1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * High-level sync()-related operations 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/kernel.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/slab.h> 11 #include <linux/export.h> 12 #include <linux/namei.h> 13 #include <linux/sched.h> 14 #include <linux/writeback.h> 15 #include <linux/syscalls.h> 16 #include <linux/linkage.h> 17 #include <linux/pagemap.h> 18 #include <linux/quotaops.h> 19 #include <linux/backing-dev.h> 20 #include "internal.h" 21 22 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \ 23 SYNC_FILE_RANGE_WAIT_AFTER) 24 25 /* 26 * Write out and wait upon all dirty data associated with this 27 * superblock. Filesystem data as well as the underlying block 28 * device. Takes the superblock lock. 29 */ 30 int sync_filesystem(struct super_block *sb) 31 { 32 int ret; 33 34 /* 35 * We need to be protected against the filesystem going from 36 * r/o to r/w or vice versa. 37 */ 38 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 39 40 /* 41 * No point in syncing out anything if the filesystem is read-only. 42 */ 43 if (sb_rdonly(sb)) 44 return 0; 45 46 /* 47 * Do the filesystem syncing work. For simple filesystems 48 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have 49 * to submit I/O for these buffers via sync_blockdev(). This also 50 * speeds up the wait == 1 case since in that case write_inode() 51 * methods call sync_dirty_buffer() and thus effectively write one block 52 * at a time. 53 */ 54 writeback_inodes_sb(sb, WB_REASON_SYNC); 55 if (sb->s_op->sync_fs) 56 sb->s_op->sync_fs(sb, 0); 57 ret = sync_blockdev_nowait(sb->s_bdev); 58 if (ret < 0) 59 return ret; 60 61 sync_inodes_sb(sb); 62 if (sb->s_op->sync_fs) 63 sb->s_op->sync_fs(sb, 1); 64 return sync_blockdev(sb->s_bdev); 65 } 66 EXPORT_SYMBOL(sync_filesystem); 67 68 static void sync_inodes_one_sb(struct super_block *sb, void *arg) 69 { 70 if (!sb_rdonly(sb)) 71 sync_inodes_sb(sb); 72 } 73 74 static void sync_fs_one_sb(struct super_block *sb, void *arg) 75 { 76 if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) && 77 sb->s_op->sync_fs) 78 sb->s_op->sync_fs(sb, *(int *)arg); 79 } 80 81 /* 82 * Sync everything. We start by waking flusher threads so that most of 83 * writeback runs on all devices in parallel. Then we sync all inodes reliably 84 * which effectively also waits for all flusher threads to finish doing 85 * writeback. At this point all data is on disk so metadata should be stable 86 * and we tell filesystems to sync their metadata via ->sync_fs() calls. 87 * Finally, we writeout all block devices because some filesystems (e.g. ext2) 88 * just write metadata (such as inodes or bitmaps) to block device page cache 89 * and do not sync it on their own in ->sync_fs(). 90 */ 91 void ksys_sync(void) 92 { 93 int nowait = 0, wait = 1; 94 95 wakeup_flusher_threads(WB_REASON_SYNC); 96 iterate_supers(sync_inodes_one_sb, NULL); 97 iterate_supers(sync_fs_one_sb, &nowait); 98 iterate_supers(sync_fs_one_sb, &wait); 99 sync_bdevs(false); 100 sync_bdevs(true); 101 if (unlikely(laptop_mode)) 102 laptop_sync_completion(); 103 } 104 105 SYSCALL_DEFINE0(sync) 106 { 107 ksys_sync(); 108 return 0; 109 } 110 111 static void do_sync_work(struct work_struct *work) 112 { 113 int nowait = 0; 114 115 /* 116 * Sync twice to reduce the possibility we skipped some inodes / pages 117 * because they were temporarily locked 118 */ 119 iterate_supers(sync_inodes_one_sb, &nowait); 120 iterate_supers(sync_fs_one_sb, &nowait); 121 sync_bdevs(false); 122 iterate_supers(sync_inodes_one_sb, &nowait); 123 iterate_supers(sync_fs_one_sb, &nowait); 124 sync_bdevs(false); 125 