xref: /openbmc/linux/fs/super.c (revision f3a8b664)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38 
39 
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!trylock_super(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80 
81 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 	if (!total_objects)
85 		total_objects = 1;
86 
87 	/* proportion the scan between the caches */
88 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91 
92 	/*
93 	 * prune the dcache first as the icache is pinned by it, then
94 	 * prune the icache, followed by the filesystem specific caches
95 	 *
96 	 * Ensure that we always scan at least one object - memcg kmem
97 	 * accounting uses this to fully empty the caches.
98 	 */
99 	sc->nr_to_scan = dentries + 1;
100 	freed = prune_dcache_sb(sb, sc);
101 	sc->nr_to_scan = inodes + 1;
102 	freed += prune_icache_sb(sb, sc);
103 
104 	if (fs_objects) {
105 		sc->nr_to_scan = fs_objects + 1;
106 		freed += sb->s_op->free_cached_objects(sb, sc);
107 	}
108 
109 	up_read(&sb->s_umount);
110 	return freed;
111 }
112 
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 				       struct shrink_control *sc)
115 {
116 	struct super_block *sb;
117 	long	total_objects = 0;
118 
119 	sb = container_of(shrink, struct super_block, s_shrink);
120 
121 	/*
122 	 * Don't call trylock_super as it is a potential
123 	 * scalability bottleneck. The counts could get updated
124 	 * between super_cache_count and super_cache_scan anyway.
125 	 * Call to super_cache_count with shrinker_rwsem held
126 	 * ensures the safety of call to list_lru_shrink_count() and
127 	 * s_op->nr_cached_objects().
128 	 */
129 	if (sb->s_op && sb->s_op->nr_cached_objects)
130 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
131 
132 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134 
135 	total_objects = vfs_pressure_ratio(total_objects);
136 	return total_objects;
137 }
138 
139 static void destroy_super_work(struct work_struct *work)
140 {
141 	struct super_block *s = container_of(work, struct super_block,
142 							destroy_work);
143 	int i;
144 
145 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 	kfree(s);
148 }
149 
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 	struct super_block *s = container_of(head, struct super_block, rcu);
153 	INIT_WORK(&s->destroy_work, destroy_super_work);
154 	schedule_work(&s->destroy_work);
155 }
156 
157 /**
158  *	destroy_super	-	frees a superblock
159  *	@s: superblock to free
160  *
161  *	Frees a superblock.
162  */
163 static void destroy_super(struct super_block *s)
164 {
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	WARN_ON(!list_empty(&s->s_mounts));
169 	put_user_ns(s->s_user_ns);
170 	kfree(s->s_subtype);
171 	kfree(s->s_options);
172 	call_rcu(&s->rcu, destroy_super_rcu);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 
197 	if (security_sb_alloc(s))
198 		goto fail;
199 
200 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 					sb_writers_name[i],
203 					&type->s_writers_key[i]))
204 			goto fail;
205 	}
206 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 	s->s_bdi = &noop_backing_dev_info;
208 	s->s_flags = flags;
209 	if (s->s_user_ns != &init_user_ns)
210 		s->s_iflags |= SB_I_NODEV;
211 	INIT_HLIST_NODE(&s->s_instances);
212 	INIT_HLIST_BL_HEAD(&s->s_anon);
213 	mutex_init(&s->s_sync_lock);
214 	INIT_LIST_HEAD(&s->s_inodes);
215 	spin_lock_init(&s->s_inode_list_lock);
216 	INIT_LIST_HEAD(&s->s_inodes_wb);
217 	spin_lock_init(&s->s_inode_wblist_lock);
218 
219 	if (list_lru_init_memcg(&s->s_dentry_lru))
220 		goto fail;
221 	if (list_lru_init_memcg(&s->s_inode_lru))
222 		goto fail;
223 
224 	init_rwsem(&s->s_umount);
225 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 	/*
227 	 * sget() can have s_umount recursion.
228 	 *
229 	 * When it cannot find a suitable sb, it allocates a new
230 	 * one (this one), and tries again to find a suitable old
231 	 * one.
232 	 *
233 	 * In case that succeeds, it will acquire the s_umount
234 	 * lock of the old one. Since these are clearly distrinct
235 	 * locks, and this object isn't exposed yet, there's no
236 	 * risk of deadlocks.
237 	 *
238 	 * Annotate this by putting this lock in a different
239 	 * subclass.
240 	 */
241 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 	s->s_count = 1;
243 	atomic_set(&s->s_active, 1);
244 	mutex_init(&s->s_vfs_rename_mutex);
245 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 	mutex_init(&s->s_dquot.dqio_mutex);
247 	mutex_init(&s->s_dquot.dqonoff_mutex);
248 	s->s_maxbytes = MAX_NON_LFS;
249 	s->s_op = &default_op;
250 	s->s_time_gran = 1000000000;
251 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
252 
253 	s->s_shrink.seeks = DEFAULT_SEEKS;
254 	s->s_shrink.scan_objects = super_cache_scan;
255 	s->s_shrink.count_objects = super_cache_count;
256 	s->s_shrink.batch = 1024;
257 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
258 	return s;
259 
260 fail:
261 	destroy_super(s);
262 	return NULL;
263 }
264 
265 /* Superblock refcounting  */
266 
267 /*
268  * Drop a superblock's refcount.  The caller must hold sb_lock.
