xref: /openbmc/linux/fs/super.c (revision f42b3800)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 
42 
43 LIST_HEAD(super_blocks);
44 DEFINE_SPINLOCK(sb_lock);
45 
46 /**
47  *	alloc_super	-	create new superblock
48  *	@type:	filesystem type superblock should belong to
49  *
50  *	Allocates and initializes a new &struct super_block.  alloc_super()
51  *	returns a pointer new superblock or %NULL if allocation had failed.
52  */
53 static struct super_block *alloc_super(struct file_system_type *type)
54 {
55 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
56 	static struct super_operations default_op;
57 
58 	if (s) {
59 		if (security_sb_alloc(s)) {
60 			kfree(s);
61 			s = NULL;
62 			goto out;
63 		}
64 		INIT_LIST_HEAD(&s->s_dirty);
65 		INIT_LIST_HEAD(&s->s_io);
66 		INIT_LIST_HEAD(&s->s_more_io);
67 		INIT_LIST_HEAD(&s->s_files);
68 		INIT_LIST_HEAD(&s->s_instances);
69 		INIT_HLIST_HEAD(&s->s_anon);
70 		INIT_LIST_HEAD(&s->s_inodes);
71 		init_rwsem(&s->s_umount);
72 		mutex_init(&s->s_lock);
73 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
74 		/*
75 		 * The locking rules for s_lock are up to the
76 		 * filesystem. For example ext3fs has different
77 		 * lock ordering than usbfs:
78 		 */
79 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
80 		down_write(&s->s_umount);
81 		s->s_count = S_BIAS;
82 		atomic_set(&s->s_active, 1);
83 		mutex_init(&s->s_vfs_rename_mutex);
84 		mutex_init(&s->s_dquot.dqio_mutex);
85 		mutex_init(&s->s_dquot.dqonoff_mutex);
86 		init_rwsem(&s->s_dquot.dqptr_sem);
87 		init_waitqueue_head(&s->s_wait_unfrozen);
88 		s->s_maxbytes = MAX_NON_LFS;
89 		s->dq_op = sb_dquot_ops;
90 		s->s_qcop = sb_quotactl_ops;
91 		s->s_op = &default_op;
92 		s->s_time_gran = 1000000000;
93 	}
94 out:
95 	return s;
96 }
97 
98 /**
99  *	destroy_super	-	frees a superblock
100  *	@s: superblock to free
101  *
102  *	Frees a superblock.
103  */
104 static inline void destroy_super(struct super_block *s)
105 {
106 	security_sb_free(s);
107 	kfree(s->s_subtype);
108 	kfree(s->s_options);
109 	kfree(s);
110 }
111 
112 /* Superblock refcounting  */
113 
114 /*
115  * Drop a superblock's refcount.  Returns non-zero if the superblock was
116  * destroyed.  The caller must hold sb_lock.
117  */
118 int __put_super(struct super_block *sb)
119 {
120 	int ret = 0;
121 
122 	if (!--sb->s_count) {
123 		destroy_super(sb);
124 		ret = 1;
125 	}
126 	return ret;
127 }
128 
129 /*
130  * Drop a superblock's refcount.
131  * Returns non-zero if the superblock is about to be destroyed and
132  * at least is already removed from super_blocks list, so if we are
133  * making a loop through super blocks then we need to restart.
134  * The caller must hold sb_lock.
135  */
136 int __put_super_and_need_restart(struct super_block *sb)
137 {
138 	/* check for race with generic_shutdown_super() */
139 	if (list_empty(&sb->s_list)) {
140 		/* super block is removed, need to restart... */
141 		__put_super(sb);
142 		return 1;
143 	}
144 	/* can't be the last, since s_list is still in use */
145 	sb->s_count--;
146 	BUG_ON(sb->s_count == 0);
147 	return 0;
148 }
149 
150 /**
151  *	put_super	-	drop a temporary reference to superblock
152  *	@sb: superblock in question
153  *
154  *	Drops a temporary reference, frees superblock if there's no
155  *	references left.
