1 /* 2 * High-level sync()-related operations 3 */ 4 5 #include <linux/kernel.h> 6 #include <linux/file.h> 7 #include <linux/fs.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/namei.h> 11 #include <linux/sched.h> 12 #include <linux/writeback.h> 13 #include <linux/syscalls.h> 14 #include <linux/linkage.h> 15 #include <linux/pagemap.h> 16 #include <linux/quotaops.h> 17 #include <linux/backing-dev.h> 18 #include "internal.h" 19 20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \ 21 SYNC_FILE_RANGE_WAIT_AFTER) 22 23 /* 24 * Do the filesystem syncing work. For simple filesystems 25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to 26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the 27 * wait == 1 case since in that case write_inode() functions do 28 * sync_dirty_buffer() and thus effectively write one block at a time. 29 */ 30 static int __sync_filesystem(struct super_block *sb, int wait) 31 { 32 if (wait) 33 sync_inodes_sb(sb); 34 else 35 writeback_inodes_sb(sb, WB_REASON_SYNC); 36 37 if (sb->s_op->sync_fs) 38 sb->s_op->sync_fs(sb, wait); 39 return __sync_blockdev(sb->s_bdev, wait); 40 } 41 42 /* 43 * Write out and wait upon all dirty data associated with this 44 * superblock. Filesystem data as well as the underlying block 45 * device. Takes the superblock lock. 46 */ 47 int sync_filesystem(struct super_block *sb) 48 { 49 int ret; 50 51 /* 52 * We need to be protected against the filesystem going from 53 * r/o to r/w or vice versa. 54 */ 55 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 56 57 /* 58 * No point in syncing out anything if the filesystem is read-only. 59 */ 60 if (sb->s_flags & MS_RDONLY) 61 return 0; 62 63 ret = __sync_filesystem(sb, 0); 64 if (ret < 0) 65 return ret; 66 return __sync_filesystem(sb, 1); 67 } 68 EXPORT_SYMBOL(sync_filesystem); 69 70 static void sync_inodes_one_sb(struct super_block *sb, void *arg) 71 { 72 if (!(sb->s_flags & MS_RDONLY)) 73 sync_inodes_sb(sb); 74 } 75 76 static void sync_fs_one_sb(struct super_block *sb, void *arg) 77 { 78 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs) 79 sb->s_op->sync_fs(sb, *(int *)arg); 80 } 81 82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg) 83 { 84 filemap_fdatawrite(bdev->bd_inode->i_mapping); 85 } 86 87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg) 88 { 89 /* 90 * We keep the error status of individual mapping so that 91 * applications can catch the writeback error using fsync(2). 92 * See filemap_fdatawait_keep_errors() for details. 93 */ 94 filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping); 95 } 96 97 /* 98 * Sync everything. We start by waking flusher threads so that most of 99 * writeback runs on all devices in parallel. Then we sync all inodes reliably 100 * which effectively also waits for all flusher threads to finish doing 101 * writeback. At this point all data is on disk so metadata should be stable 102 * and we tell filesystems to sync their metadata via ->sync_fs() calls. 103 * Finally, we writeout all block devices because some filesystems (e.g. ext2) 104 * just write metadata (such as inodes or bitmaps) to block device page cache 105 * and do not sync it on their own in ->sync_fs(). 106 */ 107 SYSCALL_DEFINE0(sync) 108 { 109 int nowait = 0, wait = 1; 110 111 wakeup_flusher_threads(0, WB_REASON_SYNC); 112 iterate_supers(sync_inodes_one_sb, NULL); 113 iterate_supers(sync_fs_one_sb, &nowait); 114 iterate_supers(sync_fs_one_sb, &wait); 115 iterate_bdevs(fdatawrite_one_bdev, NULL); 116 iterate_bdevs(fdatawait_one_bdev, NULL); 117 if (unlikely(laptop_mode)) 118 laptop_sync_completion(); 119 return 0; 120 } 121 122 static void do_sync_work(struct work_struct *work) 123 { 124 int nowait = 0; 125 126 /* 127 * Sync twice to reduce the possibility we skipped some inodes / pages 128 * because they were temporarily locked 129 */ 130 iterate_supers(sync_inodes_one_sb, &nowait); 131 iterate_supers(sync_fs_one_sb, &nowait); 132 iterate_bdevs(fdatawrite_one_bdev, NULL); 133 iterate_supers(sync_inodes_one_sb, &nowait); 134 iterate_supers(sync_fs_one_sb, &nowait); 135 iterate_bdevs(fdatawrite_one_bdev, NULL); 136 printk("Emergency Sync complete\n"); 137 kfree(work); 138 } 139 140 void emergency_sync(void) 141 { 142 struct work_struct *work; 143 144 work = kmalloc(sizeof(*work), GFP_ATOMIC); 145 if (work) { 146 INIT_WORK(work, do_sync_work); 147 schedule_work(work); 148 } 149 } 150 151 /* 152 * sync a single super 153 */ 154 SYSCALL_DEFINE1(syncfs, int, fd) 155 { 156 struct fd f = fdget(fd); 157 struct super_block *sb; 158 int ret; 159 160 if (!f.file) 161 return -EBADF; 162 sb = f.file->f_path.dentry->d_sb; 163 164 down_read(&sb->s_umount); 165 ret = sync_filesystem(sb); 166 up_read(&sb->s_umount); 167 168 fdput(f); 169 return ret; 170 } 171 172 /** 173 * vfs_fsync_range - helper to sync a range of data & metadata to disk 174 * @file: file to sync 175 * @start: offset in bytes of the beginning of data range to sync 176 * @end: offset in bytes of the end of data range (inclusive) 177 * @datasync: perform only datasync 178 * 179 * Write back data in range @start..@end and metadata for @file to disk. If 180 * @datasync is set only metadata needed to access modified file data is 181 * written. 