269  */
270 static void __put_super(struct super_block *sb)
271 {
272 	if (!--sb->s_count) {
273 		list_del_init(&sb->s_list);
274 		destroy_super(sb);
275 	}
276 }
277 
278 /**
279  *	put_super	-	drop a temporary reference to superblock
280  *	@sb: superblock in question
281  *
282  *	Drops a temporary reference, frees superblock if there's no
283  *	references left.
284  */
285 static void put_super(struct super_block *sb)
286 {
287 	spin_lock(&sb_lock);
288 	__put_super(sb);
289 	spin_unlock(&sb_lock);
290 }
291 
292 
293 /**
294  *	deactivate_locked_super	-	drop an active reference to superblock
295  *	@s: superblock to deactivate
296  *
297  *	Drops an active reference to superblock, converting it into a temporary
298  *	one if there is no other active references left.  In that case we
299  *	tell fs driver to shut it down and drop the temporary reference we
300  *	had just acquired.
301  *
302  *	Caller holds exclusive lock on superblock; that lock is released.
303  */
304 void deactivate_locked_super(struct super_block *s)
305 {
306 	struct file_system_type *fs = s->s_type;
307 	if (atomic_dec_and_test(&s->s_active)) {
308 		cleancache_invalidate_fs(s);
309 		unregister_shrinker(&s->s_shrink);
310 		fs->kill_sb(s);
311 
312 		/*
313 		 * Since list_lru_destroy() may sleep, we cannot call it from
314 		 * put_super(), where we hold the sb_lock. Therefore we destroy
315 		 * the lru lists right now.
316 		 */
317 		list_lru_destroy(&s->s_dentry_lru);
318 		list_lru_destroy(&s->s_inode_lru);
319 
320 		put_filesystem(fs);
321 		put_super(s);
322 	} else {
323 		up_write(&s->s_umount);
324 	}
325 }
326 
327 EXPORT_SYMBOL(deactivate_locked_super);
328 
329 /**
330  *	deactivate_super	-	drop an active reference to superblock
331  *	@s: superblock to deactivate
332  *
333  *	Variant of deactivate_locked_super(), except that superblock is *not*
334  *	locked by caller.  If we are going to drop the final active reference,
335  *	lock will be acquired prior to that.
336  */
337 void deactivate_super(struct super_block *s)
338 {
339         if (!atomic_add_unless(&s->s_active, -1, 1)) {
340 		down_write(&s->s_umount);
341 		deactivate_locked_super(s);
342 	}
343 }
344 
345 EXPORT_SYMBOL(deactivate_super);
346 
347 /**
348  *	grab_super - acquire an active reference
349  *	@s: reference we are trying to make active
350  *
351  *	Tries to acquire an active reference.  grab_super() is used when we
352  * 	had just found a superblock in super_blocks or fs_type->fs_supers
353  *	and want to turn it into a full-blown active reference.  grab_super()
354  *	is called with sb_lock held and drops it.  Returns 1 in case of
355  *	success, 0 if we had failed (superblock contents was already dead or
356  *	dying when grab_super() had been called).  Note that this is only
357  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
358  *	of their type), so increment of ->s_count is OK here.
359  */
360 static int grab_super(struct super_block *s) __releases(sb_lock)
361 {
362 	s->s_count++;
363 	spin_unlock(&sb_lock);
364 	down_write(&s->s_umount);
365 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
366 		put_super(s);
367 		return 1;
368 	}
369 	up_write(&s->s_umount);
370 	put_super(s);
371 	return 0;
372 }
373 
374 /*
375  *	trylock_super - try to grab ->s_umount shared
376  *	@sb: reference we are trying to grab
377  *
378  *	Try to prevent fs shutdown.  This is used in places where we
379  *	cannot take an active reference but we need to ensure that the
380  *	filesystem is not shut down while we are working on it. It returns
381  *	false if we cannot acquire s_umount or if we lose the race and
382  *	filesystem already got into shutdown, and returns true with the s_umount
383  *	lock held in read mode in case of success. On successful return,
384  *	the caller must drop the s_umount lock when done.
385  *
386  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
387  *	The reason why it's safe is that we are OK with doing trylock instead
388  *	of down_read().  There's a couple of places that are OK with that, but
389  *	it's very much not a general-purpose interface.
390  */
391 bool trylock_super(struct super_block *sb)
392 {
393 	if (down_read_trylock(&sb->s_umount)) {
394 		if (!hlist_unhashed(&sb->s_instances) &&
395 		    sb->s_root && (sb->s_flags & MS_BORN))
396 			return true;
397 		up_read(&sb->s_umount);
398 	}
399 
400 	return false;
401 }
402 
403 /**
404  *	generic_shutdown_super	-	common helper for ->kill_sb()
405  *	@sb: superblock to kill
406  *
407  *	generic_shutdown_super() does all fs-independent work on superblock
408  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
409  *	that need destruction out of superblock, call generic_shutdown_super()
410  *	and release aforementioned objects.  Note: dentries and inodes _are_
411  *	taken care of and do not need specific handling.
412  *
413  *	Upon calling this function, the filesystem may no longer alter or
414  *	rearrange the set of dentries belonging to this super_block, nor may it
415  *	change the attachments of dentries to inodes.