156  */
157 static void put_super(struct super_block *sb)
158 {
159 	spin_lock(&sb_lock);
160 	__put_super(sb);
161 	spin_unlock(&sb_lock);
162 }
163 
164 
165 /**
166  *	deactivate_super	-	drop an active reference to superblock
167  *	@s: superblock to deactivate
168  *
169  *	Drops an active reference to superblock, acquiring a temprory one if
170  *	there is no active references left.  In that case we lock superblock,
171  *	tell fs driver to shut it down and drop the temporary reference we
172  *	had just acquired.
173  */
174 void deactivate_super(struct super_block *s)
175 {
176 	struct file_system_type *fs = s->s_type;
177 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
178 		s->s_count -= S_BIAS-1;
179 		spin_unlock(&sb_lock);
180 		DQUOT_OFF(s);
181 		down_write(&s->s_umount);
182 		fs->kill_sb(s);
183 		put_filesystem(fs);
184 		put_super(s);
185 	}
186 }
187 
188 EXPORT_SYMBOL(deactivate_super);
189 
190 /**
191  *	grab_super - acquire an active reference
192  *	@s: reference we are trying to make active
193  *
194  *	Tries to acquire an active reference.  grab_super() is used when we
195  * 	had just found a superblock in super_blocks or fs_type->fs_supers
196  *	and want to turn it into a full-blown active reference.  grab_super()
197  *	is called with sb_lock held and drops it.  Returns 1 in case of
198  *	success, 0 if we had failed (superblock contents was already dead or
199  *	dying when grab_super() had been called).
200  */
201 static int grab_super(struct super_block *s) __releases(sb_lock)
202 {
203 	s->s_count++;
204 	spin_unlock(&sb_lock);
205 	down_write(&s->s_umount);
206 	if (s->s_root) {
207 		spin_lock(&sb_lock);
208 		if (s->s_count > S_BIAS) {
209 			atomic_inc(&s->s_active);
210 			s->s_count--;
211 			spin_unlock(&sb_lock);
212 			return 1;
213 		}
214 		spin_unlock(&sb_lock);
215 	}
216 	up_write(&s->s_umount);
217 	put_super(s);
218 	yield();
219 	return 0;
220 }
221 
222 /*
223  * Superblock locking.  We really ought to get rid of these two.
224  */
225 void lock_super(struct super_block * sb)
226 {
227 	get_fs_excl();
228 	mutex_lock(&sb->s_lock);
229 }
230 
231 void unlock_super(struct super_block * sb)
232 {
233 	put_fs_excl();
234 	mutex_unlock(&sb->s_lock);
235 }
236 
237 EXPORT_SYMBOL(lock_super);
238 EXPORT_SYMBOL(unlock_super);
239 
240 /*
241  * Write out and wait upon all dirty data associated with this
242  * superblock.  Filesystem data as well as the underlying block
243  * device.  Takes the superblock lock.  Requires a second blkdev
244  * flush by the caller to complete the operation.
245  */
246 void __fsync_super(struct super_block *sb)
247 {
248 	sync_inodes_sb(sb, 0);
249 	DQUOT_SYNC(sb);
250 	lock_super(sb);
251 	if (sb->s_dirt && sb->s_op->write_super)
252 		sb->s_op->write_super(sb);
253 	unlock_super(sb);
254 	if (sb->s_op->sync_fs)
255 		sb->s_op->sync_fs(sb, 1);
256 	sync_blockdev(sb->s_bdev);
257 	sync_inodes_sb(sb, 1);
258 }
259 
260 /*
261  * Write out and wait upon all dirty data associated with this
262  * superblock.  Filesystem data as well as the underlying block
263  * device.  Takes the superblock lock.
264  */
265 int fsync_super(struct super_block *sb)
266 {
267 	__fsync_super(sb);
268 	return sync_blockdev(sb->s_bdev);
269 }
270 
271 /**
272  *	generic_shutdown_super	-	common helper for ->kill_sb()
273  *	@sb: superblock to kill
274  *
275  *	generic_shutdown_super() does all fs-independent work on superblock
276  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
277  *	that need destruction out of superblock, call generic_shutdown_super()
278  *	and release aforementioned objects.  Note: dentries and inodes _are_
279  *	taken care of and do not need specific handling.
