xref: /openbmc/linux/fs/sync.c (revision eb3fcf00)
1 /*
2  * High-level sync()-related operations
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/file.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/namei.h>
11 #include <linux/sched.h>
12 #include <linux/writeback.h>
13 #include <linux/syscalls.h>
14 #include <linux/linkage.h>
15 #include <linux/pagemap.h>
16 #include <linux/quotaops.h>
17 #include <linux/backing-dev.h>
18 #include "internal.h"
19 
20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 			SYNC_FILE_RANGE_WAIT_AFTER)
22 
23 /*
24  * Do the filesystem syncing work. For simple filesystems
25  * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26  * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27  * wait == 1 case since in that case write_inode() functions do
28  * sync_dirty_buffer() and thus effectively write one block at a time.
29  */
30 static int __sync_filesystem(struct super_block *sb, int wait)
31 {
32 	if (wait)
33 		sync_inodes_sb(sb);
34 	else
35 		writeback_inodes_sb(sb, WB_REASON_SYNC);
36 
37 	if (sb->s_op->sync_fs)
38 		sb->s_op->sync_fs(sb, wait);
39 	return __sync_blockdev(sb->s_bdev, wait);
40 }
41 
42 /*
43  * Write out and wait upon all dirty data associated with this
44  * superblock.  Filesystem data as well as the underlying block
45  * device.  Takes the superblock lock.
46  */
47 int sync_filesystem(struct super_block *sb)
48 {
49 	int ret;
50 
51 	/*
52 	 * We need to be protected against the filesystem going from
53 	 * r/o to r/w or vice versa.
54 	 */
55 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
56 
57 	/*
58 	 * No point in syncing out anything if the filesystem is read-only.
59 	 */
60 	if (sb->s_flags & MS_RDONLY)
61 		return 0;
62 
63 	ret = __sync_filesystem(sb, 0);
64 	if (ret < 0)
65 		return ret;
66 	return __sync_filesystem(sb, 1);
67 }
68 EXPORT_SYMBOL(sync_filesystem);
69 
70 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
71 {
72 	if (!(sb->s_flags & MS_RDONLY))
73 		sync_inodes_sb(sb);
74 }
75 
76 static void sync_fs_one_sb(struct super_block *sb, void *arg)
77 {
78 	if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
79 		sb->s_op->sync_fs(sb, *(int *)arg);
80 }
81 
82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
83 {
84 	filemap_fdatawrite(bdev->bd_inode->i_mapping);
85 }
86 
87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
88 {
89 	filemap_fdatawait(bdev->bd_inode->i_mapping);
90 }
91 
92 /*
93  * Sync everything. We start by waking flusher threads so that most of
94  * writeback runs on all devices in parallel. Then we sync all inodes reliably
95  * which effectively also waits for all flusher threads to finish doing
96  * writeback. At this point all data is on disk so metadata should be stable
97  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
98  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
99  * just write metadata (such as inodes or bitmaps) to block device page cache
100  * and do not sync it on their own in ->sync_fs().
101  */
102 SYSCALL_DEFINE0(sync)
103 {
104 	int nowait = 0, wait = 1;
105 
106 	wakeup_flusher_threads(0, WB_REASON_SYNC);
107 	iterate_supers(sync_inodes_one_sb, NULL);
108 	iterate_supers(sync_fs_one_sb, &nowait);
109 	iterate_supers(sync_fs_one_sb, &wait);
110 	iterate_bdevs(fdatawrite_one_bdev, NULL);
111 	iterate_bdevs(fdatawait_one_bdev, NULL);
112 	if (unlikely(laptop_mode))
113 		laptop_sync_completion();
114 	return 0;
115 }
116 
117 static void do_sync_work(struct work_struct *work)
118 {
119 	int nowait = 0;
120 
121 	/*
122 	 * Sync twice to reduce the possibility we skipped some inodes / pages
123 	 * because they were temporarily locked
124 	 */
125 	iterate_supers(sync_inodes_one_sb, &nowait);
126 	iterate_supers(sync_fs_one_sb, &nowait);
127 	iterate_bdevs(fdatawrite_one_bdev, NULL);
128 	iterate_supers(sync_inodes_one_sb, &nowait);
129 	iterate_supers(sync_fs_one_sb, &nowait);
130 	iterate_bdevs(fdatawrite_one_bdev, NULL);
131 	printk("Emergency Sync complete\n");
132 	kfree(work);
133 }
134 
135 void emergency_sync(void)
136 {
137 	struct work_struct *work;
138 
139 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
140 	if (work) {
141 		INIT_WORK(work, do_sync_work);
142 		schedule_work(work);
143 	}
144 }
145 
146 /*
147  * sync a single super
148  */
149 SYSCALL_DEFINE1(syncfs, int, fd)
150 {
151 	struct fd f = fdget(fd);
152 	struct super_block *sb;
153 	int ret;
154 
155 	if (!f.file)
156 		return -EBADF;
157 	sb = f.file->f_path.dentry->d_sb;
158 
159 	down_read(&sb->s_umount);
160 	ret = sync_filesystem(sb);
161 	up_read(&sb->s_umount);
162 
163 	fdput(f);
164 	return ret;
165 }
166 
167 /**
168  * vfs_fsync_range - helper to sync a range of data & metadata to disk
169  * @file:		file to sync
170  * @start:		offset in bytes of the beginning of data range to sync
171  * @end:		offset in bytes of the end of data range (inclusive)
172  * @datasync:		perform only datasync
173  *
174  * Write back data in range @start..@end and metadata for @file to disk.  If
175  * @datasync is set only metadata needed to access modified file data is
176  * written.