416  */
417 void generic_shutdown_super(struct super_block *sb)
418 {
419 	const struct super_operations *sop = sb->s_op;
420 
421 	if (sb->s_root) {
422 		shrink_dcache_for_umount(sb);
423 		sync_filesystem(sb);
424 		sb->s_flags &= ~MS_ACTIVE;
425 
426 		fsnotify_unmount_inodes(sb);
427 		cgroup_writeback_umount();
428 
429 		evict_inodes(sb);
430 
431 		if (sb->s_dio_done_wq) {
432 			destroy_workqueue(sb->s_dio_done_wq);
433 			sb->s_dio_done_wq = NULL;
434 		}
435 
436 		if (sop->put_super)
437 			sop->put_super(sb);
438 
439 		if (!list_empty(&sb->s_inodes)) {
440 			printk("VFS: Busy inodes after unmount of %s. "
441 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
442 			   sb->s_id);
443 		}
444 	}
445 	spin_lock(&sb_lock);
446 	/* should be initialized for __put_super_and_need_restart() */
447 	hlist_del_init(&sb->s_instances);
448 	spin_unlock(&sb_lock);
449 	up_write(&sb->s_umount);
450 }
451 
452 EXPORT_SYMBOL(generic_shutdown_super);
453 
454 /**
455  *	sget_userns -	find or create a superblock
456  *	@type:	filesystem type superblock should belong to
457  *	@test:	comparison callback
458  *	@set:	setup callback
459  *	@flags:	mount flags
460  *	@user_ns: User namespace for the super_block
461  *	@data:	argument to each of them
462  */
463 struct super_block *sget_userns(struct file_system_type *type,
464 			int (*test)(struct super_block *,void *),
465 			int (*set)(struct super_block *,void *),
466 			int flags, struct user_namespace *user_ns,
467 			void *data)
468 {
469 	struct super_block *s = NULL;
470 	struct super_block *old;
471 	int err;
472 
473 	if (!(flags & MS_KERNMOUNT) &&
474 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
475 	    !capable(CAP_SYS_ADMIN))
476 		return ERR_PTR(-EPERM);
477 retry:
478 	spin_lock(&sb_lock);
479 	if (test) {
480 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
481 			if (!test(old, data))
482 				continue;
483 			if (user_ns != old->s_user_ns) {
484 				spin_unlock(&sb_lock);
485 				if (s) {
486 					up_write(&s->s_umount);
487 					destroy_super(s);
488 				}
489 				return ERR_PTR(-EBUSY);
490 			}
491 			if (!grab_super(old))
492 				goto retry;
493 			if (s) {
494 				up_write(&s->s_umount);
495 				destroy_super(s);
496 				s = NULL;
497 			}
498 			return old;
499 		}
500 	}
501 	if (!s) {
502 		spin_unlock(&sb_lock);
503 		s = alloc_super(type, flags, user_ns);
504 		if (!s)
505 			return ERR_PTR(-ENOMEM);
506 		goto retry;
507 	}
508 
509 	err = set(s, data);
510 	if (err) {
511 		spin_unlock(&sb_lock);
512 		up_write(&s->s_umount);
513 		destroy_super(s);
514 		return ERR_PTR(err);
515 	}
516 	s->s_type = type;
517 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
518 	list_add_tail(&s->s_list, &super_blocks);
519 	hlist_add_head(&s->s_instances, &type->fs_supers);
520 	spin_unlock(&sb_lock);
521 	get_filesystem(type);
522 	register_shrinker(&s->s_shrink);
523 	return s;
524 }
525 
526 EXPORT_SYMBOL(sget_userns);
527 
528 /**
529  *	sget	-	find or create a superblock
530  *	@type:	  filesystem type superblock should belong to
531  *	@test:	  comparison callback
532  *	@set:	  setup callback
533  *	@flags:	  mount flags
534  *	@data:	  argument to each of them
535  */
536 struct super_block *sget(struct file_system_type *type,
537 			int (*test)(struct super_block *,void *),
538 			int (*set)(struct super_block *,void *),
539 			int flags,
540 			void *data)
541 {
542 	struct user_namespace *user_ns = current_user_ns();
543 
544 	/* Ensure the requestor has permissions over the target filesystem */
545 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
546 		return ERR_PTR(-EPERM);
547 
548 	return sget_userns(type, test, set, flags, user_ns, data);
549 }
550 
551 EXPORT_SYMBOL(sget);
552 
553 void drop_super(struct super_block *sb)
554 {
555 	up_read(&sb->s_umount);
556 	put_super(sb);
557 }
558 
559 EXPORT_SYMBOL(drop_super);
560 
561 /**
562  *	iterate_supers - call function for all active superblocks
563  *	@f: function to call
564  *	@arg: argument to pass to it
565  *
566  *	Scans the superblock list and calls given function, passing it
567  *	locked superblock and given argument.
