xref: /openbmc/linux/fs/sync.c (revision 293d5b43)
1 /*
2  * High-level sync()-related operations
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/file.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/namei.h>
11 #include <linux/sched.h>
12 #include <linux/writeback.h>
13 #include <linux/syscalls.h>
14 #include <linux/linkage.h>
15 #include <linux/pagemap.h>
16 #include <linux/quotaops.h>
17 #include <linux/backing-dev.h>
18 #include "internal.h"
19 
20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 			SYNC_FILE_RANGE_WAIT_AFTER)
22 
23 /*
24  * Do the filesystem syncing work. For simple filesystems
25  * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26  * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27  * wait == 1 case since in that case write_inode() functions do
28  * sync_dirty_buffer() and thus effectively write one block at a time.
29  */
30 static int __sync_filesystem(struct super_block *sb, int wait)
31 {
32 	if (wait)
33 		sync_inodes_sb(sb);
34 	else
35 		writeback_inodes_sb(sb, WB_REASON_SYNC);
36 
37 	if (sb->s_op->sync_fs)
38 		sb->s_op->sync_fs(sb, wait);
39 	return __sync_blockdev(sb->s_bdev, wait);
40 }
41 
42 /*
43  * Write out and wait upon all dirty data associated with this
44  * superblock.  Filesystem data as well as the underlying block
45  * device.  Takes the superblock lock.
46  */
47 int sync_filesystem(struct super_block *sb)
48 {
49 	int ret;
50 
51 	/*
52 	 * We need to be protected against the filesystem going from
53 	 * r/o to r/w or vice versa.
54 	 */
55 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
56 
57 	/*
58 	 * No point in syncing out anything if the filesystem is read-only.
59 	 */
60 	if (sb->s_flags & MS_RDONLY)
61 		return 0;
62 
63 	ret = __sync_filesystem(sb, 0);
64 	if (ret < 0)
65 		return ret;
66 	return __sync_filesystem(sb, 1);
67 }
68 EXPORT_SYMBOL(sync_filesystem);
69 
70 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
71 {
72 	if (!(sb->s_flags & MS_RDONLY))
73 		sync_inodes_sb(sb);
74 }
75 
76 static void sync_fs_one_sb(struct super_block *sb, void *arg)
77 {
78 	if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
79 		sb->s_op->sync_fs(sb, *(int *)arg);
80 }
81 
82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
83 {
84 	filemap_fdatawrite(bdev->bd_inode->i_mapping);
85 }
86 
87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
88 {
89 	/*
90 	 * We keep the error status of individual mapping so that
91 	 * applications can catch the writeback error using fsync(2).
92 	 * See filemap_fdatawait_keep_errors() for details.
93 	 */
94 	filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
95 }
96 
97 /*
98  * Sync everything. We start by waking flusher threads so that most of
99  * writeback runs on all devices in parallel. Then we sync all inodes reliably
100  * which effectively also waits for all flusher threads to finish doing
101  * writeback. At this point all data is on disk so metadata should be stable
102  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
103  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
104  * just write metadata (such as inodes or bitmaps) to block device page cache
105  * and do not sync it on their own in ->sync_fs().
106  */
107 SYSCALL_DEFINE0(sync)
108 {
109 	int nowait = 0, wait = 1;
110 
111 	wakeup_flusher_threads(0, WB_REASON_SYNC);
112 	iterate_supers(sync_inodes_one_sb, NULL);
113 	iterate_supers(sync_fs_one_sb, &nowait);
114 	iterate_supers(sync_fs_one_sb, &wait);
115 	iterate_bdevs(fdatawrite_one_bdev, NULL);
116 	iterate_bdevs(fdatawait_one_bdev, NULL);
117 	if (unlikely(laptop_mode))
118 		laptop_sync_completion();
119 	return 0;
120 }
121 
122 static void do_sync_work(struct work_struct *work)
123 {
124 	int nowait = 0;
125 
126 	/*
127 	 * Sync twice to reduce the possibility we skipped some inodes / pages
128 	 * because they were temporarily locked
129 	 */
130 	iterate_supers(sync_inodes_one_sb, &nowait);
131 	iterate_supers(sync_fs_one_sb, &nowait);
132 	iterate_bdevs(fdatawrite_one_bdev, NULL);
133 	iterate_supers(sync_inodes_one_sb, &nowait);
134 	iterate_supers(sync_fs_one_sb, &nowait);
135 	iterate_bdevs(fdatawrite_one_bdev, NULL);
136 	printk("Emergency Sync complete\n");
137 	kfree(work);
138 }
139 
140 void emergency_sync(void)
141 {
142 	struct work_struct *work;
143 
144 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
145 	if (work) {
146 		INIT_WORK(work, do_sync_work);
147 		schedule_work(work);
148 	}
149 }
150 
151 /*
152  * sync a single super
153  */
154 SYSCALL_DEFINE1(syncfs, int, fd)
155 {
156 	struct fd f = fdget(fd);
157 	struct super_block *sb;
158 	int ret;
159 
160 	if (!f.file)
161 		return -EBADF;
162 	sb = f.file->f_path.dentry->d_sb;
163 
164 	down_read(&sb->s_umount);
165 	ret = sync_filesystem(sb);
166 	up_read(&sb->s_umount);
167 
168 	fdput(f);
169 	return ret;
170 }
171 
172 /**
173  * vfs_fsync_range - helper to sync a range of data & metadata to disk
174  * @file:		file to sync
175  * @start:		offset in bytes of the beginning of data range to sync
176  * @end:		offset in bytes of the end of data range (inclusive)
177  * @datasync:		perform only datasync
178  *
179  * Write back data in range @start..@end and metadata for @file to disk.  If
180  * @datasync is set only metadata needed to access modified file data is
181  * written.
