1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static unsigned long super_cache_scan(struct shrinker *shrink, 57 struct shrink_control *sc) 58 { 59 struct super_block *sb; 60 long fs_objects = 0; 61 long total_objects; 62 long freed = 0; 63 long dentries; 64 long inodes; 65 66 sb = container_of(shrink, struct super_block, s_shrink); 67 68 /* 69 * Deadlock avoidance. We may hold various FS locks, and we don't want 70 * to recurse into the FS that called us in clear_inode() and friends.. 71 */ 72 if (!(sc->gfp_mask & __GFP_FS)) 73 return SHRINK_STOP; 74 75 if (!grab_super_passive(sb)) 76 return SHRINK_STOP; 77 78 if (sb->s_op->nr_cached_objects) 79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid); 80 81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid); 82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid); 83 total_objects = dentries + inodes + fs_objects + 1; 84 85 /* proportion the scan between the caches */ 86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 88 89 /* 90 * prune the dcache first as the icache is pinned by it, then 91 * prune the icache, followed by the filesystem specific caches 92 */ 93 freed = prune_dcache_sb(sb, dentries, sc->nid); 94 freed += prune_icache_sb(sb, inodes, sc->nid); 95 96 if (fs_objects) { 97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, 98 total_objects); 99 freed += sb->s_op->free_cached_objects(sb, fs_objects, 100 sc->nid); 101 } 102 103 drop_super(sb); 104 return freed; 105 } 106 107 static unsigned long super_cache_count(struct shrinker *shrink, 108 struct shrink_control *sc) 109 { 110 struct super_block *sb; 111 long total_objects = 0; 112 113 sb = container_of(shrink, struct super_block, s_shrink); 114 115 if (!grab_super_passive(sb)) 116 return 0; 117 118 if (sb->s_op && sb->s_op->nr_cached_objects) 119 total_objects = sb->s_op->nr_cached_objects(sb, 120 sc->nid); 121 122 total_objects += list_lru_count_node(&sb->s_dentry_lru, 123 sc->nid); 124 total_objects += list_lru_count_node(&sb->s_inode_lru, 125 sc->nid); 126 127 total_objects = vfs_pressure_ratio(total_objects); 128 drop_super(sb); 129 return total_objects; 130 } 131 132 static int init_sb_writers(struct super_block *s, struct file_system_type *type) 133 { 134 int err; 135 int i; 136 137 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 138 err = percpu_counter_init(&s->s_writers.counter[i], 0); 139 if (err < 0) 140 goto err_out; 141 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 142 &type->s_writers_key[i], 0); 143 } 144 init_waitqueue_head(&s->s_writers.wait); 145 init_waitqueue_head(&s->s_writers.wait_unfrozen); 146 return 0; 147 err_out: 148 while (--i >= 0) 149 percpu_counter_destroy(&s->s_writers.counter[i]); 150 return err; 151 } 152 153 static void destroy_sb_writers(struct super_block *s) 154 { 155 int i; 156 157 for (i = 0; i < SB_FREEZE_LEVELS; i++) 158 percpu_counter_destroy(&s->s_writers.counter[i]); 159 } 160 161 /** 162 * alloc_super - create new superblock 163 * @type: filesystem type superblock should belong to 164 * @flags: the mount flags 165 * 166 * Allocates and initializes a new &struct super_block. alloc_super() 167 * returns a pointer new superblock or %NULL if allocation had failed. 168 */ 169 static struct super_block *alloc_super(struct file_system_type *type, int flags) 170 { 171 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 172 static const struct super_operations default_op; 173 174 if (s) { 175 if (security_sb_alloc(s)) 176 goto out_free_sb; 177 178 #ifdef CONFIG_SMP 179 s->s_files = alloc_percpu(struct list_head); 180 if (!s->s_files) 181 goto err_out; 182 else { 183 int i; 184 185 for_each_possible_cpu(i) 186 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 187 } 188 #else 189 INIT_LIST_HEAD(&s->s_files); 190 #endif 191 if (init_sb_writers(s, type)) 192 goto err_out; 193 s->s_flags = flags; 194 s->s_bdi = &default_backing_dev_info; 195 INIT_HLIST_NODE(&s->s_instances); 196 INIT_HLIST_BL_HEAD(&s->s_anon); 197 INIT_LIST_HEAD(&s->s_inodes); 198 199 if (list_lru_init(&s->s_dentry_lru)) 200 goto err_out; 201 if (list_lru_init(&s->s_inode_lru)) 202 goto err_out_dentry_lru; 203 204 INIT_LIST_HEAD(&s->s_mounts); 205 init_rwsem(&s->s_umount); 206 lockdep_set_class(&s->s_umount, &type->s_umount_key); 207 /* 208 * sget() can have s_umount recursion. 209 * 210 * When it cannot find a suitable sb, it allocates a new 211 * one (this one), and tries again to find a suitable old 212 * one. 213 * 214 * In case that succeeds, it will acquire the s_umount 215 * lock of the old one. Since these are clearly distrinct 216 * locks, and this object isn't exposed yet, there's no 217 * risk of deadlocks. 