xref: /openbmc/linux/fs/sync.c (revision 4a65896f94fa82370041823837cd75aac1186b54)
1  /*
2   * High-level sync()-related operations
3   */
4  
5  #include <linux/kernel.h>
6  #include <linux/file.h>
7  #include <linux/fs.h>
8  #include <linux/slab.h>
9  #include <linux/export.h>
10  #include <linux/namei.h>
11  #include <linux/sched.h>
12  #include <linux/writeback.h>
13  #include <linux/syscalls.h>
14  #include <linux/linkage.h>
15  #include <linux/pagemap.h>
16  #include <linux/quotaops.h>
17  #include <linux/backing-dev.h>
18  #include "internal.h"
19  
20  #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21  			SYNC_FILE_RANGE_WAIT_AFTER)
22  
23  /*
24   * Do the filesystem syncing work. For simple filesystems
25   * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26   * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27   * wait == 1 case since in that case write_inode() functions do
28   * sync_dirty_buffer() and thus effectively write one block at a time.
29   */
30  static int __sync_filesystem(struct super_block *sb, int wait)
31  {
32  	if (wait)
33  		sync_inodes_sb(sb);
34  	else
35  		writeback_inodes_sb(sb, WB_REASON_SYNC);
36  
37  	if (sb->s_op->sync_fs)
38  		sb->s_op->sync_fs(sb, wait);
39  	return __sync_blockdev(sb->s_bdev, wait);
40  }
41  
42  /*
43   * Write out and wait upon all dirty data associated with this
44   * superblock.  Filesystem data as well as the underlying block
45   * device.  Takes the superblock lock.
46   */
47  int sync_filesystem(struct super_block *sb)
48  {
49  	int ret;
50  
51  	/*
52  	 * We need to be protected against the filesystem going from
53  	 * r/o to r/w or vice versa.
54  	 */
55  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
56  
57  	/*
58  	 * No point in syncing out anything if the filesystem is read-only.
59  	 */
60  	if (sb->s_flags & MS_RDONLY)
61  		return 0;
62  
63  	ret = __sync_filesystem(sb, 0);
64  	if (ret < 0)
65  		return ret;
66  	return __sync_filesystem(sb, 1);
67  }
68  EXPORT_SYMBOL(sync_filesystem);
69  
70  static void sync_inodes_one_sb(struct super_block *sb, void *arg)
71  {
72  	if (!(sb->s_flags & MS_RDONLY))
73  		sync_inodes_sb(sb);
74  }
75  
76  static void sync_fs_one_sb(struct super_block *sb, void *arg)
77  {
78  	if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
79  		sb->s_op->sync_fs(sb, *(int *)arg);
80  }
81  
82  static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
83  {
84  	filemap_fdatawrite(bdev->bd_inode->i_mapping);
85  }
86  
87  static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
88  {
89  	/*
90  	 * We keep the error status of individual mapping so that
91  	 * applications can catch the writeback error using fsync(2).
92  	 * See filemap_fdatawait_keep_errors() for details.
93  	 */
94  	filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
95  }
96  
97  /*
98   * Sync everything. We start by waking flusher threads so that most of
99   * writeback runs on all devices in parallel. Then we sync all inodes reliably
100   * which effectively also waits for all flusher threads to finish doing
101   * writeback. At this point all data is on disk so metadata should be stable
102   * and we tell filesystems to sync their metadata via ->sync_fs() calls.
103   * Finally, we writeout all block devices because some filesystems (e.g. ext2)
104   * just write metadata (such as inodes or bitmaps) to block device page cache
105   * and do not sync it on their own in ->sync_fs().