280  *
281  *	Upon calling this function, the filesystem may no longer alter or
282  *	rearrange the set of dentries belonging to this super_block, nor may it
283  *	change the attachments of dentries to inodes.
284  */
285 void generic_shutdown_super(struct super_block *sb)
286 {
287 	const struct super_operations *sop = sb->s_op;
288 
289 	if (sb->s_root) {
290 		shrink_dcache_for_umount(sb);
291 		fsync_super(sb);
292 		lock_super(sb);
293 		sb->s_flags &= ~MS_ACTIVE;
294 		/* bad name - it should be evict_inodes() */
295 		invalidate_inodes(sb);
296 		lock_kernel();
297 
298 		if (sop->write_super && sb->s_dirt)
299 			sop->write_super(sb);
300 		if (sop->put_super)
301 			sop->put_super(sb);
302 
303 		/* Forget any remaining inodes */
304 		if (invalidate_inodes(sb)) {
305 			printk("VFS: Busy inodes after unmount of %s. "
306 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
307 			   sb->s_id);
308 		}
309 
310 		unlock_kernel();
311 		unlock_super(sb);
312 	}
313 	spin_lock(&sb_lock);
314 	/* should be initialized for __put_super_and_need_restart() */
315 	list_del_init(&sb->s_list);
316 	list_del(&sb->s_instances);
317 	spin_unlock(&sb_lock);
318 	up_write(&sb->s_umount);
319 }
320 
321 EXPORT_SYMBOL(generic_shutdown_super);
322 
323 /**
324  *	sget	-	find or create a superblock
325  *	@type:	filesystem type superblock should belong to
326  *	@test:	comparison callback
327  *	@set:	setup callback
328  *	@data:	argument to each of them
329  */
330 struct super_block *sget(struct file_system_type *type,
331 			int (*test)(struct super_block *,void *),
332 			int (*set)(struct super_block *,void *),
333 			void *data)
334 {
335 	struct super_block *s = NULL;
336 	struct super_block *old;
337 	int err;
338 
339 retry:
340 	spin_lock(&sb_lock);
341 	if (test) {
342 		list_for_each_entry(old, &type->fs_supers, s_instances) {
343 			if (!test(old, data))
344 				continue;
345 			if (!grab_super(old))
346 				goto retry;
347 			if (s)
348 				destroy_super(s);
349 			return old;
350 		}
351 	}
352 	if (!s) {
353 		spin_unlock(&sb_lock);
354 		s = alloc_super(type);
355 		if (!s)
356 			return ERR_PTR(-ENOMEM);
357 		goto retry;
358 	}
359 
360 	err = set(s, data);
361 	if (err) {
362 		spin_unlock(&sb_lock);
363 		destroy_super(s);
364 		return ERR_PTR(err);
365 	}
366 	s->s_type = type;
367 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
368 	list_add_tail(&s->s_list, &super_blocks);
369 	list_add(&s->s_instances, &type->fs_supers);
370 	spin_unlock(&sb_lock);
371 	get_filesystem(type);
372 	return s;
373 }
374 
375 EXPORT_SYMBOL(sget);
376 
377 void drop_super(struct super_block *sb)
378 {
379 	up_read(&sb->s_umount);
380 	put_super(sb);
381 }
382 
383 EXPORT_SYMBOL(drop_super);
384 
385 static inline void write_super(struct super_block *sb)
386 {
387 	lock_super(sb);
388 	if (sb->s_root && sb->s_dirt)
389 		if (sb->s_op->write_super)
390 			sb->s_op->write_super(sb);
391 	unlock_super(sb);
392 }
393 
394 /*
395  * Note: check the dirty flag before waiting, so we don't
396  * hold up the sync while mounting a device. (The newly
397  * mounted device won't need syncing.)