218 * 219 * Annotate this by putting this lock in a different 220 * subclass. 221 */ 222 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 223 s->s_count = 1; 224 atomic_set(&s->s_active, 1); 225 mutex_init(&s->s_vfs_rename_mutex); 226 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 227 mutex_init(&s->s_dquot.dqio_mutex); 228 mutex_init(&s->s_dquot.dqonoff_mutex); 229 init_rwsem(&s->s_dquot.dqptr_sem); 230 s->s_maxbytes = MAX_NON_LFS; 231 s->s_op = &default_op; 232 s->s_time_gran = 1000000000; 233 s->cleancache_poolid = -1; 234 235 s->s_shrink.seeks = DEFAULT_SEEKS; 236 s->s_shrink.scan_objects = super_cache_scan; 237 s->s_shrink.count_objects = super_cache_count; 238 s->s_shrink.batch = 1024; 239 s->s_shrink.flags = SHRINKER_NUMA_AWARE; 240 } 241 out: 242 return s; 243 244 err_out_dentry_lru: 245 list_lru_destroy(&s->s_dentry_lru); 246 err_out: 247 security_sb_free(s); 248 #ifdef CONFIG_SMP 249 if (s->s_files) 250 free_percpu(s->s_files); 251 #endif 252 destroy_sb_writers(s); 253 out_free_sb: 254 kfree(s); 255 s = NULL; 256 goto out; 257 } 258 259 /** 260 * destroy_super - frees a superblock 261 * @s: superblock to free 262 * 263 * Frees a superblock. 264 */ 265 static inline void destroy_super(struct super_block *s) 266 { 267 list_lru_destroy(&s->s_dentry_lru); 268 list_lru_destroy(&s->s_inode_lru); 269 #ifdef CONFIG_SMP 270 free_percpu(s->s_files); 271 #endif 272 destroy_sb_writers(s); 273 security_sb_free(s); 274 WARN_ON(!list_empty(&s->s_mounts)); 275 kfree(s->s_subtype); 276 kfree(s->s_options); 277 kfree(s); 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *sb) 286 { 287 if (!--sb->s_count) { 288 list_del_init(&sb->s_list); 289 destroy_super(sb); 290 } 291 } 292 293 /** 294 * put_super - drop a temporary reference to superblock 295 * @sb: superblock in question 296 * 297 * Drops a temporary reference, frees superblock if there's no 298 * references left. 299 */ 300 static void put_super(struct super_block *sb) 301 { 302 spin_lock(&sb_lock); 303 __put_super(sb); 304 spin_unlock(&sb_lock); 305 } 306 307 308 /** 309 * deactivate_locked_super - drop an active reference to superblock 310 * @s: superblock to deactivate 311 * 312 * Drops an active reference to superblock, converting it into a temprory 313 * one if there is no other active references left. In that case we 314 * tell fs driver to shut it down and drop the temporary reference we 315 * had just acquired. 316 * 317 * Caller holds exclusive lock on superblock; that lock is released. 318 */ 319 void deactivate_locked_super(struct super_block *s) 320 { 321 struct file_system_type *fs = s->s_type; 322 if (atomic_dec_and_test(&s->s_active)) { 323 cleancache_invalidate_fs(s); 324 fs->kill_sb(s); 325 326 /* caches are now gone, we can safely kill the shrinker now */ 327 unregister_shrinker(&s->s_shrink); 328 329 put_filesystem(fs); 330 put_super(s); 331 } else { 332 up_write(&s->s_umount); 333 } 334 } 335 336 EXPORT_SYMBOL(deactivate_locked_super); 337 338 /** 339 * deactivate_super - drop an active reference to superblock 340 * @s: superblock to deactivate 341 * 342 * Variant of deactivate_locked_super(), except that superblock is *not* 343 * locked by caller. If we are going to drop the final active reference, 344 * lock will be acquired prior to that. 345 */ 346 void deactivate_super(struct super_block *s) 347 { 348 if (!atomic_add_unless(&s->s_active, -1, 1)) { 349 down_write(&s->s_umount); 350 deactivate_locked_super(s); 351 } 352 } 353 354 EXPORT_SYMBOL(deactivate_super); 355 356 /** 357 * grab_super - acquire an active reference 358 * @s: reference we are trying to make active 359 * 360 * Tries to acquire an active reference. grab_super() is used when we 361 * had just found a superblock in super_blocks or fs_type->fs_supers 362 * and want to turn it into a full-blown active reference. grab_super() 363 * is called with sb_lock held and drops it. Returns 1 in case of 364 * success, 0 if we had failed (superblock contents was already dead or 365 * dying when grab_super() had been called). Note that this is only 366 * called for superblocks not in rundown mode (== ones still on ->fs_supers 367 * of their type), so increment of ->s_count is OK here. 368 */ 369 static int grab_super(struct super_block *s) __releases(sb_lock) 370 { 371 s->s_count++; 372 spin_unlock(&sb_lock); 373 down_write(&s->s_umount); 374 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 375 put_super(s); 376 return 1; 377 } 378 up_write(&s->s_umount); 379 put_super(s); 380 return 0; 381 } 382 383 /* 384 * grab_super_passive - acquire a passive reference 385 * @sb: reference we are trying to grab 386 * 387 * Tries to acquire a passive reference. This is used in places where we 388 * cannot take an