xref: /openbmc/linux/fs/sync.c (revision aa1f10e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High-level sync()-related operations
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/file.h>
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/namei.h>
12 #include <linux/sched.h>
13 #include <linux/writeback.h>
14 #include <linux/syscalls.h>
15 #include <linux/linkage.h>
16 #include <linux/pagemap.h>
17 #include <linux/quotaops.h>
18 #include <linux/backing-dev.h>
19 #include "internal.h"
20 
21 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
22 			SYNC_FILE_RANGE_WAIT_AFTER)
23 
24 /*
25  * Do the filesystem syncing work. For simple filesystems
26  * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
27  * submit IO for these buffers via __sync_blockdev(). This also speeds up the
28  * wait == 1 case since in that case write_inode() functions do
29  * sync_dirty_buffer() and thus effectively write one block at a time.
30  */
31 static int __sync_filesystem(struct super_block *sb, int wait)
32 {
33 	if (wait)
34 		sync_inodes_sb(sb);
35 	else
36 		writeback_inodes_sb(sb, WB_REASON_SYNC);
37 
38 	if (sb->s_op->sync_fs)
39 		sb->s_op->sync_fs(sb, wait);
40 	return __sync_blockdev(sb->s_bdev, wait);
41 }
42 
43 /*
44  * Write out and wait upon all dirty data associated with this
45  * superblock.  Filesystem data as well as the underlying block
46  * device.  Takes the superblock lock.
47  */
48 int sync_filesystem(struct super_block *sb)
49 {
50 	int ret;
51 
52 	/*
53 	 * We need to be protected against the filesystem going from
54 	 * r/o to r/w or vice versa.
55 	 */
56 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
57 
58 	/*
59 	 * No point in syncing out anything if the filesystem is read-only.
60 	 */
61 	if (sb_rdonly(sb))
62 		return 0;
63 
64 	ret = __sync_filesystem(sb, 0);
65 	if (ret < 0)
66 		return ret;
67 	return __sync_filesystem(sb, 1);
68 }
69 EXPORT_SYMBOL(sync_filesystem);
70 
71 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
72 {
73 	if (!sb_rdonly(sb))
74 		sync_inodes_sb(sb);
75 }
76 
77 static void sync_fs_one_sb(struct super_block *sb, void *arg)
78 {
79 	if (!sb_rdonly(sb) && sb->s_op->sync_fs)
80 		sb->s_op->sync_fs(sb, *(int *)arg);
81 }
82 
83 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
84 {
85 	filemap_fdatawrite(bdev->bd_inode->i_mapping);
86 }
87 
88 static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
89 {
90 	/*
91 	 * We keep the error status of individual mapping so that
92 	 * applications can catch the writeback error using fsync(2).
93 	 * See filemap_fdatawait_keep_errors() for details.
94 	 */
95 	filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
96 }
97 
98 /*
99  * Sync everything. We start by waking flusher threads so that most of
100  * writeback runs on all devices in parallel. Then we sync all inodes reliably
101  * which effectively also waits for all flusher threads to finish doing
102  * writeback. At this point all data is on disk so metadata should be stable
103  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
104  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
105  * just write metadata (such as inodes or bitmaps) to block device page cache
106  * and do not sync it on their own in ->sync_fs().
107  */
108 SYSCALL_DEFINE0(sync)
109 {
110 	int nowait = 0, wait = 1;
111 
112 	wakeup_flusher_threads(WB_REASON_SYNC);
113 	iterate_supers(sync_inodes_one_sb, NULL);
114 	iterate_supers(sync_fs_one_sb, &nowait);
115 	iterate_supers(sync_fs_one_sb, &wait);
116 	iterate_bdevs(fdatawrite_one_bdev, NULL);
117 	iterate_bdevs(fdatawait_one_bdev, NULL);
118 	if (unlikely(laptop_mode))
119 		laptop_sync_completion();
120 	return 0;
121 }
122 
123 static void do_sync_work(struct work_struct *work)
124 {
125 	int nowait = 0;
126 
127 	/*
128 	 * Sync twice to reduce the possibility we skipped some inodes / pages
129 	 * because they were temporarily locked
130 	 */
131 	iterate_supers(sync_inodes_one_sb, &nowait);
132 	iterate_supers(sync_fs_one_sb, &nowait);
133 	iterate_bdevs(fdatawrite_one_bdev, NULL);
134 	iterate_supers(sync_inodes_one_sb, &nowait);
135 	iterate_supers(sync_fs_one_sb, &nowait);
136 	iterate_bdevs(fdatawrite_one_bdev, NULL);
137 	printk("Emergency Sync complete\n");
138 	kfree(work);
139 }
140 
141 void emergency_sync(void)
142 {
143 	struct work_struct *work;
144 
145 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
146 	if (work) {
147 		INIT_WORK(work, do_sync_work);
148 		schedule_work(work);
149 	}
150 }
151 
152 /*
153  * sync a single super
154  */
155 SYSCALL_DEFINE1(syncfs, int, fd)
156 {
157 	struct fd f = fdget(fd);
158 	struct super_block *sb;
159 	int ret;
160 
161 	if (!f.file)
162 		return -EBADF;
163 	sb = f.file->f_path.dentry->d_sb;
164 
165 	down_read(&sb->s_umount);
166 	ret = sync_filesystem(sb);
167 	up_read(&sb->s_umount);
168 
169 	fdput(f);
170 	return ret;
171 }
172 
173 /**
174  * vfs_fsync_range - helper to sync a range of data & metadata to disk
175  * @file:		file to sync
176  * @start:		offset in bytes of the beginning of data range to sync
177  * @end:		offset in bytes of the end of data range (inclusive)
178  * @datasync:		perform only datasync
179  *
180  * Write back data in range @start..@end and metadata for @file to disk.  If
181  * @datasync is set only metadata needed to access modified file data is
182  * written.
