1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 int fs_objects = 0; 60 int total_objects; 61 62 sb = container_of(shrink, struct super_block, s_shrink); 63 64 /* 65 * Deadlock avoidance. We may hold various FS locks, and we don't want 66 * to recurse into the FS that called us in clear_inode() and friends.. 67 */ 68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 69 return -1; 70 71 if (!grab_super_passive(sb)) 72 return -1; 73 74 if (sb->s_op && sb->s_op->nr_cached_objects) 75 fs_objects = sb->s_op->nr_cached_objects(sb); 76 77 total_objects = sb->s_nr_dentry_unused + 78 sb->s_nr_inodes_unused + fs_objects + 1; 79 80 if (sc->nr_to_scan) { 81 int dentries; 82 int inodes; 83 84 /* proportion the scan between the caches */ 85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 86 total_objects; 87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 88 total_objects; 89 if (fs_objects) 90 fs_objects = (sc->nr_to_scan * fs_objects) / 91 total_objects; 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 */ 96 prune_dcache_sb(sb, dentries); 97 prune_icache_sb(sb, inodes); 98 99 if (fs_objects && sb->s_op->free_cached_objects) { 100 sb->s_op->free_cached_objects(sb, fs_objects); 101 fs_objects = sb->s_op->nr_cached_objects(sb); 102 } 103 total_objects = sb->s_nr_dentry_unused + 104 sb->s_nr_inodes_unused + fs_objects; 105 } 106 107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 108 drop_super(sb); 109 return total_objects; 110 } 111 112 static int init_sb_writers(struct super_block *s, struct file_system_type *type) 113 { 114 int err; 115 int i; 116 117 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 118 err = percpu_counter_init(&s->s_writers.counter[i], 0); 119 if (err < 0) 120 goto err_out; 121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 122 &type->s_writers_key[i], 0); 123 } 124 init_waitqueue_head(&s->s_writers.wait); 125 init_waitqueue_head(&s->s_writers.wait_unfrozen); 126 return 0; 127 err_out: 128 while (--i >= 0) 129 percpu_counter_destroy(&s->s_writers.counter[i]); 130 return err; 131 } 132 133 static void destroy_sb_writers(struct super_block *s) 134 { 135 int i; 136 137 for (i = 0; i < SB_FREEZE_LEVELS; i++) 138 percpu_counter_destroy(&s->s_writers.counter[i]); 139 } 140 141 /** 142 * alloc_super - create new superblock 143 * @type: filesystem type superblock should belong to 144 * @flags: the mount flags 145 * 146 * Allocates and initializes a new &struct super_block. alloc_super() 147 * returns a pointer new superblock or %NULL if allocation had failed. 148 */ 149 static struct super_block *alloc_super(struct file_system_type *type, int flags) 150 { 151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 152 static const struct super_operations default_op; 153 154 if (s) { 155 if (security_sb_alloc(s)) { 156 /* 157 * We cannot call security_sb_free() without 158 * security_sb_alloc() succeeding. So bail out manually 159 */ 160 kfree(s); 161 s = NULL; 162 goto out; 163 } 164 #ifdef CONFIG_SMP 165 s->s_files = alloc_percpu(struct list_head); 166 if (!s->s_files) 167 goto err_out; 168 else { 169 int i; 170 171 for_each_possible_cpu(i) 172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 173 } 174 #else 175 INIT_LIST_HEAD(&s->s_files); 176 #endif 177 if (init_sb_writers(s, type)) 178 goto err_out; 179 s->s_flags = flags; 180 s->s_bdi = &default_backing_dev_info; 181 INIT_HLIST_NODE(&s->s_instances); 182 INIT_HLIST_BL_HEAD(&s->s_anon); 183 INIT_LIST_HEAD(&s->s_inodes); 184 INIT_LIST_HEAD(&s->s_dentry_lru); 185 INIT_LIST_HEAD(&s->s_inode_lru); 186 spin_lock_init(&s->s_inode_lru_lock); 187 INIT_LIST_HEAD(&s->s_mounts); 188 init_rwsem(&s->s_umount); 189 lockdep_set_class(&s->s_umount, &type->s_umount_key); 190 /* 191 * sget() can have s_umount recursion. 192 * 193 * When it cannot find a suitable sb, it allocates a new 194 * one (this one), and tries again to find a suitable old 195 * one. 196 * 197 * In case that succeeds, it will acquire the s_umount 198 * lock of the old one. Since these are clearly distrinct 199 * locks, and this object isn't exposed yet, there's no 200 * risk of deadlocks. 201 * 202 * Annotate this by putting this lock in a different 203 * subclass. 204 */ 205 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 206 s->s_count = 1; 207 atomic_set(&s->s_active, 1); 208 mutex_init(&s->s_vfs_rename_mutex); 209 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 210 mutex_init(&s->s_dquot.dqio_mutex); 211 mutex_init(&s->s_dquot.dqonoff_mutex); 212 init_rwsem(&s->s_dquot.dqptr_sem); 213 s->s_maxbytes = MAX_NON_LFS; 214 s->s_op = &default_op; 215 s->s_time_gran = 1000000000; 216 s->cleancache_poolid = -1; 217 218 s->s_shrink.seeks = DEFAULT_SEEKS; 219 s->s_shrink.shrink = prune_super; 220 s->s_shrink.batch = 1024; 221 } 222 out: 223 return s; 224 err_out: 225 security_sb_free(s); 226 #ifdef CONFIG_SMP 227 if (s->s_files) 228 free_percpu(s->s_files); 229 #endif 230 destroy_sb_writers(s); 231 kfree(s); 232 s = NULL; 233 goto out; 234 } 235 236 /** 237 * destroy_super - frees a superblock 238 * @s: superblock to free 239 * 240 * Frees a superblock. 