active reference but we need to ensure that the 389 * superblock does not go away while we are working on it. It returns 390 * false if a reference was not gained, and returns true with the s_umount 391 * lock held in read mode if a reference is gained. On successful return, 392 * the caller must drop the s_umount lock and the passive reference when 393 * done. 394 */ 395 bool grab_super_passive(struct super_block *sb) 396 { 397 spin_lock(&sb_lock); 398 if (hlist_unhashed(&sb->s_instances)) { 399 spin_unlock(&sb_lock); 400 return false; 401 } 402 403 sb->s_count++; 404 spin_unlock(&sb_lock); 405 406 if (down_read_trylock(&sb->s_umount)) { 407 if (sb->s_root && (sb->s_flags & MS_BORN)) 408 return true; 409 up_read(&sb->s_umount); 410 } 411 412 put_super(sb); 413 return false; 414 } 415 416 /** 417 * generic_shutdown_super - common helper for ->kill_sb() 418 * @sb: superblock to kill 419 * 420 * generic_shutdown_super() does all fs-independent work on superblock 421 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 422 * that need destruction out of superblock, call generic_shutdown_super() 423 * and release aforementioned objects. Note: dentries and inodes _are_ 424 * taken care of and do not need specific handling. 425 * 426 * Upon calling this function, the filesystem may no longer alter or 427 * rearrange the set of dentries belonging to this super_block, nor may it 428 * change the attachments of dentries to inodes. 429 */ 430 void generic_shutdown_super(struct super_block *sb) 431 { 432 const struct super_operations *sop = sb->s_op; 433 434 if (sb->s_root) { 435 shrink_dcache_for_umount(sb); 436 sync_filesystem(sb); 437 sb->s_flags &= ~MS_ACTIVE; 438 439 fsnotify_unmount_inodes(&sb->s_inodes); 440 441 evict_inodes(sb); 442 443 if (sb->s_dio_done_wq) { 444 destroy_workqueue(sb->s_dio_done_wq); 445 sb->s_dio_done_wq = NULL; 446 } 447 448 if (sop->put_super) 449 sop->put_super(sb); 450 451 if (!list_empty(&sb->s_inodes)) { 452 printk("VFS: Busy inodes after unmount of %s. " 453 "Self-destruct in 5 seconds. Have a nice day...\n", 454 sb->s_id); 455 } 456 } 457 spin_lock(&sb_lock); 458 /* should be initialized for __put_super_and_need_restart() */ 459 hlist_del_init(&sb->s_instances); 460 spin_unlock(&sb_lock); 461 up_write(&sb->s_umount); 462 } 463 464 EXPORT_SYMBOL(generic_shutdown_super); 465 466 /** 467 * sget - find or create a superblock 468 * @type: filesystem type superblock should belong to 469 * @test: comparison callback 470 * @set: setup callback 471 * @flags: mount flags 472 * @data: argument to each of them 473 */ 474 struct super_block *sget(struct file_system_type *type, 475 int (*test)(struct super_block *,void *), 476 int (*set)(struct super_block *,void *), 477 int flags, 478 void *data) 479 { 480 struct super_block *s = NULL; 481 struct super_block *old; 482 int err; 483 484 retry: 485 spin_lock(&sb_lock); 486 if (test) { 487 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 488 if (!test(old, data)) 489 continue; 490 if (!grab_super(old)) 491 goto retry; 492 if (s) { 493 up_write(&s->s_umount); 494 destroy_super(s); 495 s = NULL; 496 } 497 return old; 498 } 499 } 500 if (!s) { 501 spin_unlock(&sb_lock); 502 s = alloc_super(type, flags); 503 if (!s) 504 return ERR_PTR(-ENOMEM); 505 goto retry; 506 } 507 508 err = set(s, data); 509 if (err) { 510 spin_unlock(&sb_lock); 511 up_write(&s->s_umount); 512 destroy_super(s); 513 return ERR_PTR(err); 514 } 515 s->s_type = type; 516 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 517 list_add_tail(&s->s_list, &super_blocks); 518 hlist_add_head(&s->s_instances, &type->fs_supers); 519 spin_unlock(&sb_lock); 520 get_filesystem(type); 521 register_shrinker(&s->s_shrink); 522 return s; 523 } 524 525 EXPORT_SYMBOL(sget); 526 527 void drop_super(struct super_block *sb) 528 { 529 up_read(&sb->s_umount); 530 put_super(sb); 531 } 532 533 EXPORT_SYMBOL(drop_super); 534 535 /** 536 * iterate_supers - call function for all active superblocks 537 * @f: function to call 538 * @arg: argument to pass to it 539 * 540 * Scans the superblock list and calls given function, passing it 541 * locked superblock and given argument. 542 */ 543 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 544 { 545 struct super_block *sb, *p = NULL; 546 547 spin_lock(&sb_lock); 548 list_for_each_entry(sb, &super_blocks, s_list) { 549 if (hlist_unhashed(&sb->s_instances)) 550 continue; 551 sb->s_count++; 552 spin_unlock(&sb_lock); 553 554 down_read(&sb->s_umount); 555 if (sb->s_root && (sb->s_flags & MS_BORN)) 556 f(sb, arg); 557 up_read(&sb->s_umount); 558 559 spin_lock(&sb_lock); 560 if (p) 561 __put_super(p); 562 p = sb; 563 } 564 if (p) 565 __put_super(p); 566 spin_unlock(&sb_lock); 567 } 568 569 /** 570 * iterate_supers_type - call function for superblocks of given type 571 * @type: fs type 572 * @f: function to call 573 * @arg: argument to pass to it 574 * 575 * Scans the superblock list and calls given function, passing it 576 * locked superblock and given argument. 