568  */
569 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
570 {
571 	struct super_block *sb, *p = NULL;
572 
573 	spin_lock(&sb_lock);
574 	list_for_each_entry(sb, &super_blocks, s_list) {
575 		if (hlist_unhashed(&sb->s_instances))
576 			continue;
577 		sb->s_count++;
578 		spin_unlock(&sb_lock);
579 
580 		down_read(&sb->s_umount);
581 		if (sb->s_root && (sb->s_flags & MS_BORN))
582 			f(sb, arg);
583 		up_read(&sb->s_umount);
584 
585 		spin_lock(&sb_lock);
586 		if (p)
587 			__put_super(p);
588 		p = sb;
589 	}
590 	if (p)
591 		__put_super(p);
592 	spin_unlock(&sb_lock);
593 }
594 
595 /**
596  *	iterate_supers_type - call function for superblocks of given type
597  *	@type: fs type
598  *	@f: function to call
599  *	@arg: argument to pass to it
600  *
601  *	Scans the superblock list and calls given function, passing it
602  *	locked superblock and given argument.
603  */
604 void iterate_supers_type(struct file_system_type *type,
605 	void (*f)(struct super_block *, void *), void *arg)
606 {
607 	struct super_block *sb, *p = NULL;
608 
609 	spin_lock(&sb_lock);
610 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
611 		sb->s_count++;
612 		spin_unlock(&sb_lock);
613 
614 		down_read(&sb->s_umount);
615 		if (sb->s_root && (sb->s_flags & MS_BORN))
616 			f(sb, arg);
617 		up_read(&sb->s_umount);
618 
619 		spin_lock(&sb_lock);
620 		if (p)
621 			__put_super(p);
622 		p = sb;
623 	}
624 	if (p)
625 		__put_super(p);
626 	spin_unlock(&sb_lock);
627 }
628 
629 EXPORT_SYMBOL(iterate_supers_type);
630 
631 /**
632  *	get_super - get the superblock of a device
633  *	@bdev: device to get the superblock for
634  *
635  *	Scans the superblock list and finds the superblock of the file system
636  *	mounted on the device given. %NULL is returned if no match is found.
637  */
638 
639 struct super_block *get_super(struct block_device *bdev)
640 {
641 	struct super_block *sb;
642 
643 	if (!bdev)
644 		return NULL;
645 
646 	spin_lock(&sb_lock);
647 rescan:
648 	list_for_each_entry(sb, &super_blocks, s_list) {
649 		if (hlist_unhashed(&sb->s_instances))
650 			continue;
651 		if (sb->s_bdev == bdev) {
652 			sb->s_count++;
653 			spin_unlock(&sb_lock);
654 			down_read(&sb->s_umount);
655 			/* still alive? */
656 			if (sb->s_root && (sb->s_flags & MS_BORN))
657 				return sb;
658 			up_read(&sb->s_umount);
659 			/* nope, got unmounted */
660 			spin_lock(&sb_lock);
661 			__put_super(sb);
662 			goto rescan;
663 		}
664 	}
665 	spin_unlock(&sb_lock);
666 	return NULL;
667 }
668 
669 EXPORT_SYMBOL(get_super);
670 
671 /**
672  *	get_super_thawed - get thawed superblock of a device
673  *	@bdev: device to get the superblock for
674  *
675  *	Scans the superblock list and finds the superblock of the file system
676  *	mounted on the device. The superblock is returned once it is thawed
677  *	(or immediately if it was not frozen). %NULL is returned if no match
678  *	is found.
679  */
680 struct super_block *get_super_thawed(struct block_device *bdev)
681 {
682 	while (1) {
683 		struct super_block *s = get_super(bdev);
684 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
685 			return s;
686 		up_read(&s->s_umount);
687 		wait_event(s->s_writers.wait_unfrozen,
688 			   s->s_writers.frozen == SB_UNFROZEN);
689 		put_super(s);
690 	}
691 }
692 EXPORT_SYMBOL(get_super_thawed);
693 
694 /**
695  * get_active_super - get an active reference to the superblock of a device
696  * @bdev: device to get the superblock for
697  *
698  * Scans the superblock list and finds the superblock of the file system
699  * mounted on the device given.  Returns the superblock with an active
700  * reference or %NULL if none was found.
701  */
702 struct super_block *get_active_super(struct block_device *bdev)
703 {
704 	struct super_block *sb;
705 
706 	if (!bdev)
707 		return NULL;
708 
709 restart:
710 	spin_lock(&sb_lock);
711 	list_for_each_entry(sb, &super_blocks, s_list) {
712 		if (hlist_unhashed(&sb->s_instances))
713 			continue;
714 		if (sb->s_bdev == bdev) {
715 			if (!grab_super(sb))
716 				goto restart;
717 			up_write(&sb->s_umount);
718 			return sb;
719 		}
720 	}
721 	spin_unlock(&sb_lock);
722 	return NULL;
723 }
724 
725 struct super_block *user_get_super(dev_t dev)
726 {
727 	struct super_block *sb;
728 
729 	spin_lock(&sb_lock);
730 rescan:
731 	list_for_each_entry(sb, &super_blocks, s_list) {
732 		if (hlist_unhashed(&sb->s_instances))
733 			continue;
734 		if (sb->s_dev ==  dev) {
735 			sb->s_count++;
736 			spin_unlock(&sb_lock);
737 			down_read(&sb->s_umount);
738 			/* still alive? */
739 			if (sb->s_root && (sb->s_flags & MS_BORN))
740 				return sb;
741 			up_read(&sb->s_umount);
742 			/* nope, got unmounted */
743 			spin_lock(&sb_lock);
744 			__put_super(sb);
745 			goto rescan;
746 		}
747 	}
748 	spin_unlock(&sb_lock);
749 	return NULL;
750 }
751 
752 /**
753  *	do_remount_sb - asks filesystem to change mount options.