398  */
399 void sync_supers(void)
400 {
401 	struct super_block *sb;
402 
403 	spin_lock(&sb_lock);
404 restart:
405 	list_for_each_entry(sb, &super_blocks, s_list) {
406 		if (sb->s_dirt) {
407 			sb->s_count++;
408 			spin_unlock(&sb_lock);
409 			down_read(&sb->s_umount);
410 			write_super(sb);
411 			up_read(&sb->s_umount);
412 			spin_lock(&sb_lock);
413 			if (__put_super_and_need_restart(sb))
414 				goto restart;
415 		}
416 	}
417 	spin_unlock(&sb_lock);
418 }
419 
420 /*
421  * Call the ->sync_fs super_op against all filesystems which are r/w and
422  * which implement it.
423  *
424  * This operation is careful to avoid the livelock which could easily happen
425  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
426  * is used only here.  We set it against all filesystems and then clear it as
427  * we sync them.  So redirtied filesystems are skipped.
428  *
429  * But if process A is currently running sync_filesystems and then process B
430  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
431  * flags again, which will cause process A to resync everything.  Fix that with
432  * a local mutex.
433  *
434  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
435  */
436 void sync_filesystems(int wait)
437 {
438 	struct super_block *sb;
439 	static DEFINE_MUTEX(mutex);
440 
441 	mutex_lock(&mutex);		/* Could be down_interruptible */
442 	spin_lock(&sb_lock);
443 	list_for_each_entry(sb, &super_blocks, s_list) {
444 		if (!sb->s_op->sync_fs)
445 			continue;
446 		if (sb->s_flags & MS_RDONLY)
447 			continue;
448 		sb->s_need_sync_fs = 1;
449 	}
450 
451 restart:
452 	list_for_each_entry(sb, &super_blocks, s_list) {
453 		if (!sb->s_need_sync_fs)
454 			continue;
455 		sb->s_need_sync_fs = 0;
456 		if (sb->s_flags & MS_RDONLY)
457 			continue;	/* hm.  Was remounted r/o meanwhile */
458 		sb->s_count++;
459 		spin_unlock(&sb_lock);
460 		down_read(&sb->s_umount);
461 		if (sb->s_root && (wait || sb->s_dirt))
462 			sb->s_op->sync_fs(sb, wait);
463 		up_read(&sb->s_umount);
464 		/* restart only when sb is no longer on the list */
465 		spin_lock(&sb_lock);
466 		if (__put_super_and_need_restart(sb))
467 			goto restart;
468 	}
469 	spin_unlock(&sb_lock);
470 	mutex_unlock(&mutex);
471 }
472 
473 /**
474  *	get_super - get the superblock of a device
475  *	@bdev: device to get the superblock for
476  *
477  *	Scans the superblock list and finds the superblock of the file system
478  *	mounted on the device given. %NULL is returned if no match is found.
479  */
480 
481 struct super_block * get_super(struct block_device *bdev)
482 {
483 	struct super_block *sb;
484 
485 	if (!bdev)
486 		return NULL;
487 
488 	spin_lock(&sb_lock);
489 rescan:
490 	list_for_each_entry(sb, &super_blocks, s_list) {
491 		if (sb->s_bdev == bdev) {
492 			sb->s_count++;
493 			spin_unlock(&sb_lock);
494 			down_read(&sb->s_umount);
495 			if (sb->s_root)
496 				return sb;
497 			up_read(&sb->s_umount);
498 			/* restart only when sb is no longer on the list */
499 			spin_lock(&sb_lock);
500 			if (__put_super_and_need_restart(sb))
501 				goto rescan;
502 		}
503 	}
504 	spin_unlock(&sb_lock);
505 	return NULL;
506 }
507 
508 EXPORT_SYMBOL(get_super);
509 
510 struct super_block * user_get_super(dev_t dev)
511 {
512 	struct super_block *sb;
513 
514 	spin_lock(&sb_lock);
515 rescan:
516 	list_for_each_entry(sb, &super_blocks, s_list) {
517 		if (sb->s_dev ==  dev) {
518 			sb->s_count++;
519 			spin_unlock(&sb_lock);
520 			down_read(&sb->s_umount);
521 			if (sb->s_root)
522 				return sb;
523 			up_read(&sb->s_umount);
524 			/* restart only when sb is no longer on the list */
525 			spin_lock(&sb_lock);
526 			if (__put_super_and_need_restart(sb))
527 				goto rescan;
528 		}
529 	}
530 	spin_unlock(&sb_lock);
531 	return NULL;
532 }
533 
534 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
535 {
536         struct super_block *s;
537         struct ustat tmp;
538         struct kstatfs sbuf;
539 	int err = -EINVAL;
540 
541         s = user_get_super(new_decode_dev(dev));
542         if (s == NULL)
543                 goto out;
544 	err = vfs_statfs(s->s_root, &sbuf);
545 	drop_super(s);
546 	if (err)
547 		goto out;
548 
549         memset(&tmp,0,sizeof(struct ustat));
550         tmp.f_tfree = sbuf.f_bfree;
551         tmp.f_tinode = sbuf.f_ffree;
552 
553         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
554 out:
555 	return err;
556 }
557 
558 /**
559  *	mark_files_ro - mark all files read-only
560  *	@sb: superblock in question
561  *
562  *	All files are marked read-only.  We don't care about pending
563  *	delete files so this should be used in 'force' mode only.