577 */ 578 void iterate_supers_type(struct file_system_type *type, 579 void (*f)(struct super_block *, void *), void *arg) 580 { 581 struct super_block *sb, *p = NULL; 582 583 spin_lock(&sb_lock); 584 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 585 sb->s_count++; 586 spin_unlock(&sb_lock); 587 588 down_read(&sb->s_umount); 589 if (sb->s_root && (sb->s_flags & MS_BORN)) 590 f(sb, arg); 591 up_read(&sb->s_umount); 592 593 spin_lock(&sb_lock); 594 if (p) 595 __put_super(p); 596 p = sb; 597 } 598 if (p) 599 __put_super(p); 600 spin_unlock(&sb_lock); 601 } 602 603 EXPORT_SYMBOL(iterate_supers_type); 604 605 /** 606 * get_super - get the superblock of a device 607 * @bdev: device to get the superblock for 608 * 609 * Scans the superblock list and finds the superblock of the file system 610 * mounted on the device given. %NULL is returned if no match is found. 611 */ 612 613 struct super_block *get_super(struct block_device *bdev) 614 { 615 struct super_block *sb; 616 617 if (!bdev) 618 return NULL; 619 620 spin_lock(&sb_lock); 621 rescan: 622 list_for_each_entry(sb, &super_blocks, s_list) { 623 if (hlist_unhashed(&sb->s_instances)) 624 continue; 625 if (sb->s_bdev == bdev) { 626 sb->s_count++; 627 spin_unlock(&sb_lock); 628 down_read(&sb->s_umount); 629 /* still alive? */ 630 if (sb->s_root && (sb->s_flags & MS_BORN)) 631 return sb; 632 up_read(&sb->s_umount); 633 /* nope, got unmounted */ 634 spin_lock(&sb_lock); 635 __put_super(sb); 636 goto rescan; 637 } 638 } 639 spin_unlock(&sb_lock); 640 return NULL; 641 } 642 643 EXPORT_SYMBOL(get_super); 644 645 /** 646 * get_super_thawed - get thawed superblock of a device 647 * @bdev: device to get the superblock for 648 * 649 * Scans the superblock list and finds the superblock of the file system 650 * mounted on the device. The superblock is returned once it is thawed 651 * (or immediately if it was not frozen). %NULL is returned if no match 652 * is found. 653 */ 654 struct super_block *get_super_thawed(struct block_device *bdev) 655 { 656 while (1) { 657 struct super_block *s = get_super(bdev); 658 if (!s || s->s_writers.frozen == SB_UNFROZEN) 659 return s; 660 up_read(&s->s_umount); 661 wait_event(s->s_writers.wait_unfrozen, 662 s->s_writers.frozen == SB_UNFROZEN); 663 put_super(s); 664 } 665 } 666 EXPORT_SYMBOL(get_super_thawed); 667 668 /** 669 * get_active_super - get an active reference to the superblock of a device 670 * @bdev: device to get the superblock for 671 * 672 * Scans the superblock list and finds the superblock of the file system 673 * mounted on the device given. Returns the superblock with an active 674 * reference or %NULL if none was found. 675 */ 676 struct super_block *get_active_super(struct block_device *bdev) 677 { 678 struct super_block *sb; 679 680 if (!bdev) 681 return NULL; 682 683 restart: 684 spin_lock(&sb_lock); 685 list_for_each_entry(sb, &super_blocks, s_list) { 686 if (hlist_unhashed(&sb->s_instances)) 687 continue; 688 if (sb->s_bdev == bdev) { 689 if (!grab_super(sb)) 690 goto restart; 691 up_write(&sb->s_umount); 692 return sb; 693 } 694 } 695 spin_unlock(&sb_lock); 696 return NULL; 697 } 698 699 struct super_block *user_get_super(dev_t dev) 700 { 701 struct super_block *sb; 702 703 spin_lock(&sb_lock); 704 rescan: 705 list_for_each_entry(sb, &super_blocks, s_list) { 706 if (hlist_unhashed(&sb->s_instances)) 707 continue; 708 if (sb->s_dev == dev) { 709 sb->s_count++; 710 spin_unlock(&sb_lock); 711 down_read(&sb->s_umount); 712 /* still alive? */ 713 if (sb->s_root && (sb->s_flags & MS_BORN)) 714 return sb; 715 up_read(&sb->s_umount); 716 /* nope, got unmounted */ 717 spin_lock(&sb_lock); 718 __put_super(sb); 719 goto rescan; 720 } 721 } 722 spin_unlock(&sb_lock); 723 return NULL; 724 } 725 726 /** 727 * do_remount_sb - asks filesystem to change mount options. 728 * @sb: superblock in question 729 * @flags: numeric part of options 730 * @data: the rest of options 731 * @force: whether or not to force the change 732 * 733 * Alters the mount options of a mounted file system. 