182  */
183 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
184 {
185 	struct inode *inode = file->f_mapping->host;
186 
187 	if (!file->f_op->fsync)
188 		return -EINVAL;
189 	if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
190 		spin_lock(&inode->i_lock);
191 		inode->i_state &= ~I_DIRTY_TIME;
192 		spin_unlock(&inode->i_lock);
193 		mark_inode_dirty_sync(inode);
194 	}
195 	return file->f_op->fsync(file, start, end, datasync);
196 }
197 EXPORT_SYMBOL(vfs_fsync_range);
198 
199 /**
200  * vfs_fsync - perform a fsync or fdatasync on a file
201  * @file:		file to sync
202  * @datasync:		only perform a fdatasync operation
203  *
204  * Write back data and metadata for @file to disk.  If @datasync is
205  * set only metadata needed to access modified file data is written.
206  */
207 int vfs_fsync(struct file *file, int datasync)
208 {
209 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
210 }
211 EXPORT_SYMBOL(vfs_fsync);
212 
213 static int do_fsync(unsigned int fd, int datasync)
214 {
215 	struct fd f = fdget(fd);
216 	int ret = -EBADF;
217 
218 	if (f.file) {
219 		ret = vfs_fsync(f.file, datasync);
220 		fdput(f);
221 	}
222 	return ret;
223 }
224 
225 SYSCALL_DEFINE1(fsync, unsigned int, fd)
226 {
227 	return do_fsync(fd, 0);
228 }
229 
230 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
231 {
232 	return do_fsync(fd, 1);
233 }
234 
235 /*
236  * sys_sync_file_range() permits finely controlled syncing over a segment of
237  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
238  * zero then sys_sync_file_range() will operate from offset out to EOF.
239  *
240  * The flag bits are:
241  *
242  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
243  * before performing the write.
244  *
245  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
246  * range which are not presently under writeback. Note that this may block for
247  * significant periods due to exhaustion of disk request structures.
248  *
249  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
250  * after performing the write.
251  *
252  * Useful combinations of the flag bits are:
253  *
254  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
255  * in the range which were dirty on entry to sys_sync_file_range() are placed
256  * under writeout.  This is a start-write-for-data-integrity operation.
257  *
258  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
259  * are not presently under writeout.  This is an asynchronous flush-to-disk
260  * operation.  Not suitable for data integrity operations.
261  *
262  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
263  * completion of writeout of all pages in the range.  This will be used after an
264  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
265  * for that operation to complete and to return the result.
266  *
267  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
268  * a traditional sync() operation.  This is a write-for-data-integrity operation
269  * which will ensure that all pages in the range which were dirty on entry to
270  * sys_sync_file_range() are committed to disk.
271  *
272  *
273  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
274  * I/O errors or ENOSPC conditions and will return those to the caller, after
275  * clearing the EIO and ENOSPC flags in the address_space.
276  *
277  * It should be noted that none of these operations write out the file's
278  * metadata.  So unless the application is strictly performing overwrites of
279  * already-instantiated disk blocks, there are no guarantees here that the data
280  * will be available after a crash.
281  */
282 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
283 				unsigned int, flags)
284 {
285 	int ret;
286 	struct fd f;
287 	struct address_space *mapping;
288 	loff_t endbyte;			/* inclusive */
289 	umode_t i_mode;
290 
291 	ret = -EINVAL;
292 	if (flags & ~VALID_FLAGS)
293 		goto out;
294 
295 	endbyte = offset + nbytes;
296 
297 	if ((s64)offset < 0)
298 		goto out;
299 	if ((s64)endbyte < 0)
300 		goto out;
301 	if (endbyte < offset)
302 		goto out;
303 
304 	if (sizeof(pgoff_t) == 4) {
305 		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
306 			/*
307 			 * The range starts outside a 32 bit machine's
308 			 * pagecache addressing capabilities.  Let it "succeed"
309 			 */
310 			ret = 0;
311 			goto out;
312 		}
313 		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
314 			/*
315 			 * Out to EOF
316 			 */
317 			nbytes = 0;
318 		}
319 	}
320 
321 	if (nbytes == 0)
322 		endbyte = LLONG_MAX;
323 	else
324 		endbyte--;		/* inclusive */
325 
326 	ret = -EBADF;
327 	f = fdget(fd);
328 	if (!f.file)
329 		goto out;
330 
331 	i_mode = file_inode(f.file)->i_mode;
332 	ret = -ESPIPE;
333 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
334 			!S_ISLNK(i_mode))
335 		goto out_put;
336 
337 	mapping = f.file->f_mapping;
338 	if (!mapping) {
339 		ret = -EINVAL;
340 		goto out_put;
341 	}
342 
343 	ret = 0;
344 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
345 		ret = filemap_fdatawait_range(mapping, offset, endbyte);
346 		if (ret < 0)
347 			goto out_put;
348 	}
349 
350 	if (flags & SYNC_FILE_RANGE_WRITE) {
351 		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
352 						 WB_SYNC_NONE);
353 		if (ret < 0)
354 			goto out_put;
355 	}
356 
357 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
358 		ret = filemap_fdatawait_range(mapping, offset, endbyte);
359 
360 out_put:
361 	fdput(f);
362 out:
363 	return ret;
364 }
365 
366 /* It would be nice if people remember that not all the world's an i386
367    when they introduce new system calls */
368 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
369 				 loff_t, offset, loff_t, nbytes)
370 {
371 	return sys_sync_file_range(fd, offset, nbytes, flags);
372 }
373