106   */
107  SYSCALL_DEFINE0(sync)
108  {
109  	int nowait = 0, wait = 1;
110  
111  	wakeup_flusher_threads(0, WB_REASON_SYNC);
112  	iterate_supers(sync_inodes_one_sb, NULL);
113  	iterate_supers(sync_fs_one_sb, &nowait);
114  	iterate_supers(sync_fs_one_sb, &wait);
115  	iterate_bdevs(fdatawrite_one_bdev, NULL);
116  	iterate_bdevs(fdatawait_one_bdev, NULL);
117  	if (unlikely(laptop_mode))
118  		laptop_sync_completion();
119  	return 0;
120  }
121  
122  static void do_sync_work(struct work_struct *work)
123  {
124  	int nowait = 0;
125  
126  	/*
127  	 * Sync twice to reduce the possibility we skipped some inodes / pages
128  	 * because they were temporarily locked
129  	 */
130  	iterate_supers(sync_inodes_one_sb, &nowait);
131  	iterate_supers(sync_fs_one_sb, &nowait);
132  	iterate_bdevs(fdatawrite_one_bdev, NULL);
133  	iterate_supers(sync_inodes_one_sb, &nowait);
134  	iterate_supers(sync_fs_one_sb, &nowait);
135  	iterate_bdevs(fdatawrite_one_bdev, NULL);
136  	printk("Emergency Sync complete\n");
137  	kfree(work);
138  }
139  
140  void emergency_sync(void)
141  {
142  	struct work_struct *work;
143  
144  	work = kmalloc(sizeof(*work), GFP_ATOMIC);
145  	if (work) {
146  		INIT_WORK(work, do_sync_work);
147  		schedule_work(work);
148  	}
149  }
150  
151  /*
152   * sync a single super
153   */
154  SYSCALL_DEFINE1(syncfs, int, fd)
155  {
156  	struct fd f = fdget(fd);
157  	struct super_block *sb;
158  	int ret;
159  
160  	if (!f.file)
161  		return -EBADF;
162  	sb = f.file->f_path.dentry->d_sb;
163  
164  	down_read(&sb->s_umount);
165  	ret = sync_filesystem(sb);
166  	up_read(&sb->s_umount);
167  
168  	fdput(f);
169  	return ret;
170  }
171  
172  /**
173   * vfs_fsync_range - helper to sync a range of data & metadata to disk
174   * @file:		file to sync
175   * @start:		offset in bytes of the beginning of data range to sync
176   * @end:		offset in bytes of the end of data range (inclusive)
177   * @datasync:		perform only datasync
178   *
179   * Write back data in range @start..@end and metadata for @file to disk.  If
180   * @datasync is set only metadata needed to access modified file data is
181   * written.
182   */
183  int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
184  {
185  	struct inode *inode = file->f_mapping->host;
186  
187  	if (!file->f_op->fsync)
188  		return -EINVAL;
189  	if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
190  		spin_lock(&inode->i_lock);
191  		inode->i_state &= ~I_DIRTY_TIME;
192  		spin_unlock(&inode->i_lock);
193  		mark_inode_dirty_sync(inode);
194  	}
195  	return file->f_op->fsync(file, start, end, datasync);
196  }
197  EXPORT_SYMBOL(vfs_fsync_range);
198  
199  /**
200   * vfs_fsync - perform a fsync or fdatasync on a file
201   * @file:		file to sync
202   * @datasync:		only perform a fdatasync operation
203   *
204   * Write back data and metadata for @file to disk.  If @datasync is
205   * set only metadata needed to access modified file data is written.
206   */
207  int vfs_fsync(struct file *file, int datasync)
208  {
209  	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
210  }
211  EXPORT_SYMBOL(vfs_fsync);
212  
213  static int do_fsync(unsigned int fd, int datasync)
214  {
215  	struct fd f = fdget(fd);
216  	int ret = -EBADF;
217  
218  	if (f.file) {
219  		ret = vfs_fsync(f.file, datasync);
220  		fdput(f);
221  	}
222  	return ret;
223  }
224  
225  SYSCALL_DEFINE1(fsync, unsigned int, fd)
226  {
227  	return do_fsync(fd, 0);
228  }
229  
230  SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
231  {
232  	return do_fsync(fd, 1);
233  }
234  
235  /*
236   * sys_sync_file_range() permits finely controlled syncing over a segment of
237   * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
238   * zero then sys_sync_file_range() will operate from offset out to EOF.
