1 /* 2 * High-level sync()-related operations 3 */ 4 5 #include <linux/kernel.h> 6 #include <linux/file.h> 7 #include <linux/fs.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/namei.h> 11 #include <linux/sched.h> 12 #include <linux/writeback.h> 13 #include <linux/syscalls.h> 14 #include <linux/linkage.h> 15 #include <linux/pagemap.h> 16 #include <linux/quotaops.h> 17 #include <linux/backing-dev.h> 18 #include "internal.h" 19 20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \ 21 SYNC_FILE_RANGE_WAIT_AFTER) 22 23 /* 24 * Do the filesystem syncing work. For simple filesystems 25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to 26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the 27 * wait == 1 case since in that case write_inode() functions do 28 * sync_dirty_buffer() and thus effectively write one block at a time. 29 */ 30 static int __sync_filesystem(struct super_block *sb, int wait) 31 { 32 if (wait) 33 sync_inodes_sb(sb); 34 else 35 writeback_inodes_sb(sb, WB_REASON_SYNC); 36 37 if (sb->s_op->sync_fs) 38 sb->s_op->sync_fs(sb, wait); 39 return __sync_blockdev(sb->s_bdev, wait); 40 } 41 42 /* 43 * Write out and wait upon all dirty data associated with this 44 * superblock. Filesystem data as well as the underlying block 45 * device. Takes the superblock lock. 46 */ 47 int sync_filesystem(struct super_block *sb) 48 { 49 int ret; 50 51 /* 52 * We need to be protected against the filesystem going from 53 * r/o to r/w or vice versa. 54 */ 55 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 56 57 /* 58 * No point in syncing out anything if the filesystem is read-only. 59 */ 60 if (sb->s_flags & MS_RDONLY) 61 return 0; 62 63 ret = __sync_filesystem(sb, 0); 64 if (ret < 0) 65 return ret; 66 return __sync_filesystem(sb, 1); 67 } 68 EXPORT_SYMBOL_GPL(sync_filesystem); 69 70 static void sync_inodes_one_sb(struct super_block *sb, void *arg) 71 { 72 if (!(sb->s_flags & MS_RDONLY)) 73 sync_inodes_sb(sb); 74 } 75 76 static void sync_fs_one_sb(struct super_block *sb, void *arg) 77 { 78 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs) 79 sb->s_op->sync_fs(sb, *(int *)arg); 80 } 81 82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg) 83 { 84 filemap_fdatawrite(bdev->bd_inode->i_mapping); 85 } 86 87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg) 88 { 89 filemap_fdatawait(bdev->bd_inode->i_mapping); 90 } 91 92 /* 93 * Sync everything. We start by waking flusher threads so that most of 94 * writeback runs on all devices in parallel. Then we sync all inodes reliably 95 * which effectively also waits for all flusher threads to finish doing 96 * writeback. At this point all data is on disk so metadata should be stable 97 * and we tell filesystems to sync their metadata via ->sync_fs() calls. 98 * Finally, we writeout all block devices because some filesystems (e.g. ext2) 99 * just write metadata (such as inodes or bitmaps) to block device page cache 100 * and do not sync it on their own in ->sync_fs(). 101 */ 102 SYSCALL_DEFINE0(sync) 103 { 104 int nowait = 0, wait = 1; 105 106 wakeup_flusher_threads(0, WB_REASON_SYNC); 107 iterate_supers(sync_inodes_one_sb, NULL); 108 iterate_supers(sync_fs_one_sb, &nowait); 109 iterate_supers(sync_fs_one_sb, &wait); 110 iterate_bdevs(fdatawrite_one_bdev, NULL); 111 iterate_bdevs(fdatawait_one_bdev, NULL); 112 if (unlikely(laptop_mode)) 113 laptop_sync_completion(); 114 return 0; 115 } 116 117 static void do_sync_work(struct work_struct *work) 118 { 119 int nowait = 0; 120 121 /* 122 * Sync twice to reduce the possibility we skipped some inodes / pages 123 * because they were temporarily locked 124 */ 125 iterate_supers(sync_inodes_one_sb, &nowait); 