182 */ 183 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync) 184 { 185 struct inode *inode = file->f_mapping->host; 186 187 if (!file->f_op->fsync) 188 return -EINVAL; 189 if (!datasync && (inode->i_state & I_DIRTY_TIME)) { 190 spin_lock(&inode->i_lock); 191 inode->i_state &= ~I_DIRTY_TIME; 192 spin_unlock(&inode->i_lock); 193 mark_inode_dirty_sync(inode); 194 } 195 return call_fsync(file, start, end, datasync); 196 } 197 EXPORT_SYMBOL(vfs_fsync_range); 198 199 /** 200 * vfs_fsync - perform a fsync or fdatasync on a file 201 * @file: file to sync 202 * @datasync: only perform a fdatasync operation 203 * 204 * Write back data and metadata for @file to disk. If @datasync is 205 * set only metadata needed to access modified file data is written. 206 */ 207 int vfs_fsync(struct file *file, int datasync) 208 { 209 return vfs_fsync_range(file, 0, LLONG_MAX, datasync); 210 } 211 EXPORT_SYMBOL(vfs_fsync); 212 213 static int do_fsync(unsigned int fd, int datasync) 214 { 215 struct fd f = fdget(fd); 216 int ret = -EBADF; 217 218 if (f.file) { 219 ret = vfs_fsync(f.file, datasync); 220 fdput(f); 221 } 222 return ret; 223 } 224 225 SYSCALL_DEFINE1(fsync, unsigned int, fd) 226 { 227 return do_fsync(fd, 0); 228 } 229 230 SYSCALL_DEFINE1(fdatasync, unsigned int, fd) 231 { 232 return do_fsync(fd, 1); 233 } 234 235 /* 236 * sys_sync_file_range() permits finely controlled syncing over a segment of 237 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is 238 * zero then sys_sync_file_range() will operate from offset out to EOF. 239 * 240 * The flag bits are: 241 * 242 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range 243 * before performing the write. 244 * 245 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the 246 * range which are not presently under writeback. Note that this may block for 247 * significant periods due to exhaustion of disk request structures. 248 * 249 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range 250 * after performing the write. 251 * 252 * Useful combinations of the flag bits are: 253 * 254 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages 255 * in the range which were dirty on entry to sys_sync_file_range() are placed 256 * under writeout. This is a start-write-for-data-integrity operation. 257 * 258 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which 259 * are not presently under writeout. This is an asynchronous flush-to-disk 260 * operation. Not suitable for data integrity operations. 261 * 262 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for 263 * completion of writeout of all pages in the range. This will be used after an 264 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait 265 * for that operation to complete and to return the result. 266 * 267 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER: 268 * a traditional sync() operation. This is a write-for-data-integrity operation 269 * which will ensure that all pages in the range which were dirty on entry to 270 * sys_sync_file_range() are committed to disk. 271 * 272 * 273 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any 274 * I/O errors or ENOSPC conditions and will return those to the caller, after 275 * clearing the EIO and ENOSPC flags in the address_space. 276 * 277 * It should be noted that none of these operations write out the file's 278 * metadata. So unless the application is strictly performing overwrites of 279 * already-instantiated disk blocks, there are no guarantees here that the data 280 * will be available after a crash. 281 */ 282 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes, 283 unsigned int, flags) 284 { 285 int ret; 286 struct fd f; 287 struct address_space *mapping; 288 loff_t endbyte; /* inclusive */ 289 umode_t i_mode; 290 291 ret = -EINVAL; 292 if (flags & ~VALID_FLAGS) 293 goto out; 294 295 endbyte = offset + nbytes; 296 297 if ((s64)offset < 0) 298 goto out; 299 if ((s64)endbyte < 0) 300 goto out; 301 if (endbyte < offset) 302 goto out; 303 304 if (sizeof(pgoff_t) == 4) { 305 if (offset >= (0x100000000ULL << PAGE_SHIFT)) { 306 /* 307 * The range starts outside a 32 bit machine's 308 * pagecache addressing capabilities. Let it "succeed" 309 */ 310 ret = 0; 311 goto out; 312 } 313 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) { 314 /* 315 * Out to EOF 316 */ 317 nbytes = 0; 318 } 319 } 320 321 if (nbytes == 0) 322 endbyte = LLONG_MAX; 323 else 324 endbyte--; /* inclusive */ 325 326 ret = -EBADF; 327 f = fdget(fd); 328 if (!f.file) 329 goto out; 330 331 i_mode = file_inode(f.file)->i_mode; 332 ret = -ESPIPE; 333 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) && 334 !S_ISLNK(i_mode)) 335 goto out_put; 336 337 mapping = f.file->f_mapping; 338 if (!mapping) { 339 ret = -EINVAL; 340 goto out_put; 341 } 342 343 ret = 0; 344 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) { 345 ret = filemap_fdatawait_range(mapping, offset, endbyte); 346 if (ret < 0) 347 goto out_put; 348 } 349 350 if (flags & SYNC_FILE_RANGE_WRITE) { 351 ret = __filemap_fdatawrite_range(mapping, offset, endbyte, 352 WB_SYNC_NONE); 353 if (ret < 0) 354 goto out_put; 355 } 356 357 if (flags & SYNC_FILE_RANGE_WAIT_AFTER) 358 ret = filemap_fdatawait_range(mapping, offset, endbyte); 359 360 out_put: 361 fdput(f); 362 out: 363 return ret; 364 } 365 366 /* It would be nice if people remember that not all the world's an i386 367 when they introduce new system calls */ 368 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags, 369 loff_t, offset, loff_t, nbytes) 370 { 371 return sys_sync_file_range(fd, offset, nbytes, flags); 372 } 373