239   *
240   * The flag bits are:
241   *
242   * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
243   * before performing the write.
244   *
245   * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
246   * range which are not presently under writeback. Note that this may block for
247   * significant periods due to exhaustion of disk request structures.
248   *
249   * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
250   * after performing the write.
251   *
252   * Useful combinations of the flag bits are:
253   *
254   * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
255   * in the range which were dirty on entry to sys_sync_file_range() are placed
256   * under writeout.  This is a start-write-for-data-integrity operation.
257   *
258   * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
259   * are not presently under writeout.  This is an asynchronous flush-to-disk
260   * operation.  Not suitable for data integrity operations.
261   *
262   * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
263   * completion of writeout of all pages in the range.  This will be used after an
264   * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
265   * for that operation to complete and to return the result.
266   *
267   * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
268   * a traditional sync() operation.  This is a write-for-data-integrity operation
269   * which will ensure that all pages in the range which were dirty on entry to
270   * sys_sync_file_range() are committed to disk.
271   *
272   *
273   * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
274   * I/O errors or ENOSPC conditions and will return those to the caller, after
275   * clearing the EIO and ENOSPC flags in the address_space.
276   *
277   * It should be noted that none of these operations write out the file's
278   * metadata.  So unless the application is strictly performing overwrites of
279   * already-instantiated disk blocks, there are no guarantees here that the data
280   * will be available after a crash.
281   */
282  SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
283  				unsigned int, flags)
284  {
285  	int ret;
286  	struct fd f;
287  	struct address_space *mapping;
288  	loff_t endbyte;			/* inclusive */
289  	umode_t i_mode;
290  
291  	ret = -EINVAL;
292  	if (flags & ~VALID_FLAGS)
293  		goto out;
294  
295  	endbyte = offset + nbytes;
296  
297  	if ((s64)offset < 0)
298  		goto out;
299  	if ((s64)endbyte < 0)
300  		goto out;
301  	if (endbyte < offset)
302  		goto out;
303  
304  	if (sizeof(pgoff_t) == 4) {
305  		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
306  			/*
307  			 * The range starts outside a 32 bit machine's
308  			 * pagecache addressing capabilities.  Let it "succeed"
309  			 */
310  			ret = 0;
311  			goto out;
312  		}
313  		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
314  			/*
315  			 * Out to EOF
316  			 */
317  			nbytes = 0;
318  		}
319  	}
320  
321  	if (nbytes == 0)
322  		endbyte = LLONG_MAX;
323  	else
324  		endbyte--;		/* inclusive */
325  
326  	ret = -EBADF;
327  	f = fdget(fd);
328  	if (!f.file)
329  		goto out;
330  
331  	i_mode = file_inode(f.file)->i_mode;
332  	ret = -ESPIPE;
333  	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
334  			!S_ISLNK(i_mode))
335  		goto out_put;
336  
337  	mapping = f.file->f_mapping;
338  	if (!mapping) {
339  		ret = -EINVAL;
340  		goto out_put;
341  	}
342  
343  	ret = 0;
344  	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
345  		ret = filemap_fdatawait_range(mapping, offset, endbyte);
346  		if (ret < 0)
347  			goto out_put;
348  	}
349  
350  	if (flags & SYNC_FILE_RANGE_WRITE) {
351  		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
352  						 WB_SYNC_NONE);
353  		if (ret < 0)
354  			goto out_put;
355  	}
356  
357  	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
358  		ret = filemap_fdatawait_range(mapping, offset, endbyte);
359  
360  out_put:
361  	fdput(f);
362  out:
363  	return ret;
364  }
365  
366  /* It would be nice if people remember that not all the world's an i386
367     when they introduce new system calls */
368  SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
369  				 loff_t, offset, loff_t, nbytes)
370  {
371  	return sys_sync_file_range(fd, offset, nbytes, flags);
372  }
373