126 iterate_supers(sync_fs_one_sb, &nowait); 127 iterate_bdevs(fdatawrite_one_bdev, NULL); 128 iterate_supers(sync_inodes_one_sb, &nowait); 129 iterate_supers(sync_fs_one_sb, &nowait); 130 iterate_bdevs(fdatawrite_one_bdev, NULL); 131 printk("Emergency Sync complete\n"); 132 kfree(work); 133 } 134 135 void emergency_sync(void) 136 { 137 struct work_struct *work; 138 139 work = kmalloc(sizeof(*work), GFP_ATOMIC); 140 if (work) { 141 INIT_WORK(work, do_sync_work); 142 schedule_work(work); 143 } 144 } 145 146 /* 147 * sync a single super 148 */ 149 SYSCALL_DEFINE1(syncfs, int, fd) 150 { 151 struct fd f = fdget(fd); 152 struct super_block *sb; 153 int ret; 154 155 if (!f.file) 156 return -EBADF; 157 sb = f.file->f_dentry->d_sb; 158 159 down_read(&sb->s_umount); 160 ret = sync_filesystem(sb); 161 up_read(&sb->s_umount); 162 163 fdput(f); 164 return ret; 165 } 166 167 /** 168 * vfs_fsync_range - helper to sync a range of data & metadata to disk 169 * @file: file to sync 170 * @start: offset in bytes of the beginning of data range to sync 171 * @end: offset in bytes of the end of data range (inclusive) 172 * @datasync: perform only datasync 173 * 174 * Write back data in range @start..@end and metadata for @file to disk. If 175 * @datasync is set only metadata needed to access modified file data is 176 * written. 177 */ 178 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync) 179 { 180 if (!file->f_op || !file->f_op->fsync) 181 return -EINVAL; 182 return file->f_op->fsync(file, start, end, datasync); 183 } 184 EXPORT_SYMBOL(vfs_fsync_range); 185 186 /** 187 * vfs_fsync - perform a fsync or fdatasync on a file 188 * @file: file to sync 189 * @datasync: only perform a fdatasync operation 190 * 191 * Write back data and metadata for @file to disk. If @datasync is 192 * set only metadata needed to access modified file data is written. 193 */ 194 int vfs_fsync(struct file *file, int datasync) 195 { 196 return vfs_fsync_range(file, 0, LLONG_MAX, datasync); 197 } 198 EXPORT_SYMBOL(vfs_fsync); 199 200 static int do_fsync(unsigned int fd, int datasync) 201 { 202 struct fd f = fdget(fd); 203 int ret = -EBADF; 204 205 if (f.file) { 206 ret = vfs_fsync(f.file, datasync); 207 fdput(f); 208 } 209 return ret; 210 } 211 212 SYSCALL_DEFINE1(fsync, unsigned int, fd) 213 { 214 return do_fsync(fd, 0); 215 } 216 217 SYSCALL_DEFINE1(fdatasync, unsigned int, fd) 218 { 219 return do_fsync(fd, 1); 220 } 221 222 /** 223 * generic_write_sync - perform syncing after a write if file / inode is sync 224 * @file: file to which the write happened 225 * @pos: offset where the write started 226 * @count: length of the write 227 * 228 * This is just a simple wrapper about our general syncing function. 229 */ 230 int generic_write_sync(struct file *file, loff_t pos, loff_t count) 231 { 232 if (!(file->f_flags & O_DSYNC) && !IS_SYNC(file->f_mapping->host)) 233 return 0; 234 return vfs_fsync_range(file, pos, pos + count - 1, 235 (file->f_flags & __O_SYNC) ? 0 : 1); 236 } 237 EXPORT_SYMBOL(generic_write_sync); 238 239 /* 240 * sys_sync_file_range() permits finely controlled syncing over a segment of 241 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is 242 * zero then sys_sync_file_range() will operate from offset out to EOF. 243 * 244 * The flag bits are: 245 * 246 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range 247 * before performing the write. 248 * 249 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the 250 * range which are not presently under writeback. Note that this may block for 251 * significant periods due to exhaustion of disk request structures. 