564  */
565 
566 static void mark_files_ro(struct super_block *sb)
567 {
568 	struct file *f;
569 
570 	file_list_lock();
571 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
572 		if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
573 			f->f_mode &= ~FMODE_WRITE;
574 	}
575 	file_list_unlock();
576 }
577 
578 /**
579  *	do_remount_sb - asks filesystem to change mount options.
580  *	@sb:	superblock in question
581  *	@flags:	numeric part of options
582  *	@data:	the rest of options
583  *      @force: whether or not to force the change
584  *
585  *	Alters the mount options of a mounted file system.
586  */
587 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
588 {
589 	int retval;
590 
591 #ifdef CONFIG_BLOCK
592 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
593 		return -EACCES;
594 #endif
595 	if (flags & MS_RDONLY)
596 		acct_auto_close(sb);
597 	shrink_dcache_sb(sb);
598 	fsync_super(sb);
599 
600 	/* If we are remounting RDONLY and current sb is read/write,
601 	   make sure there are no rw files opened */
602 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
603 		if (force)
604 			mark_files_ro(sb);
605 		else if (!fs_may_remount_ro(sb))
606 			return -EBUSY;
607 		DQUOT_OFF(sb);
608 	}
609 
610 	if (sb->s_op->remount_fs) {
611 		lock_super(sb);
612 		retval = sb->s_op->remount_fs(sb, &flags, data);
613 		unlock_super(sb);
614 		if (retval)
615 			return retval;
616 	}
617 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
618 	return 0;
619 }
620 
621 static void do_emergency_remount(unsigned long foo)
622 {
623 	struct super_block *sb;
624 
625 	spin_lock(&sb_lock);
626 	list_for_each_entry(sb, &super_blocks, s_list) {
627 		sb->s_count++;
628 		spin_unlock(&sb_lock);
629 		down_read(&sb->s_umount);
630 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
631 			/*
632 			 * ->remount_fs needs lock_kernel().
633 			 *
634 			 * What lock protects sb->s_flags??