754  *	@sb:	superblock in question
755  *	@flags:	numeric part of options
756  *	@data:	the rest of options
757  *      @force: whether or not to force the change
758  *
759  *	Alters the mount options of a mounted file system.
760  */
761 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
762 {
763 	int retval;
764 	int remount_ro;
765 
766 	if (sb->s_writers.frozen != SB_UNFROZEN)
767 		return -EBUSY;
768 
769 #ifdef CONFIG_BLOCK
770 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
771 		return -EACCES;
772 #endif
773 
774 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
775 
776 	if (remount_ro) {
777 		if (!hlist_empty(&sb->s_pins)) {
778 			up_write(&sb->s_umount);
779 			group_pin_kill(&sb->s_pins);
780 			down_write(&sb->s_umount);
781 			if (!sb->s_root)
782 				return 0;
783 			if (sb->s_writers.frozen != SB_UNFROZEN)
784 				return -EBUSY;
785 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
786 		}
787 	}
788 	shrink_dcache_sb(sb);
789 
790 	/* If we are remounting RDONLY and current sb is read/write,
791 	   make sure there are no rw files opened */
792 	if (remount_ro) {
793 		if (force) {
794 			sb->s_readonly_remount = 1;
795 			smp_wmb();
796 		} else {
797 			retval = sb_prepare_remount_readonly(sb);
798 			if (retval)
799 				return retval;
800 		}
801 	}
802 
803 	if (sb->s_op->remount_fs) {
804 		retval = sb->s_op->remount_fs(sb, &flags, data);
805 		if (retval) {
806 			if (!force)
807 				goto cancel_readonly;
808 			/* If forced remount, go ahead despite any errors */
809 			WARN(1, "forced remount of a %s fs returned %i\n",
810 			     sb->s_type->name, retval);
811 		}
812 	}
813 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
814 	/* Needs to be ordered wrt mnt_is_readonly() */
815 	smp_wmb();
816 	sb->s_readonly_remount = 0;
817 
818 	/*
819 	 * Some filesystems modify their metadata via some other path than the
820 	 * bdev buffer cache (eg. use a private mapping, or directories in
821 	 * pagecache, etc). Also file data modifications go via their own
822 	 * mappings. So If we try to mount readonly then copy the filesystem
823 	 * from bdev, we could get stale data, so invalidate it to give a best
824 	 * effort at coherency.
825 	 */
826 	if (remount_ro && sb->s_bdev)
827 		invalidate_bdev(sb->s_bdev);
828 	return 0;
829 
830 cancel_readonly:
831 	sb->s_readonly_remount = 0;
832 	return retval;
833 }
834 
835 static void do_emergency_remount(struct work_struct *work)
836 {
837 	struct super_block *sb, *p = NULL;
838 
839 	spin_lock(&sb_lock);
840 	list_for_each_entry(sb, &super_blocks, s_list) {
841 		if (hlist_unhashed(&sb->s_instances))
842 			continue;
843 		sb->s_count++;
844 		spin_unlock(&sb_lock);
845 		down_write(&sb->s_umount);
846 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
847 		    !(sb->s_flags & MS_RDONLY)) {
848 			/*
849 			 * What lock protects sb->s_flags??
850 			 */
851 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
852 		}
853 		up_write(&sb->s_umount);
854 		spin_lock(&sb_lock);
855 		if (p)
856 			__put_super(p);
857 		p = sb;
858 	}
859 	if (p)
860 		__put_super(p);
861 	spin_unlock(&sb_lock);
862 	kfree(work);
863 	printk("Emergency Remount complete\n");
864 }
865 
866 void emergency_remount(void)
867 {
868 	struct work_struct *work;
869 
870 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
871 	if (work) {
872 		INIT_WORK(work, do_emergency_remount);
873 		schedule_work(work);
874 	}
875 }
876 
877 /*
878  * Unnamed block devices are dummy devices used by virtual
879  * filesystems which don't use real block-devices.  -- jrs
880  */
881 
882 static DEFINE_IDA(unnamed_dev_ida);
883 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
884 /* Many userspace utilities consider an FSID of 0 invalid.
885  * Always return at least 1 from get_anon_bdev.