183  */
184 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
185 {
186 	struct inode *inode = file->f_mapping->host;
187 
188 	if (!file->f_op->fsync)
189 		return -EINVAL;
190 	if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
191 		spin_lock(&inode->i_lock);
192 		inode->i_state &= ~I_DIRTY_TIME;
193 		spin_unlock(&inode->i_lock);
194 		mark_inode_dirty_sync(inode);
195 	}
196 	return file->f_op->fsync(file, start, end, datasync);
197 }
198 EXPORT_SYMBOL(vfs_fsync_range);
199 
200 /**
201  * vfs_fsync - perform a fsync or fdatasync on a file
202  * @file:		file to sync
203  * @datasync:		only perform a fdatasync operation
204  *
205  * Write back data and metadata for @file to disk.  If @datasync is
206  * set only metadata needed to access modified file data is written.
207  */
208 int vfs_fsync(struct file *file, int datasync)
209 {
210 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
211 }
212 EXPORT_SYMBOL(vfs_fsync);
213 
214 static int do_fsync(unsigned int fd, int datasync)
215 {
216 	struct fd f = fdget(fd);
217 	int ret = -EBADF;
218 
219 	if (f.file) {
220 		ret = vfs_fsync(f.file, datasync);
221 		fdput(f);
222 	}
223 	return ret;
224 }
225 
226 SYSCALL_DEFINE1(fsync, unsigned int, fd)
227 {
228 	return do_fsync(fd, 0);
229 }
230 
231 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
232 {
233 	return do_fsync(fd, 1);
234 }
235 
236 /*
237  * sys_sync_file_range() permits finely controlled syncing over a segment of
238  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
239  * zero then sys_sync_file_range() will operate from offset out to EOF.
240  *
241  * The flag bits are:
242  *
243  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
244  * before performing the write.
245  *
246  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
247  * range which are not presently under writeback. Note that this may block for
248  * significant periods due to exhaustion of disk request structures.
249  *
250  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
251  * after performing the write.
252  *
253  * Useful combinations of the flag bits are:
254  *
255  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
256  * in the range which were dirty on entry to sys_sync_file_range() are placed
257  * under writeout.  This is a start-write-for-data-integrity operation.
258  *
259  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
260  * are not presently under writeout.  This is an asynchronous flush-to-disk
261  * operation.  Not suitable for data integrity operations.
262  *
263  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
264  * completion of writeout of all pages in the range.  This will be used after an
265  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
266  * for that operation to complete and to return the result.
267  *
268  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
269  * a traditional sync() operation.  This is a write-for-data-integrity operation
270  * which will ensure that all pages in the range which were dirty on entry to
271  * sys_sync_file_range() are committed to disk.
272  *
273  *
274  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
275  * I/O errors or ENOSPC conditions and will return those to the caller, after
276  * clearing the EIO and ENOSPC flags in the address_space.
277  *
278  * It should be noted that none of these operations write out the file's
279  * metadata.  So unless the application is strictly performing overwrites of
280  * already-instantiated disk blocks, there are no guarantees here that the data
281  * will be available after a crash.
282  */
283 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
284 				unsigned int, flags)
285 {
286 	int ret;
287 	struct fd f;
288 	struct address_space *mapping;
289 	loff_t endbyte;			/* inclusive */
290 	umode_t i_mode;
291 
292 	ret = -EINVAL;
293 	if (flags & ~VALID_FLAGS)
294 		goto out;
295 
296 	endbyte = offset + nbytes;
297 
298 	if ((s64)offset < 0)
299 		goto out;
300 	if ((s64)endbyte < 0)
301 		goto out;
302 	if (endbyte < offset)
303 		goto out;
304 
305 	if (sizeof(pgoff_t) == 4) {
306 		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
307 			/*
308 			 * The range starts outside a 32 bit machine's
309 			 * pagecache addressing capabilities.  Let it "succeed"
310 			 */
311 			ret = 0;
312 			goto out;
313 		}
314 		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
315 			/*
316 			 * Out to EOF
317 			 */
318 			nbytes = 0;
319 		}
320 	}
321 
322 	if (nbytes == 0)
323 		endbyte = LLONG_MAX;
324 	else
325 		endbyte--;		/* inclusive */
326 
327 	ret = -EBADF;
328 	f = fdget(fd);
329 	if (!f.file)
330 		goto out;
331 
332 	i_mode = file_inode(f.file)->i_mode;
333 	ret = -ESPIPE;
334 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
335 			!S_ISLNK(i_mode))
336 		goto out_put;
337 
338 	mapping = f.file->f_mapping;
339 	ret = 0;
340 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
341 		ret = file_fdatawait_range(f.file, offset, endbyte);
342 		if (ret < 0)
343 			goto out_put;
344 	}
345 
346 	if (flags & SYNC_FILE_RANGE_WRITE) {
347 		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
348 						 WB_SYNC_NONE);
349 		if (ret < 0)
350 			goto out_put;
351 	}
352 
353 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
354 		ret = file_fdatawait_range(f.file, offset, endbyte);
355 
356 out_put:
357 	fdput(f);
358 out:
359 	return ret;
360 }
361 
362 /* It would be nice if people remember that not all the world's an i386
363    when they introduce new system calls */
364 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
365 				 loff_t, offset, loff_t, nbytes)
366 {
367 	return sys_sync_file_range(fd, offset, nbytes, flags);
368 }
369