635 			 */
636 			lock_kernel();
637 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
638 			unlock_kernel();
639 		}
640 		drop_super(sb);
641 		spin_lock(&sb_lock);
642 	}
643 	spin_unlock(&sb_lock);
644 	printk("Emergency Remount complete\n");
645 }
646 
647 void emergency_remount(void)
648 {
649 	pdflush_operation(do_emergency_remount, 0);
650 }
651 
652 /*
653  * Unnamed block devices are dummy devices used by virtual
654  * filesystems which don't use real block-devices.  -- jrs
655  */
656 
657 static struct idr unnamed_dev_idr;
658 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
659 
660 int set_anon_super(struct super_block *s, void *data)
661 {
662 	int dev;
663 	int error;
664 
665  retry:
666 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
667 		return -ENOMEM;
668 	spin_lock(&unnamed_dev_lock);
669 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
670 	spin_unlock(&unnamed_dev_lock);
671 	if (error == -EAGAIN)
672 		/* We raced and lost with another CPU. */
673 		goto retry;
674 	else if (error)
675 		return -EAGAIN;
676 
677 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
678 		spin_lock(&unnamed_dev_lock);
679 		idr_remove(&unnamed_dev_idr, dev);
680 		spin_unlock(&unnamed_dev_lock);
681 		return -EMFILE;
682 	}
683 	s->s_dev = MKDEV(0, dev & MINORMASK);
684 	return 0;
685 }
686 
687 EXPORT_SYMBOL(set_anon_super);
688 
689 void kill_anon_super(struct super_block *sb)
690 {
691 	int slot = MINOR(sb->s_dev);
692 
693 	generic_shutdown_super(sb);
694 	spin_lock(&unnamed_dev_lock);
695 	idr_remove(&unnamed_dev_idr, slot);
696 	spin_unlock(&unnamed_dev_lock);
697 }
698 
699 EXPORT_SYMBOL(kill_anon_super);
700 
701 void __init unnamed_dev_init(void)
702 {
703 	idr_init(&unnamed_dev_idr);
704 }
705 
706 void kill_litter_super(struct super_block *sb)
707 {
708 	if (sb->s_root)
709 		d_genocide(sb->s_root);
710 	kill_anon_super(sb);
711 }
712 
713 EXPORT_SYMBOL(kill_litter_super);
714 
715 #ifdef CONFIG_BLOCK
716 static int set_bdev_super(struct super_block *s, void *data)
717 {
718 	s->s_bdev = data;
719 	s->s_dev = s->s_bdev->bd_dev;
720 	return 0;
721 }
722 
723 static int test_bdev_super(struct super_block *s, void *data)
724 {
725 	return (void *)s->s_bdev == data;
726 }
727 
728 int get_sb_bdev(struct file_system_type *fs_type,
729 	int flags, const char *dev_name, void *data,
730 	int (*fill_super)(struct super_block *, void *, int),
731 	struct vfsmount *mnt)
732 {
733 	struct block_device *bdev;
734 	struct super_block *s;
735 	int error = 0;
736 
737 	bdev = open_bdev_excl(dev_name, flags, fs_type);
738 	if (IS_ERR(bdev))
739 		return PTR_ERR(bdev);
740 
741 	/*
742 	 * once the super is inserted into the list by sget, s_umount
743 	 * will protect the lockfs code from trying to start a snapshot
744 	 * while we are mounting
745 	 */
746 	down(&bdev->bd_mount_sem);
747 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
748 	up(&bdev->bd_mount_sem);
749 	if (IS_ERR(s))
750 		goto error_s;
751 
752 	if (s->s_root) {
753 		if ((flags ^ s->s_flags) & MS_RDONLY) {
754 			up_write(&s->s_umount);
755 			deactivate_super(s);
756 			error = -EBUSY;
757 			goto error_bdev;
758 		}
759 
760 		close_bdev_excl(bdev);
761 	} else {
762 		char b[BDEVNAME_SIZE];
763 
764 		s->s_flags = flags;
765 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
766 		sb_set_blocksize(s, block_size(bdev));
767 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
768 		if (error) {
769 			up_write(&s->s_umount);
770 			deactivate_super(s);
771 			goto error;
772 		}
773 
774 		s->s_flags |= MS_ACTIVE;
775 	}
776 
777 	return simple_set_mnt(mnt, s);
778 
779 error_s:
780 	error = PTR_ERR(s);
781 error_bdev:
782 	close_bdev_excl(bdev);
783 error:
784 	return error;
785 }
786 
787 EXPORT_SYMBOL(get_sb_bdev);
788 
789 void kill_block_super(struct super_block *sb)
790 {
791 	struct block_device *bdev = sb->s_bdev;
792 
793 	generic_shutdown_super(sb);