886  */
887 static int unnamed_dev_start = 1;
888 
889 int get_anon_bdev(dev_t *p)
890 {
891 	int dev;
892 	int error;
893 
894  retry:
895 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
896 		return -ENOMEM;
897 	spin_lock(&unnamed_dev_lock);
898 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
899 	if (!error)
900 		unnamed_dev_start = dev + 1;
901 	spin_unlock(&unnamed_dev_lock);
902 	if (error == -EAGAIN)
903 		/* We raced and lost with another CPU. */
904 		goto retry;
905 	else if (error)
906 		return -EAGAIN;
907 
908 	if (dev >= (1 << MINORBITS)) {
909 		spin_lock(&unnamed_dev_lock);
910 		ida_remove(&unnamed_dev_ida, dev);
911 		if (unnamed_dev_start > dev)
912 			unnamed_dev_start = dev;
913 		spin_unlock(&unnamed_dev_lock);
914 		return -EMFILE;
915 	}
916 	*p = MKDEV(0, dev & MINORMASK);
917 	return 0;
918 }
919 EXPORT_SYMBOL(get_anon_bdev);
920 
921 void free_anon_bdev(dev_t dev)
922 {
923 	int slot = MINOR(dev);
924 	spin_lock(&unnamed_dev_lock);
925 	ida_remove(&unnamed_dev_ida, slot);
926 	if (slot < unnamed_dev_start)
927 		unnamed_dev_start = slot;
928 	spin_unlock(&unnamed_dev_lock);
929 }
930 EXPORT_SYMBOL(free_anon_bdev);
931 
932 int set_anon_super(struct super_block *s, void *data)
933 {
934 	return get_anon_bdev(&s->s_dev);
935 }
936 
937 EXPORT_SYMBOL(set_anon_super);
938 
939 void kill_anon_super(struct super_block *sb)
940 {
941 	dev_t dev = sb->s_dev;
942 	generic_shutdown_super(sb);
943 	free_anon_bdev(dev);
944 }
945 
946 EXPORT_SYMBOL(kill_anon_super);
947 
948 void kill_litter_super(struct super_block *sb)
949 {
950 	if (sb->s_root)
951 		d_genocide(sb->s_root);
952 	kill_anon_super(sb);
953 }
954 
955 EXPORT_SYMBOL(kill_litter_super);
956 
957 static int ns_test_super(struct super_block *sb, void *data)
958 {
959 	return sb->s_fs_info == data;
960 }
961 
962 static int ns_set_super(struct super_block *sb, void *data)
963 {
964 	sb->s_fs_info = data;
965 	return set_anon_super(sb, NULL);
966 }
967 
968 struct dentry *mount_ns(struct file_system_type *fs_type,
969 	int flags, void *data, void *ns, struct user_namespace *user_ns,
970 	int (*fill_super)(struct super_block *, void *, int))
971 {
972 	struct super_block *sb;
973 
974 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
975 	 * over the namespace.
976 	 */
977 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
978 		return ERR_PTR(-EPERM);
979 
980 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
981 			 user_ns, ns);
982 	if (IS_ERR(sb))
983 		return ERR_CAST(sb);
984 
985 	if (!sb->s_root) {
986 		int err;
987 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
988 		if (err) {
989 			deactivate_locked_super(sb);
990 			return ERR_PTR(err);
991 		}
992 
993 		sb->s_flags |= MS_ACTIVE;
994 	}
995 
996 	return dget(sb->s_root);
997 }
998 
999 EXPORT_SYMBOL(mount_ns);
1000 
1001 #ifdef CONFIG_BLOCK
1002 static int set_bdev_super(struct super_block *s, void *data)
1003 {
1004 	s->s_bdev = data;
1005 	s->s_dev = s->s_bdev->bd_dev;
1006 
1007 	/*
1008 	 * We set the bdi here to the queue backing, file systems can
1009 	 * overwrite this in ->fill_super()
1010 	 */
1011 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1012 	return 0;
1013 }
1014 
1015 static int test_bdev_super(struct super_block *s, void *data)
1016 {
1017 	return (void *)s->s_bdev == data;
1018 }
1019 
1020 struct dentry *mount_bdev(struct file_system_type *fs_type,
1021 	int flags, const char *dev_name, void *data,
1022 	int (*fill_super)(struct super_block *, void *, int))
1023 {
1024 	struct block_device *bdev;
1025 	struct super_block *s;
1026 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1027 	int error = 0;
1028 
1029 	if (!(flags & MS_RDONLY))
1030 		mode |= FMODE_WRITE;
1031 
1032 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1033 	if (IS_ERR(bdev))
1034 		return ERR_CAST(bdev);
1035 
1036 	/*
1037 	 * once the super is inserted into the list by sget, s_umount
1038 	 * will protect the lockfs code from trying to start a snapshot
1039 	 * while we are mounting
1040 	 */
1041 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1042 	if (bdev->bd_fsfreeze_count > 0) {
1043 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1044 		error = -EBUSY;
1045 		goto error_bdev;
1046 	}
1047 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1048 		 bdev);
1049 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1050 	if (IS_ERR(s))
1051 		goto error_s;
1052 
1053 	if (s->s_root) {
1054 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1055 			deactivate_locked_super(s);
1056 			error = -EBUSY;
1057 			goto error_bdev;
1058 		}
1059 
1060 		/*
1061 		 * s_umount nests inside bd_mutex during
1062 		 * __invalidate_device().  blkdev_put() acquires
1063 		 * bd_mutex and can't be called under s_umount.  Drop
1064 		 * s_umount temporarily.  This is safe as we're
1065 		 * holding an active reference.