734 */ 735 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 736 { 737 int retval; 738 int remount_ro; 739 740 if (sb->s_writers.frozen != SB_UNFROZEN) 741 return -EBUSY; 742 743 #ifdef CONFIG_BLOCK 744 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 745 return -EACCES; 746 #endif 747 748 if (flags & MS_RDONLY) 749 acct_auto_close(sb); 750 shrink_dcache_sb(sb); 751 sync_filesystem(sb); 752 753 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 754 755 /* If we are remounting RDONLY and current sb is read/write, 756 make sure there are no rw files opened */ 757 if (remount_ro) { 758 if (force) { 759 mark_files_ro(sb); 760 } else { 761 retval = sb_prepare_remount_readonly(sb); 762 if (retval) 763 return retval; 764 } 765 } 766 767 if (sb->s_op->remount_fs) { 768 retval = sb->s_op->remount_fs(sb, &flags, data); 769 if (retval) { 770 if (!force) 771 goto cancel_readonly; 772 /* If forced remount, go ahead despite any errors */ 773 WARN(1, "forced remount of a %s fs returned %i\n", 774 sb->s_type->name, retval); 775 } 776 } 777 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 778 /* Needs to be ordered wrt mnt_is_readonly() */ 779 smp_wmb(); 780 sb->s_readonly_remount = 0; 781 782 /* 783 * Some filesystems modify their metadata via some other path than the 784 * bdev buffer cache (eg. use a private mapping, or directories in 785 * pagecache, etc). Also file data modifications go via their own 786 * mappings. So If we try to mount readonly then copy the filesystem 787 * from bdev, we could get stale data, so invalidate it to give a best 788 * effort at coherency. 789 */ 790 if (remount_ro && sb->s_bdev) 791 invalidate_bdev(sb->s_bdev); 792 return 0; 793 794 cancel_readonly: 795 sb->s_readonly_remount = 0; 796 return retval; 797 } 798 799 static void do_emergency_remount(struct work_struct *work) 800 { 801 struct super_block *sb, *p = NULL; 802 803 spin_lock(&sb_lock); 804 list_for_each_entry(sb, &super_blocks, s_list) { 805 if (hlist_unhashed(&sb->s_instances)) 806 continue; 807 sb->s_count++; 808 spin_unlock(&sb_lock); 809 down_write(&sb->s_umount); 810 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 811 !(sb->s_flags & MS_RDONLY)) { 812 /* 813 * What lock protects sb->s_flags?? 814 */ 815 do_remount_sb(sb, MS_RDONLY, NULL, 1); 816 } 817 up_write(&sb->s_umount); 818 spin_lock(&sb_lock); 819 if (p) 820 __put_super(p); 821 p = sb; 822 } 823 if (p) 824 __put_super(p); 825 spin_unlock(&sb_lock); 826 kfree(work); 827 printk("Emergency Remount complete\n"); 828 } 829 830 void emergency_remount(void) 831 { 832 struct work_struct *work; 833 834 work = kmalloc(sizeof(*work), GFP_ATOMIC); 835 if (work) { 836 INIT_WORK(work, do_emergency_remount); 837 schedule_work(work); 838 } 839 } 840 841 /* 842 * Unnamed block devices are dummy devices used by virtual 843 * filesystems which don't use real block-devices. -- jrs 844 */ 845 846 static DEFINE_IDA(unnamed_dev_ida); 847 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 848 static int unnamed_dev_start = 0; /* don't bother trying below it */ 849 850 int get_anon_bdev(dev_t *p) 851 { 852 int dev; 853 int error; 854 855 retry: 856 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 857 return -ENOMEM; 858 spin_lock(&unnamed_dev_lock); 859 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 860 if (!error) 861 unnamed_dev_start = dev + 1; 862 spin_unlock(&unnamed_dev_lock); 863 if (error == -EAGAIN) 864 /* We raced and lost with another CPU. */ 865 goto retry; 866 else if (error) 867 return -EAGAIN; 868 869 if (dev == (1 << MINORBITS)) { 870 spin_lock(&unnamed_dev_lock); 871 ida_remove(&unnamed_dev_ida, dev); 872 if (unnamed_dev_start > dev) 873 unnamed_dev_start = dev; 874 spin_unlock(&unnamed_dev_lock); 875 return -EMFILE; 876 } 877 *p = MKDEV(0, dev & MINORMASK); 878 return 0; 879 } 880 EXPORT_SYMBOL(get_anon_bdev); 881 882 void free_anon_bdev(dev_t dev) 883 { 884 int slot = MINOR(dev); 885 spin_lock(&unnamed_dev_lock); 886 ida_remove(&unnamed_dev_ida, slot); 887 if (slot < unnamed_dev_start) 888 unnamed_dev_start = slot; 889 spin_unlock(&unnamed_dev_lock); 890 } 891 EXPORT_SYMBOL(free_anon_bdev); 892 893 int set_anon_super(struct super_block *s, void *data) 894 { 895 int error = get_anon_bdev(&s->s_dev); 896 if (!error) 897 s->s_bdi = &noop_backing_dev_info; 898 return error; 899 } 900 901 EXPORT_SYMBOL(set_anon_super); 902 903 void kill_anon_super(struct super_block *sb) 904 { 905 dev_t dev = sb->s_dev; 906 generic_shutdown_super(sb); 907 free_anon_bdev(dev); 908 } 909 910 EXPORT_SYMBOL(kill_anon_super); 911 912 void kill_litter_super(struct super_block *sb) 913 { 914 if (sb->s_root) 915 d_genocide(sb->s_root); 916 kill_anon_super(sb); 917 } 918 919 EXPORT_SYMBOL(kill_litter_super); 920 921 static int ns_test_super(struct super_block *sb, void *data) 922 { 923 return sb->s_fs_info == data; 924 } 925 926 static int ns_set_super(struct super_block *sb, void *data) 927 { 928 sb->s_fs_info = data; 929 return set_anon_super(sb, NULL); 930 } 931 932 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 