252 * 253 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range 254 * after performing the write. 255 * 256 * Useful combinations of the flag bits are: 257 * 258 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages 259 * in the range which were dirty on entry to sys_sync_file_range() are placed 260 * under writeout. This is a start-write-for-data-integrity operation. 261 * 262 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which 263 * are not presently under writeout. This is an asynchronous flush-to-disk 264 * operation. Not suitable for data integrity operations. 265 * 266 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for 267 * completion of writeout of all pages in the range. This will be used after an 268 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait 269 * for that operation to complete and to return the result. 270 * 271 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER: 272 * a traditional sync() operation. This is a write-for-data-integrity operation 273 * which will ensure that all pages in the range which were dirty on entry to 274 * sys_sync_file_range() are committed to disk. 275 * 276 * 277 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any 278 * I/O errors or ENOSPC conditions and will return those to the caller, after 279 * clearing the EIO and ENOSPC flags in the address_space. 280 * 281 * It should be noted that none of these operations write out the file's 282 * metadata. So unless the application is strictly performing overwrites of 283 * already-instantiated disk blocks, there are no guarantees here that the data 284 * will be available after a crash. 285 */ 286 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes, 287 unsigned int, flags) 288 { 289 int ret; 290 struct fd f; 291 struct address_space *mapping; 292 loff_t endbyte; /* inclusive */ 293 umode_t i_mode; 294 295 ret = -EINVAL; 296 if (flags & ~VALID_FLAGS) 297 goto out; 298 299 endbyte = offset + nbytes; 300 301 if ((s64)offset < 0) 302 goto out; 303 if ((s64)endbyte < 0) 304 goto out; 305 if (endbyte < offset) 306 goto out; 307 308 if (sizeof(pgoff_t) == 4) { 309 if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) { 310 /* 311 * The range starts outside a 32 bit machine's 312 * pagecache addressing capabilities. Let it "succeed" 313 */ 314 ret = 0; 315 goto out; 316 } 317 if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) { 318 /* 319 * Out to EOF 320 */ 321 nbytes = 0; 322 } 323 } 324 325 if (nbytes == 0) 326 endbyte = LLONG_MAX; 327 else 328 endbyte--; /* inclusive */ 329 330 ret = -EBADF; 331 f = fdget(fd); 332 if (!f.file) 333 goto out; 334 335 i_mode = file_inode(f.file)->i_mode; 336 ret = -ESPIPE; 337 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) && 338 !S_ISLNK(i_mode)) 339 goto out_put; 340 341 mapping = f.file->f_mapping; 342 if (!mapping) { 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = 0; 348 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) { 349 ret = filemap_fdatawait_range(mapping, offset, endbyte); 350 if (ret < 0) 351 goto out_put; 352 } 353 354 if (flags & SYNC_FILE_RANGE_WRITE) { 355 ret = filemap_fdatawrite_range(mapping, offset, endbyte); 356 if (ret < 0) 357 goto out_put; 358 } 359 360 if (flags & SYNC_FILE_RANGE_WAIT_AFTER) 361 ret = filemap_fdatawait_range(mapping, offset, endbyte); 362 363 out_put: 364 fdput(f); 365 out: 366 return ret; 367 } 368 369 /* It would be nice if people remember that not all the world's an i386 370 when they introduce new system calls */ 371 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags, 372 loff_t, offset, loff_t, nbytes) 373 { 374 return sys_sync_file_range(fd, offset, nbytes, flags); 375 } 376