1066 		 */
1067 		up_write(&s->s_umount);
1068 		blkdev_put(bdev, mode);
1069 		down_write(&s->s_umount);
1070 	} else {
1071 		s->s_mode = mode;
1072 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1073 		sb_set_blocksize(s, block_size(bdev));
1074 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1075 		if (error) {
1076 			deactivate_locked_super(s);
1077 			goto error;
1078 		}
1079 
1080 		s->s_flags |= MS_ACTIVE;
1081 		bdev->bd_super = s;
1082 	}
1083 
1084 	return dget(s->s_root);
1085 
1086 error_s:
1087 	error = PTR_ERR(s);
1088 error_bdev:
1089 	blkdev_put(bdev, mode);
1090 error:
1091 	return ERR_PTR(error);
1092 }
1093 EXPORT_SYMBOL(mount_bdev);
1094 
1095 void kill_block_super(struct super_block *sb)
1096 {
1097 	struct block_device *bdev = sb->s_bdev;
1098 	fmode_t mode = sb->s_mode;
1099 
1100 	bdev->bd_super = NULL;
1101 	generic_shutdown_super(sb);
1102 	sync_blockdev(bdev);
1103 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1104 	blkdev_put(bdev, mode | FMODE_EXCL);
1105 }
1106 
1107 EXPORT_SYMBOL(kill_block_super);
1108 #endif
1109 
1110 struct dentry *mount_nodev(struct file_system_type *fs_type,
1111 	int flags, void *data,
1112 	int (*fill_super)(struct super_block *, void *, int))
1113 {
1114 	int error;
1115 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1116 
1117 	if (IS_ERR(s))
1118 		return ERR_CAST(s);
1119 
1120 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1121 	if (error) {
1122 		deactivate_locked_super(s);
1123 		return ERR_PTR(error);
1124 	}
1125 	s->s_flags |= MS_ACTIVE;
1126 	return dget(s->s_root);
1127 }
1128 EXPORT_SYMBOL(mount_nodev);
1129 
1130 static int compare_single(struct super_block *s, void *p)
1131 {
1132 	return 1;
1133 }
1134 
1135 struct dentry *mount_single(struct file_system_type *fs_type,
1136 	int flags, void *data,
1137 	int (*fill_super)(struct super_block *, void *, int))
1138 {
1139 	struct super_block *s;
1140 	int error;
1141 
1142 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1143 	if (IS_ERR(s))
1144 		return ERR_CAST(s);
1145 	if (!s->s_root) {
1146 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1147 		if (error) {
1148 			deactivate_locked_super(s);
1149 			return ERR_PTR(error);
1150 		}
1151 		s->s_flags |= MS_ACTIVE;
1152 	} else {
1153 		do_remount_sb(s, flags, data, 0);
1154 	}
1155 	return dget(s->s_root);
1156 }
1157 EXPORT_SYMBOL(mount_single);
1158 
1159 struct dentry *
1160 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1161 {
1162 	struct dentry *root;
1163 	struct super_block *sb;
1164 	char *secdata = NULL;
1165 	int error = -ENOMEM;
1166 
1167 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1168 		secdata = alloc_secdata();
1169 		if (!secdata)
1170 			goto out;
1171 
1172 		error = security_sb_copy_data(data, secdata);
1173 		if (error)
1174 			goto out_free_secdata;
1175 	}
1176 
1177 	root = type->mount(type, flags, name, data);
1178 	if (IS_ERR(root)) {
1179 		error = PTR_ERR(root);
1180 		goto out_free_secdata;
1181 	}
1182 	sb = root->d_sb;
1183 	BUG_ON(!sb);
1184 	WARN_ON(!sb->s_bdi);
1185 	sb->s_flags |= MS_BORN;
1186 
1187 	error = security_sb_kern_mount(sb, flags, secdata);
1188 	if (error)
1189 		goto out_sb;
1190 
1191 	/*
1192 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1193 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1194 	 * this warning for a little while to try and catch filesystems that
1195 	 * violate this rule.
1196 	 */
1197 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1198 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1199 
1200 	up_write(&sb->s_umount);
1201 	free_secdata(secdata);
1202 	return root;
1203 out_sb:
1204 	dput(root);
1205 	deactivate_locked_super(sb);
1206 out_free_secdata:
1207 	free_secdata(secdata);
1208 out:
1209 	return ERR_PTR(error);
1210 }
1211 
1212 /*
1213  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1214  * instead.
1215  */
1216 void __sb_end_write(struct super_block *sb, int level)
1217 {
1218 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1219 }
1220 EXPORT_SYMBOL(__sb_end_write);
1221 
1222 /*
1223  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1224  * instead.
1225  */
1226 int __sb_start_write(struct super_block *sb, int level, bool wait)
1227 {
1228 	bool force_trylock = false;
1229 	int ret = 1;
1230 
1231 #ifdef CONFIG_LOCKDEP
1232 	/*
1233 	 * We want lockdep to tell us about possible deadlocks with freezing
1234 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1235 	 * protection works as getting a read lock but there are subtle
1236 	 * problems. XFS for example gets freeze protection on internal level
1237 	 * twice in some cases, which is OK only because we already hold a
1238 	 * freeze protection also on higher level. Due to these cases we have
1239 	 * to use wait == F (trylock mode) which must not fail.
1240 	 */
1241 	if (wait) {
1242 		int i;
1243 
1244 		for (i = 0; i < level - 1; i++)
1245 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1246 				force_trylock = true;
1247 				break;
1248 			}
1249 	}
1250 #endif
1251 	if (wait && !force_trylock)
1252 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1253 	else
1254 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1255 
1256 	WARN_ON(force_trylock && !ret);
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL(__sb_start_write);
1260 
1261 /**
1262  * sb_wait_write - wait until all writers to given file system finish
1263  * @sb: the super for which we wait
1264  * @level: type of writers we wait for (normal vs page fault)
1265  *
1266  * This function waits until there are no writers of given type to given file
1267  * system.