933 void *data, int (*fill_super)(struct super_block *, void *, int)) 934 { 935 struct super_block *sb; 936 937 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 938 if (IS_ERR(sb)) 939 return ERR_CAST(sb); 940 941 if (!sb->s_root) { 942 int err; 943 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 944 if (err) { 945 deactivate_locked_super(sb); 946 return ERR_PTR(err); 947 } 948 949 sb->s_flags |= MS_ACTIVE; 950 } 951 952 return dget(sb->s_root); 953 } 954 955 EXPORT_SYMBOL(mount_ns); 956 957 #ifdef CONFIG_BLOCK 958 static int set_bdev_super(struct super_block *s, void *data) 959 { 960 s->s_bdev = data; 961 s->s_dev = s->s_bdev->bd_dev; 962 963 /* 964 * We set the bdi here to the queue backing, file systems can 965 * overwrite this in ->fill_super() 966 */ 967 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 968 return 0; 969 } 970 971 static int test_bdev_super(struct super_block *s, void *data) 972 { 973 return (void *)s->s_bdev == data; 974 } 975 976 struct dentry *mount_bdev(struct file_system_type *fs_type, 977 int flags, const char *dev_name, void *data, 978 int (*fill_super)(struct super_block *, void *, int)) 979 { 980 struct block_device *bdev; 981 struct super_block *s; 982 fmode_t mode = FMODE_READ | FMODE_EXCL; 983 int error = 0; 984 985 if (!(flags & MS_RDONLY)) 986 mode |= FMODE_WRITE; 987 988 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 989 if (IS_ERR(bdev)) 990 return ERR_CAST(bdev); 991 992 /* 993 * once the super is inserted into the list by sget, s_umount 994 * will protect the lockfs code from trying to start a snapshot 995 * while we are mounting 996 */ 997 mutex_lock(&bdev->bd_fsfreeze_mutex); 998 if (bdev->bd_fsfreeze_count > 0) { 999 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1000 error = -EBUSY; 1001 goto error_bdev; 1002 } 1003 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 1004 bdev); 1005 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1006 if (IS_ERR(s)) 1007 goto error_s; 1008 1009 if (s->s_root) { 1010 if ((flags ^ s->s_flags) & MS_RDONLY) { 1011 deactivate_locked_super(s); 1012 error = -EBUSY; 1013 goto error_bdev; 1014 } 1015 1016 /* 1017 * s_umount nests inside bd_mutex during 1018 * __invalidate_device(). blkdev_put() acquires 1019 * bd_mutex and can't be called under s_umount. Drop 1020 * s_umount temporarily. This is safe as we're 1021 * holding an active reference. 1022 */ 1023 up_write(&s->s_umount); 1024 blkdev_put(bdev, mode); 1025 down_write(&s->s_umount); 1026 } else { 1027 char b[BDEVNAME_SIZE]; 1028 1029 s->s_mode = mode; 1030 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1031 sb_set_blocksize(s, block_size(bdev)); 1032 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1033 if (error) { 1034 deactivate_locked_super(s); 1035 goto error; 1036 } 1037 1038 s->s_flags |= MS_ACTIVE; 1039 bdev->bd_super = s; 1040 } 1041 1042 return dget(s->s_root); 1043 1044 error_s: 1045 error = PTR_ERR(s); 1046 error_bdev: 1047 blkdev_put(bdev, mode); 1048 error: 1049 return ERR_PTR(error); 1050 } 1051 EXPORT_SYMBOL(mount_bdev); 1052 1053 void kill_block_super(struct super_block *sb) 1054 { 1055 struct block_device *bdev = sb->s_bdev; 1056 fmode_t mode = sb->s_mode; 1057 1058 bdev->bd_super = NULL; 1059 generic_shutdown_super(sb); 1060 sync_blockdev(bdev); 1061 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1062 blkdev_put(bdev, mode | FMODE_EXCL); 1063 } 1064 1065 EXPORT_SYMBOL(kill_block_super); 1066 #endif 1067 1068 struct dentry *mount_nodev(struct file_system_type *fs_type, 1069 int flags, void *data, 1070 int (*fill_super)(struct super_block *, void *, int)) 1071 { 1072 int error; 1073 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1074 1075 if (IS_ERR(s)) 1076 return ERR_CAST(s); 1077 1078 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1079 if (error) { 1080 deactivate_locked_super(s); 1081 return ERR_PTR(error); 1082 } 1083 s->s_flags |= MS_ACTIVE; 1084 return dget(s->s_root); 1085 } 1086 EXPORT_SYMBOL(mount_nodev); 1087 1088 static int compare_single(struct super_block *s, void *p) 1089 { 1090 return 1; 1091 } 1092 1093 struct dentry *mount_single(struct file_system_type *fs_type, 1094 int flags, void *data, 1095 int (*fill_super)(struct super_block *, void *, int)) 1096 { 1097 struct super_block *s; 1098 int error; 1099 1100 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1101 if (IS_ERR(s)) 1102 return ERR_CAST(s); 1103 if (!s->s_root) { 1104 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1105 if (error) { 1106 deactivate_locked_super(s); 1107 return ERR_PTR(error); 1108 } 1109 s->s_flags |= MS_ACTIVE; 1110 } else { 1111 do_remount_sb(s, flags, data, 0); 1112 } 1113 return dget(s->s_root); 