printk("Emergency Sync complete\n"); 126 kfree(work); 127 } 128 129 void emergency_sync(void) 130 { 131 struct work_struct *work; 132 133 work = kmalloc(sizeof(*work), GFP_ATOMIC); 134 if (work) { 135 INIT_WORK(work, do_sync_work); 136 schedule_work(work); 137 } 138 } 139 140 /* 141 * sync a single super 142 */ 143 SYSCALL_DEFINE1(syncfs, int, fd) 144 { 145 struct fd f = fdget(fd); 146 struct super_block *sb; 147 int ret, ret2; 148 149 if (!f.file) 150 return -EBADF; 151 sb = f.file->f_path.dentry->d_sb; 152 153 down_read(&sb->s_umount); 154 ret = sync_filesystem(sb); 155 up_read(&sb->s_umount); 156 157 ret2 = errseq_check_and_advance(&sb->s_wb_err, &f.file->f_sb_err); 158 159 fdput(f); 160 return ret ? ret : ret2; 161 } 162 163 /** 164 * vfs_fsync_range - helper to sync a range of data & metadata to disk 165 * @file: file to sync 166 * @start: offset in bytes of the beginning of data range to sync 167 * @end: offset in bytes of the end of data range (inclusive) 168 * @datasync: perform only datasync 169 * 170 * Write back data in range @start..@end and metadata for @file to disk. If 171 * @datasync is set only metadata needed to access modified file data is 172 * written. 173 */ 174 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync) 175 { 176 struct inode *inode = file->f_mapping->host; 177 178 if (!file->f_op->fsync) 179 return -EINVAL; 180 if (!datasync && (inode->i_state & I_DIRTY_TIME)) 181 mark_inode_dirty_sync(inode); 182 return file->f_op->fsync(file, start, end, datasync); 183 } 184 EXPORT_SYMBOL(vfs_fsync_range); 185 186 /** 187 * vfs_fsync - perform a fsync or fdatasync on a file 188 * @file: file to sync 189 * @datasync: only perform a fdatasync operation 190 * 191 * Write back data and metadata for @file to disk. If @datasync is 192 * set only metadata needed to access modified file data is written. 193 */ 194 int vfs_fsync(struct file *file, int datasync) 195 { 196 return vfs_fsync_range(file, 0, LLONG_MAX, datasync); 197 } 198 EXPORT_SYMBOL(vfs_fsync); 199 200 static int do_fsync(unsigned int fd, int datasync) 201 { 202 struct fd f = fdget(fd); 203 int ret = -EBADF; 204 205 if (f.file) { 206 ret = vfs_fsync(f.file, datasync); 207 fdput(f); 208 } 209 return ret; 210 } 211 212 SYSCALL_DEFINE1(fsync, unsigned int, fd) 213 { 214 return do_fsync(fd, 0); 215 } 216 217 SYSCALL_DEFINE1(fdatasync, unsigned int, fd) 218 { 219 return do_fsync(fd, 1); 220 } 221 222 int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 223 unsigned int flags) 224 { 225 int ret; 226 struct address_space *mapping; 227 loff_t endbyte; /* inclusive */ 228 umode_t i_mode; 229 230 ret = -EINVAL; 231 if (flags & ~VALID_FLAGS) 232 goto out; 233 234 endbyte = offset + nbytes; 235 236 if ((s64)offset < 0) 237 goto out; 238 if ((s64)endbyte < 0) 239 goto out; 240 if (endbyte < offset) 241 goto out; 242 243 if (sizeof(pgoff_t) == 4) { 244 if (offset >= (0x100000000ULL << PAGE_SHIFT)) { 245 /* 246 * The range starts outside a 32 bit machine's 247 * pagecache addressing capabilities. Let it "succeed" 248 */ 249 ret = 0; 250 goto out; 251 } 252 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) { 253 /* 254 * Out to EOF 255 */ 256 nbytes = 0; 257 } 258 } 259 260 if (nbytes == 0) 261 endbyte = LLONG_MAX; 262 else 263 endbyte--; /* inclusive */ 264 265 i_mode = file_inode(file)->i_mode; 266 ret = -ESPIPE; 267 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) && 268 !S_ISLNK(i_mode)) 269 goto out; 270 271 mapping = file->f_mapping; 272 ret = 0; 273 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) { 274 ret = file_fdatawait_range(file, offset, endbyte); 275 if (ret < 0) 276 goto out; 277 } 278 279 if (flags & SYNC_FILE_RANGE_WRITE) { 280 int sync_mode = WB_SYNC_NONE; 281 282 if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) == 283 SYNC_FILE_RANGE_WRITE_AND_WAIT) 284 sync_mode = WB_SYNC_ALL; 285 286 ret = __filemap_fdatawrite_range(mapping, offset, endbyte, 287 sync_mode); 288 if (ret < 0) 289 goto out; 290 } 291 292 if (flags & SYNC_FILE_RANGE_WAIT_AFTER) 293 ret = file_fdatawait_range(file, offset, endbyte); 294 295 out: 296 return ret; 297 } 298 299 /* 300 * ksys_sync_file_range() permits finely controlled syncing over a segment of 301 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is 302 * zero then ksys_sync_file_range() will operate from offset out to EOF. 303 * 304 * The flag bits are: 305 * 306 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range 307 * before performing the write. 308 * 309 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the 310 * range which are not presently under writeback. Note that this may block for 311 * significant periods due to exhaustion of disk request structures. 312 * 313 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range 314 * after performing the write. 315 * 316 * Useful combinations of the flag bits are: 317 * 318 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages 319 * in the range which were dirty on entry to ksys_sync_file_range() are placed 320 * under writeout. This is a start-write-for-data-integrity operation. 321 * 322 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which 323 * are not presently under writeout. This is an asynchronous flush-to-disk 324 * operation. Not suitable for data integrity operations. 325 * 326 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for 327 * completion of writeout of all pages in the range. This will be used after an 328 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait 329 * for that operation to complete and to return the result. 330 * 331 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER 332 * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT): 333 * a traditional sync() operation. This is a write-for-data-integrity operation 334 * which will ensure that all pages in the range which were dirty on entry to 335 * ksys_sync_file_range() are written to disk. It should be noted that disk 336 * caches are not flushed by this call, so there are no guarantees here that the 337 * data will be available on disk after a crash. 338 * 339 * 340 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any 341 * I/O errors or ENOSPC conditions and will return those to the caller, after 342 * clearing the EIO and ENOSPC flags in the address_space. 343 * 344 * It should be noted that none of these operations write out the file's 345 * metadata. So unless the application is strictly performing overwrites of 346 * already-instantiated disk blocks, there are no guarantees here that the data 347 * will be available after a crash. 348 */ 349 int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes, 350 unsigned int flags) 351 { 352 int ret; 353 struct fd f; 354 355 ret = -EBADF; 356 f = fdget(fd); 357 if (f.file) 358 ret = sync_file_range(f.file, offset, nbytes, flags); 359 360 fdput(f); 361 return ret; 362 } 363 364 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes, 365 unsigned int, flags) 366 { 367 return ksys_sync_file_range(fd, offset, nbytes, flags); 368 } 369 370 /* It would be nice if people remember that not all the world's an i386 371 when they introduce new system calls */ 372 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags, 373 loff_t, offset, loff_t, nbytes) 374 { 375 return ksys_sync_file_range(fd, offset, nbytes, flags); 376 } 377