1268  */
1269 static void sb_wait_write(struct super_block *sb, int level)
1270 {
1271 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1272 }
1273 
1274 /*
1275  * We are going to return to userspace and forget about these locks, the
1276  * ownership goes to the caller of thaw_super() which does unlock().
1277  */
1278 static void lockdep_sb_freeze_release(struct super_block *sb)
1279 {
1280 	int level;
1281 
1282 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1283 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1284 }
1285 
1286 /*
1287  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1288  */
1289 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1290 {
1291 	int level;
1292 
1293 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1294 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1295 }
1296 
1297 static void sb_freeze_unlock(struct super_block *sb)
1298 {
1299 	int level;
1300 
1301 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1302 		percpu_up_write(sb->s_writers.rw_sem + level);
1303 }
1304 
1305 /**
1306  * freeze_super - lock the filesystem and force it into a consistent state
1307  * @sb: the super to lock
1308  *
1309  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1310  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1311  * -EBUSY.
1312  *
1313  * During this function, sb->s_writers.frozen goes through these values:
1314  *
1315  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1316  *
1317  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1318  * writes should be blocked, though page faults are still allowed. We wait for
1319  * all writes to complete and then proceed to the next stage.
1320  *
1321  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1322  * but internal fs threads can still modify the filesystem (although they
1323  * should not dirty new pages or inodes), writeback can run etc. After waiting
1324  * for all running page faults we sync the filesystem which will clean all
1325  * dirty pages and inodes (no new dirty pages or inodes can be created when
1326  * sync is running).
1327  *
1328  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1329  * modification are blocked (e.g. XFS preallocation truncation on inode
1330  * reclaim). This is usually implemented by blocking new transactions for
1331  * filesystems that have them and need this additional guard. After all
1332  * internal writers are finished we call ->freeze_fs() to finish filesystem
1333  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1334  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1335  *
1336  * sb->s_writers.frozen is protected by sb->s_umount.
1337  */
1338 int freeze_super(struct super_block *sb)
1339 {
1340 	int ret;
1341 
1342 	atomic_inc(&sb->s_active);
1343 	down_write(&sb->s_umount);
1344 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1345 		deactivate_locked_super(sb);
1346 		return -EBUSY;
1347 	}
1348 
1349 	if (!(sb->s_flags & MS_BORN)) {
1350 		up_write(&sb->s_umount);
1351 		return 0;	/* sic - it's "nothing to do" */
1352 	}
1353 
1354 	if (sb->s_flags & MS_RDONLY) {
1355 		/* Nothing to do really... */
1356 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1357 		up_write(&sb->s_umount);
1358 		return 0;
1359 	}
1360 
1361 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1362 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1363 	up_write(&sb->s_umount);
1364 	sb_wait_write(sb, SB_FREEZE_WRITE);
1365 	down_write(&sb->s_umount);
1366 
1367 	/* Now we go and block page faults... */
1368 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1369 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1370 
1371 	/* All writers are done so after syncing there won't be dirty data */
1372 	sync_filesystem(sb);
1373 
1374 	/* Now wait for internal filesystem counter */
1375 	sb->s_writers.frozen = SB_FREEZE_FS;
1376 	sb_wait_write(sb, SB_FREEZE_FS);
1377 
1378 	if (sb->s_op->freeze_fs) {
1379 		ret = sb->s_op->freeze_fs(sb);
1380 		if (ret) {
1381 			printk(KERN_ERR
1382 				"VFS:Filesystem freeze failed\n");
1383 			sb->s_writers.frozen = SB_UNFROZEN;
1384 			sb_freeze_unlock(sb);
1385 			wake_up(&sb->s_writers.wait_unfrozen);
1386 			deactivate_locked_super(sb);
1387 			return ret;
1388 		}
1389 	}
1390 	/*
1391 	 * For debugging purposes so that fs can warn if it sees write activity
1392 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1393 	 */
1394 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1395 	lockdep_sb_freeze_release(sb);
1396 	up_write(&sb->s_umount);
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL(freeze_super);
1400 
1401 /**
1402  * thaw_super -- unlock filesystem
1403  * @sb: the super to thaw
1404  *
1405  * Unlocks the filesystem and marks it writeable again after freeze_super().
1406  */
1407 int thaw_super(struct super_block *sb)
1408 {
1409 	int error;
1410 
1411 	down_write(&sb->s_umount);
1412 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1413 		up_write(&sb->s_umount);
1414 		return -EINVAL;
1415 	}
1416 
1417 	if (sb->s_flags & MS_RDONLY) {
1418 		sb->s_writers.frozen = SB_UNFROZEN;
1419 		goto out;
1420 	}
1421 
1422 	lockdep_sb_freeze_acquire(sb);
1423 
1424 	if (sb->s_op->unfreeze_fs) {
1425 		error = sb->s_op->unfreeze_fs(sb);
1426 		if (error) {
1427 			printk(KERN_ERR
1428 				"VFS:Filesystem thaw failed\n");
1429 			lockdep_sb_freeze_release(sb);
1430 			up_write(&sb->s_umount);
1431 			return error;
1432 		}
1433 	}
1434 
1435 	sb->s_writers.frozen = SB_UNFROZEN;
1436 	sb_freeze_unlock(sb);
1437 out:
1438 	wake_up(&sb->s_writers.wait_unfrozen);
1439 	deactivate_locked_super(sb);
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(thaw_super);
1443