1114 } 1115 EXPORT_SYMBOL(mount_single); 1116 1117 struct dentry * 1118 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1119 { 1120 struct dentry *root; 1121 struct super_block *sb; 1122 char *secdata = NULL; 1123 int error = -ENOMEM; 1124 1125 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1126 secdata = alloc_secdata(); 1127 if (!secdata) 1128 goto out; 1129 1130 error = security_sb_copy_data(data, secdata); 1131 if (error) 1132 goto out_free_secdata; 1133 } 1134 1135 root = type->mount(type, flags, name, data); 1136 if (IS_ERR(root)) { 1137 error = PTR_ERR(root); 1138 goto out_free_secdata; 1139 } 1140 sb = root->d_sb; 1141 BUG_ON(!sb); 1142 WARN_ON(!sb->s_bdi); 1143 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1144 sb->s_flags |= MS_BORN; 1145 1146 error = security_sb_kern_mount(sb, flags, secdata); 1147 if (error) 1148 goto out_sb; 1149 1150 /* 1151 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1152 * but s_maxbytes was an unsigned long long for many releases. Throw 1153 * this warning for a little while to try and catch filesystems that 1154 * violate this rule. 1155 */ 1156 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1157 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1158 1159 up_write(&sb->s_umount); 1160 free_secdata(secdata); 1161 return root; 1162 out_sb: 1163 dput(root); 1164 deactivate_locked_super(sb); 1165 out_free_secdata: 1166 free_secdata(secdata); 1167 out: 1168 return ERR_PTR(error); 1169 } 1170 1171 /* 1172 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1173 * instead. 1174 */ 1175 void __sb_end_write(struct super_block *sb, int level) 1176 { 1177 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1178 /* 1179 * Make sure s_writers are updated before we wake up waiters in 1180 * freeze_super(). 1181 */ 1182 smp_mb(); 1183 if (waitqueue_active(&sb->s_writers.wait)) 1184 wake_up(&sb->s_writers.wait); 1185 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1186 } 1187 EXPORT_SYMBOL(__sb_end_write); 1188 1189 #ifdef CONFIG_LOCKDEP 1190 /* 1191 * We want lockdep to tell us about possible deadlocks with freezing but 1192 * it's it bit tricky to properly instrument it. Getting a freeze protection 1193 * works as getting a read lock but there are subtle problems. XFS for example 1194 * gets freeze protection on internal level twice in some cases, which is OK 1195 * only because we already hold a freeze protection also on higher level. Due 1196 * to these cases we have to tell lockdep we are doing trylock when we 1197 * already hold a freeze protection for a higher freeze level. 1198 */ 1199 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1200 unsigned long ip) 1201 { 1202 int i; 1203 1204 if (!trylock) { 1205 for (i = 0; i < level - 1; i++) 1206 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1207 trylock = true; 1208 break; 1209 } 1210 } 1211 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1212 } 1213 #endif 1214 1215 /* 1216 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1217 * instead. 1218 */ 1219 int __sb_start_write(struct super_block *sb, int level, bool wait) 1220 { 1221 retry: 1222 if (unlikely(sb->s_writers.frozen >= level)) { 1223 if (!wait) 1224 return 0; 1225 wait_event(sb->s_writers.wait_unfrozen, 1226 sb->s_writers.frozen < level); 1227 } 1228 1229 #ifdef CONFIG_LOCKDEP 1230 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1231 #endif 1232 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1233 /* 1234 * Make sure counter is updated before we check for frozen. 1235 * freeze_super() first sets frozen and then checks the counter. 1236 */ 1237 smp_mb(); 1238 if (unlikely(sb->s_writers.frozen >= level)) { 1239 __sb_end_write(sb, level); 1240 goto retry; 1241 } 1242 return 1; 1243 } 1244 EXPORT_SYMBOL(__sb_start_write); 1245 1246 /** 1247 * sb_wait_write - wait until all writers to given file system finish 1248 * @sb: the super for which we wait 1249 * @level: type of writers we wait for (normal vs page fault) 1250 * 1251 * This function waits until there are no writers of given type to given file 1252 * system. Caller of this function should make sure there can be no new writers 1253 * of type @level before calling this function. Otherwise this function can 1254 * livelock. 