177  */
178 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
179 {
180 	struct inode *inode = file->f_mapping->host;
181 
182 	if (!file->f_op->fsync)
183 		return -EINVAL;
184 	if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
185 		spin_lock(&inode->i_lock);
186 		inode->i_state &= ~I_DIRTY_TIME;
187 		spin_unlock(&inode->i_lock);
188 		mark_inode_dirty_sync(inode);
189 	}
190 	return file->f_op->fsync(file, start, end, datasync);
191 }
192 EXPORT_SYMBOL(vfs_fsync_range);
193 
194 /**
195  * vfs_fsync - perform a fsync or fdatasync on a file
196  * @file:		file to sync
197  * @datasync:		only perform a fdatasync operation
198  *
199  * Write back data and metadata for @file to disk.  If @datasync is
200  * set only metadata needed to access modified file data is written.
201  */
202 int vfs_fsync(struct file *file, int datasync)
203 {
204 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
205 }
206 EXPORT_SYMBOL(vfs_fsync);
207 
208 static int do_fsync(unsigned int fd, int datasync)
209 {
210 	struct fd f = fdget(fd);
211 	int ret = -EBADF;
212 
213 	if (f.file) {
214 		ret = vfs_fsync(f.file, datasync);
215 		fdput(f);
216 	}
217 	return ret;
218 }
219 
220 SYSCALL_DEFINE1(fsync, unsigned int, fd)
221 {
222 	return do_fsync(fd, 0);
223 }
224 
225 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
226 {
227 	return do_fsync(fd, 1);
228 }
229 
230 /*
231  * sys_sync_file_range() permits finely controlled syncing over a segment of
232  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
233  * zero then sys_sync_file_range() will operate from offset out to EOF.
234  *
235  * The flag bits are:
236  *
237  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
238  * before performing the write.
239  *
240  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
241  * range which are not presently under writeback. Note that this may block for
242  * significant periods due to exhaustion of disk request structures.
243  *
244  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
245  * after performing the write.
246  *
247  * Useful combinations of the flag bits are:
248  *
249  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
250  * in the range which were dirty on entry to sys_sync_file_range() are placed
251  * under writeout.  This is a start-write-for-data-integrity operation.
252  *
253  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
254  * are not presently under writeout.  This is an asynchronous flush-to-disk
255  * operation.  Not suitable for data integrity operations.
256  *
257  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
258  * completion of writeout of all pages in the range.  This will be used after an
259  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
260  * for that operation to complete and to return the result.
261  *
262  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
263  * a traditional sync() operation.  This is a write-for-data-integrity operation
264  * which will ensure that all pages in the range which were dirty on entry to
265  * sys_sync_file_range() are committed to disk.
266  *
267  *
268  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
269  * I/O errors or ENOSPC conditions and will return those to the caller, after
270  * clearing the EIO and ENOSPC flags in the address_space.
271  *
272  * It should be noted that none of these operations write out the file's
273  * metadata.  So unless the application is strictly performing overwrites of
274  * already-instantiated disk blocks, there are no guarantees here that the data
275  * will be available after a crash.
276  */
277 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
278 				unsigned int, flags)
279 {
280 	int ret;
281 	struct fd f;
282 	struct address_space *mapping;
283 	loff_t endbyte;			/* inclusive */
284 	umode_t i_mode;
285 
286 	ret = -EINVAL;
287 	if (flags & ~VALID_FLAGS)
288 		goto out;
289 
290 	endbyte = offset + nbytes;
291 
292 	if ((s64)offset < 0)
293 		goto out;
294 	if ((s64)endbyte < 0)
295 		goto out;
296 	if (endbyte < offset)
297 		goto out;
298 
299 	if (sizeof(pgoff_t) == 4) {
300 		if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
301 			/*
302 			 * The range starts outside a 32 bit machine's
303 			 * pagecache addressing capabilities.  Let it "succeed"
304 			 */
305 			ret = 0;
306 			goto out;
307 		}
308 		if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
309 			/*
310 			 * Out to EOF
311 			 */
312 			nbytes = 0;
313 		}
314 	}
315 
316 	if (nbytes == 0)
317 		endbyte = LLONG_MAX;
318 	else
319 		endbyte--;		/* inclusive */
320 
321 	ret = -EBADF;
322 	f = fdget(fd);
323 	if (!f.file)
324 		goto out;
325 
326 	i_mode = file_inode(f.file)->i_mode;
327 	ret = -ESPIPE;
328 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
329 			!S_ISLNK(i_mode))
330 		goto out_put;
331 
332 	mapping = f.file->f_mapping;
333 	if (!mapping) {
334 		ret = -EINVAL;
335 		goto out_put;
336 	}
337 
338 	ret = 0;
339 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
340 		ret = filemap_fdatawait_range(mapping, offset, endbyte);
341 		if (ret < 0)
342 			goto out_put;
343 	}
344 
345 	if (flags & SYNC_FILE_RANGE_WRITE) {
346 		ret = filemap_fdatawrite_range(mapping, offset, endbyte);
347 		if (ret < 0)
348 			goto out_put;
349 	}
350 
351 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
352 		ret = filemap_fdatawait_range(mapping, offset, endbyte);
353 
354 out_put:
355 	fdput(f);
356 out:
357 	return ret;
358 }
359 
360 /* It would be nice if people remember that not all the world's an i386
361    when they introduce new system calls */
362 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
363 				 loff_t, offset, loff_t, nbytes)
364 {
365 	return sys_sync_file_range(fd, offset, nbytes, flags);
366 }
367