794 	sync_blockdev(bdev);
795 	close_bdev_excl(bdev);
796 }
797 
798 EXPORT_SYMBOL(kill_block_super);
799 #endif
800 
801 int get_sb_nodev(struct file_system_type *fs_type,
802 	int flags, void *data,
803 	int (*fill_super)(struct super_block *, void *, int),
804 	struct vfsmount *mnt)
805 {
806 	int error;
807 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
808 
809 	if (IS_ERR(s))
810 		return PTR_ERR(s);
811 
812 	s->s_flags = flags;
813 
814 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
815 	if (error) {
816 		up_write(&s->s_umount);
817 		deactivate_super(s);
818 		return error;
819 	}
820 	s->s_flags |= MS_ACTIVE;
821 	return simple_set_mnt(mnt, s);
822 }
823 
824 EXPORT_SYMBOL(get_sb_nodev);
825 
826 static int compare_single(struct super_block *s, void *p)
827 {
828 	return 1;
829 }
830 
831 int get_sb_single(struct file_system_type *fs_type,
832 	int flags, void *data,
833 	int (*fill_super)(struct super_block *, void *, int),
834 	struct vfsmount *mnt)
835 {
836 	struct super_block *s;
837 	int error;
838 
839 	s = sget(fs_type, compare_single, set_anon_super, NULL);
840 	if (IS_ERR(s))
841 		return PTR_ERR(s);
842 	if (!s->s_root) {
843 		s->s_flags = flags;
844 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
845 		if (error) {
846 			up_write(&s->s_umount);
847 			deactivate_super(s);
848 			return error;
849 		}
850 		s->s_flags |= MS_ACTIVE;
851 	}
852 	do_remount_sb(s, flags, data, 0);
853 	return simple_set_mnt(mnt, s);
854 }
855 
856 EXPORT_SYMBOL(get_sb_single);
857 
858 struct vfsmount *
859 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
860 {
861 	struct vfsmount *mnt;
862 	char *secdata = NULL;
863 	int error;
864 
865 	if (!type)
866 		return ERR_PTR(-ENODEV);
867 
868 	error = -ENOMEM;
869 	mnt = alloc_vfsmnt(name);
870 	if (!mnt)
871 		goto out;
872 
873 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
874 		secdata = alloc_secdata();
875 		if (!secdata)
876 			goto out_mnt;
877 
878 		error = security_sb_copy_data(data, secdata);
879 		if (error)
880 			goto out_free_secdata;
881 	}
882 
883 	error = type->get_sb(type, flags, name, data, mnt);
884 	if (error < 0)
885 		goto out_free_secdata;
886 	BUG_ON(!mnt->mnt_sb);
887 
888  	error = security_sb_kern_mount(mnt->mnt_sb, secdata);
889  	if (error)
890  		goto out_sb;
891 
892 	mnt->mnt_mountpoint = mnt->mnt_root;
893 	mnt->mnt_parent = mnt;
894 	up_write(&mnt->mnt_sb->s_umount);
895 	free_secdata(secdata);
896 	return mnt;
897 out_sb:
898 	dput(mnt->mnt_root);
899 	up_write(&mnt->mnt_sb->s_umount);
900 	deactivate_super(mnt->mnt_sb);
901 out_free_secdata:
902 	free_secdata(secdata);
903 out_mnt:
904 	free_vfsmnt(mnt);
905 out:
906 	return ERR_PTR(error);
907 }
908 
909 EXPORT_SYMBOL_GPL(vfs_kern_mount);
910 
911 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
912 {
913 	int err;
914 	const char *subtype = strchr(fstype, '.');
915 	if (subtype) {
916 		subtype++;
917 		err = -EINVAL;
918 		if (!subtype[0])
919 			goto err;
920 	} else
921 		subtype = "";
922 
923 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
924 	err = -ENOMEM;
925 	if (!mnt->mnt_sb->s_subtype)
926 		goto err;
927 	return mnt;
928 
929  err:
930 	mntput(mnt);
931 	return ERR_PTR(err);
932 }
933 
934 struct vfsmount *
935 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
936 {
937 	struct file_system_type *type = get_fs_type(fstype);
938 	struct vfsmount *mnt;
939 	if (!type)
940 		return ERR_PTR(-ENODEV);
941 	mnt = vfs_kern_mount(type, flags, name, data);
942 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
943 	    !mnt->mnt_sb->s_subtype)
944 		mnt = fs_set_subtype(mnt, fstype);
945 	put_filesystem(type);
946 	return mnt;
947 }
948 EXPORT_SYMBOL_GPL(do_kern_mount);
949 
950 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
951 {
952 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
953 }
954 
955 EXPORT_SYMBOL_GPL(kern_mount_data);
956