1255 */ 1256 static void sb_wait_write(struct super_block *sb, int level) 1257 { 1258 s64 writers; 1259 1260 /* 1261 * We just cycle-through lockdep here so that it does not complain 1262 * about returning with lock to userspace 1263 */ 1264 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1265 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1266 1267 do { 1268 DEFINE_WAIT(wait); 1269 1270 /* 1271 * We use a barrier in prepare_to_wait() to separate setting 1272 * of frozen and checking of the counter 1273 */ 1274 prepare_to_wait(&sb->s_writers.wait, &wait, 1275 TASK_UNINTERRUPTIBLE); 1276 1277 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1278 if (writers) 1279 schedule(); 1280 1281 finish_wait(&sb->s_writers.wait, &wait); 1282 } while (writers); 1283 } 1284 1285 /** 1286 * freeze_super - lock the filesystem and force it into a consistent state 1287 * @sb: the super to lock 1288 * 1289 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1290 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1291 * -EBUSY. 1292 * 1293 * During this function, sb->s_writers.frozen goes through these values: 1294 * 1295 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1296 * 1297 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1298 * writes should be blocked, though page faults are still allowed. We wait for 1299 * all writes to complete and then proceed to the next stage. 1300 * 1301 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1302 * but internal fs threads can still modify the filesystem (although they 1303 * should not dirty new pages or inodes), writeback can run etc. After waiting 1304 * for all running page faults we sync the filesystem which will clean all 1305 * dirty pages and inodes (no new dirty pages or inodes can be created when 1306 * sync is running). 1307 * 1308 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1309 * modification are blocked (e.g. XFS preallocation truncation on inode 1310 * reclaim). This is usually implemented by blocking new transactions for 1311 * filesystems that have them and need this additional guard. After all 1312 * internal writers are finished we call ->freeze_fs() to finish filesystem 1313 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1314 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1315 * 1316 * sb->s_writers.frozen is protected by sb->s_umount. 1317 */ 1318 int freeze_super(struct super_block *sb) 1319 { 1320 int ret; 1321 1322 atomic_inc(&sb->s_active); 1323 down_write(&sb->s_umount); 1324 if (sb->s_writers.frozen != SB_UNFROZEN) { 1325 deactivate_locked_super(sb); 1326 return -EBUSY; 1327 } 1328 1329 if (!(sb->s_flags & MS_BORN)) { 1330 up_write(&sb->s_umount); 1331 return 0; /* sic - it's "nothing to do" */ 1332 } 1333 1334 if (sb->s_flags & MS_RDONLY) { 1335 /* Nothing to do really... */ 1336 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1337 up_write(&sb->s_umount); 1338 return 0; 1339 } 1340 1341 /* From now on, no new normal writers can start */ 1342 sb->s_writers.frozen = SB_FREEZE_WRITE; 1343 smp_wmb(); 1344 1345 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1346 up_write(&sb->s_umount); 1347 1348 sb_wait_write(sb, SB_FREEZE_WRITE); 1349 1350 /* Now we go and block page faults... */ 1351 down_write(&sb->s_umount); 1352 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1353 smp_wmb(); 1354 1355 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1356 1357 /* All writers are done so after syncing there won't be dirty data */ 1358 sync_filesystem(sb); 1359 1360 /* Now wait for internal filesystem counter */ 1361 sb->s_writers.frozen = SB_FREEZE_FS; 1362 smp_wmb(); 1363 sb_wait_write(sb, SB_FREEZE_FS); 1364 1365 if (sb->s_op->freeze_fs) { 1366 ret = sb->s_op->freeze_fs(sb); 1367 if (ret) { 1368 printk(KERN_ERR 1369 "VFS:Filesystem freeze failed\n"); 1370 sb->s_writers.frozen = SB_UNFROZEN; 1371 smp_wmb(); 1372 wake_up(&sb->s_writers.wait_unfrozen); 1373 deactivate_locked_super(sb); 1374 return ret; 1375 } 1376 } 1377 /* 1378 * This is just for debugging purposes so that fs can warn if it 1379 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1380 */ 1381 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1382 up_write(&sb->s_umount); 1383 return 0; 1384 } 1385 EXPORT_SYMBOL(freeze_super); 1386 1387 /** 1388 * thaw_super -- unlock filesystem 1389 * @sb: the super to thaw 1390 * 1391 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1392 */ 1393 int thaw_super(struct super_block *sb) 1394 { 1395 int error; 1396 1397 down_write(&sb->s_umount); 1398 if (sb->s_writers.frozen == SB_UNFROZEN) { 1399 up_write(&sb->s_umount); 1400 return -EINVAL; 1401 } 1402 1403 if (sb->s_flags & MS_RDONLY) 1404 goto out; 1405 1406 if (sb->s_op->unfreeze_fs) { 1407 error = sb->s_op->unfreeze_fs(sb); 1408 if (error) { 1409 printk(KERN_ERR 1410 "VFS:Filesystem thaw failed\n"); 1411 up_write(&sb->s_umount); 1412 return error; 1413 } 1414 } 1415 1416 out: 1417 sb->s_writers.frozen = SB_UNFROZEN; 1418 smp_wmb(); 1419 wake_up(&sb->s_writers.wait_unfrozen); 1420 deactivate_locked_super(sb); 1421 1422 return 0; 1423 } 1424 EXPORT_SYMBOL(thaw_super); 1425