARR_SZ) {
327 		ubifs_err(c, "hmac %s is bigger than maximum allowed hmac size (%d > %d)",
328 			  hmac_name, c->hmac_desc_len, UBIFS_HMAC_ARR_SZ);
329 		err = -EINVAL;
330 		goto out_free_hash;
331 	}
332 
333 	err = crypto_shash_setkey(c->hmac_tfm, ukp->data, ukp->datalen);
334 	if (err)
335 		goto out_free_hmac;
336 
337 	c->authenticated = true;
338 
339 	c->log_hash = ubifs_hash_get_desc(c);
340 	if (IS_ERR(c->log_hash))
341 		goto out_free_hmac;
342 
343 	err = 0;
344 
345 out_free_hmac:
346 	if (err)
347 		crypto_free_shash(c->hmac_tfm);
348 out_free_hash:
349 	if (err)
350 		crypto_free_shash(c->hash_tfm);
351 out:
352 	up_read(&keyring_key->sem);
353 	key_put(keyring_key);
354 
355 	return err;
356 }
357 
358 /**
359  * __ubifs_exit_authentication - release resource
360  * @c: UBIFS file-system description object
361  *
362  * This function releases the authentication related resources.
363  */
364 void __ubifs_exit_authentication(struct ubifs_info *c)
365 {
366 	if (!ubifs_authenticated(c))
367 		return;
368 
369 	crypto_free_shash(c->hmac_tfm);
370 	crypto_free_shash(c->hash_tfm);
371 	kfree(c->log_hash);
372 }
373 
374 /**
375  * ubifs_node_calc_hmac - calculate the HMAC of a UBIFS node
376  * @c: UBIFS file-system description object
377  * @node: the node to insert a HMAC into.
378  * @len: the length of the node
379  * @ofs_hmac: the offset in the node where the HMAC is inserted
380  * @hmac: returned HMAC
381  *
382  * This function calculates a HMAC of a UBIFS node. The HMAC is expected to be
383  * embedded into the node, so this area is not covered by the HMAC. Also not
384  * covered is the UBIFS_NODE_MAGIC and the CRC of the node.
385  */
386 static int ubifs_node_calc_hmac(const struct ubifs_info *c, const void *node,
387 				int len, int ofs_hmac, void *hmac)
388 {
389 	SHASH_DESC_ON_STACK(shash, c->hmac_tfm);
390 	int hmac_len = c->hmac_desc_len;
391 	int err;
392 
393 	ubifs_assert(c, ofs_hmac > 8);
394 	ubifs_assert(c, ofs_hmac + hmac_len < len);
395 
396 	shash->tfm = c->hmac_tfm;
397 
398 	err = crypto_shash_init(shash);
399 	if (err)
400 		return err;
401 
402 	/* behind common node header CRC up to HMAC begin */
403 	err = crypto_shash_update(shash, node + 8, ofs_hmac - 8);
404 	if (err < 0)
405 		return err;
406 
407 	/* behind HMAC, if any */
408 	if (len - ofs_hmac - hmac_len > 0) {
409 		err = crypto_shash_update(shash, node + ofs_hmac + hmac_len,
410 			    len - ofs_hmac - hmac_len);
411 		if (err < 0)
412 			return err;
413 	}
414 
415 	return crypto_shash_final(shash, hmac);
416 }
417 
418 /**
419  * __ubifs_node_insert_hmac - insert a HMAC into a UBIFS node
420  * @c: UBIFS file-system description object
421  * @node: the node to insert a HMAC into.
422  * @len: the length of the node
423  * @ofs_hmac: the offset in the node where the HMAC is inserted
424  *
425  * This function inserts a HMAC at offset @ofs_hmac into the node given in
426  * @node.
427  *
428  * This function returns 0 for success or a negative error code otherwise.
429  */
430 int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *node, int len,
431 			    int ofs_hmac)
432 {
433 	return ubifs_node_calc_hmac(c, node, len, ofs_hmac, node + ofs_hmac);
434 }
435 
436 /**
437  * __ubifs_node_verify_hmac - verify the HMAC of UBIFS node
438  * @c: UBIFS file-system description object
439  * @node: the node to insert a HMAC into.
440  * @len: the length of the node
441  * @ofs_hmac: the offset in the node where the HMAC is inserted
442  *
443  * This function verifies the HMAC at offset @ofs_hmac of the node given in
444  * @node. Returns 0 if successful or a negative error code otherwise.
445  */
446 int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *node,
447 			     int len, int ofs_hmac)
448 {
449 	int hmac_len = c->hmac_desc_len;
450 	u8 *hmac;
451 	int err;
452 
453 	hmac = kmalloc(hmac_len, GFP_NOFS);
454 	if (!hmac)
455 		return -ENOMEM;
456 
457 	err = ubifs_node_calc_hmac(c, node, len, ofs_hmac, hmac);
458 	if (err) {
459 		kfree(hmac);
460 		return err;
461 	}
462 
463 	err = crypto_memneq(hmac, node + ofs_hmac, hmac_len);
464 
465 	kfree(hmac);
466 
467 	if (!err)
468 		return 0;
469 
470 	return -EPERM;
471 }
472 
473 int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src,
474 			     struct shash_desc *target)
475 {
476 	u8 *state;
477 	int err;
478 
479 	state = kmalloc(crypto_shash_descsize(src->tfm), GFP_NOFS);
480 	if (!state)
481 		return -ENOMEM;
482 
483 	err = crypto_shash_export(src, state);
484 	if (err)
485 		goto out;
486 
487 	err = crypto_shash_import(target, state);
488 
489 out:
490 	kfree(state);
491 
492 	return err;
493 }
494 
495 /**
496  * ubifs_hmac_wkm - Create a HMAC of the well known message
497  * @c: UBIFS file-system description object
498  * @hmac: The HMAC of the well known message
499  *
500  * This function creates a HMAC of a well known message. This is used
501  * to check if the provided key is suitable to authenticate a UBIFS
502  * image. This is only a convenience to the user to provide a better
503  * error message when the wrong key is provided.
504  *
505  * This function returns 0 for success or a negative error code otherwise.
506  */
507 int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac)
508 {
509 	SHASH_DESC_ON_STACK(shash, c->hmac_tfm);
510 	int err;
511 	const char well_known_message[] = "UBIFS";
512 
513 	if (!ubifs_authenticated(c))
514 		return 0;
515 
516 	shash->tfm = c->hmac_tfm;
517 
518 	err = crypto_shash_init(shash);
519 	if (err)
520 		return err;
521 
522 	err = crypto_shash_update(shash, well_known_message,
523 				  sizeof(well_known_message) - 1);
524 	if (err < 0)
525 		return err;
526 
527 	err = crypto_shash_final(shash, hmac);
528 	if (err)
529 		return err;
530 	return 0;
531 }
532 
533 /*
534  * ubifs_hmac_zero - test if a HMAC is zero
535  * @c: UBIFS file-system description object
536  * @hmac: the HMAC to test
537  *
538  * This function tests if a HMAC is zero and returns true if it is
539  * and false otherwise.
540  */
541 bool ubifs_hmac_zero(struct ubifs_info *c, const u8 *hmac)
542 {
543 	return !memchr_inv(hmac, 0, c->hmac_desc_len);
544 }
545