241 */ 242 static inline void destroy_super(struct super_block *s) 243 { 244 #ifdef CONFIG_SMP 245 free_percpu(s->s_files); 246 #endif 247 destroy_sb_writers(s); 248 security_sb_free(s); 249 WARN_ON(!list_empty(&s->s_mounts)); 250 kfree(s->s_subtype); 251 kfree(s->s_options); 252 kfree(s); 253 } 254 255 /* Superblock refcounting */ 256 257 /* 258 * Drop a superblock's refcount. The caller must hold sb_lock. 259 */ 260 static void __put_super(struct super_block *sb) 261 { 262 if (!--sb->s_count) { 263 list_del_init(&sb->s_list); 264 destroy_super(sb); 265 } 266 } 267 268 /** 269 * put_super - drop a temporary reference to superblock 270 * @sb: superblock in question 271 * 272 * Drops a temporary reference, frees superblock if there's no 273 * references left. 274 */ 275 static void put_super(struct super_block *sb) 276 { 277 spin_lock(&sb_lock); 278 __put_super(sb); 279 spin_unlock(&sb_lock); 280 } 281 282 283 /** 284 * deactivate_locked_super - drop an active reference to superblock 285 * @s: superblock to deactivate 286 * 287 * Drops an active reference to superblock, converting it into a temprory 288 * one if there is no other active references left. In that case we 289 * tell fs driver to shut it down and drop the temporary reference we 290 * had just acquired. 291 * 292 * Caller holds exclusive lock on superblock; that lock is released. 293 */ 294 void deactivate_locked_super(struct super_block *s) 295 { 296 struct file_system_type *fs = s->s_type; 297 if (atomic_dec_and_test(&s->s_active)) { 298 cleancache_invalidate_fs(s); 299 fs->kill_sb(s); 300 301 /* caches are now gone, we can safely kill the shrinker now */ 302 unregister_shrinker(&s->s_shrink); 303 put_filesystem(fs); 304 put_super(s); 305 } else { 306 up_write(&s->s_umount); 307 } 308 } 309 310 EXPORT_SYMBOL(deactivate_locked_super); 311 312 /** 313 * deactivate_super - drop an active reference to superblock 314 * @s: superblock to deactivate 315 * 316 * Variant of deactivate_locked_super(), except that superblock is *not* 317 * locked by caller. If we are going to drop the final active reference, 318 * lock will be acquired prior to that. 319 */ 320 void deactivate_super(struct super_block *s) 321 { 322 if (!atomic_add_unless(&s->s_active, -1, 1)) { 323 down_write(&s->s_umount); 324 deactivate_locked_super(s); 325 } 326 } 327 328 EXPORT_SYMBOL(deactivate_super); 329 330 /** 331 * grab_super - acquire an active reference 332 * @s: reference we are trying to make active 333 * 334 * Tries to acquire an active reference. grab_super() is used when we 335 * had just found a superblock in super_blocks or fs_type->fs_supers 336 * and want to turn it into a full-blown active reference. grab_super() 337 * is called with sb_lock held and drops it. Returns 1 in case of 338 * success, 0 if we had failed (superblock contents was already dead or 339 * dying when grab_super() had been called). 340 */ 341 static int grab_super(struct super_block *s) __releases(sb_lock) 342 { 343 if (atomic_inc_not_zero(&s->s_active)) { 344 spin_unlock(&sb_lock); 345 return 1; 346 } 347 /* it's going away */ 348 s->s_count++; 349 spin_unlock(&sb_lock); 350 /* wait for it to die */ 351 down_write(&s->s_umount); 352 up_write(&s->s_umount); 353 put_super(s); 354 return 0; 355 } 356 357 /* 358 * grab_super_passive - acquire a passive reference 359 * @sb: reference we are trying to grab 360 * 361 * Tries to acquire a passive reference. This is used in places where we 362 * cannot take an active reference but we need to ensure that the 363 * superblock does not go away while we are working on it. It returns 364 * false if a reference was not gained, and returns true with the s_umount 365 * lock held in read mode if a reference is gained. On successful return, 366 * the caller must drop the s_umount lock and the passive reference when 367 * done. 368 */ 369 bool grab_super_passive(struct super_block *sb) 370 { 371 spin_lock(&sb_lock); 372 if (hlist_unhashed(&sb->s_instances)) { 373 spin_unlock(&sb_lock); 374 return false; 375 } 376 377 sb->s_count++; 378 spin_unlock(&sb_lock); 379 380 if (down_read_trylock(&sb->s_umount)) { 381 if (sb->s_root && (sb->s_flags & MS_BORN)) 382 return true; 383 up_read(&sb->s_umount); 384 } 385 386 put_super(sb); 387 return false; 388 } 389 390 /** 391 * generic_shutdown_super - common helper for ->kill_sb() 392 * @sb: superblock to kill 393 * 394 * generic_shutdown_super() does all fs-independent work on superblock 395 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 396 * that need destruction out of superblock, call generic_shutdown_super() 397 * and release aforementioned objects. Note: dentries and inodes _are_ 398 * taken care of and do not need specific handling. 399 * 400 * Upon calling this function, the filesystem may no longer alter or 401 * rearrange the set of dentries belonging to this super_block, nor may it 402 * change the attachments of dentries to inodes. 403 */ 404 void generic_shutdown_super(struct super_block *sb) 405 { 406 const struct super_operations *sop = sb->s_op; 407 408 if (sb->s_root) { 409 shrink_dcache_for_umount(sb); 410 sync_filesystem(sb); 411 sb->s_flags &= ~MS_ACTIVE; 412 413 fsnotify_unmount_inodes(&sb->s_inodes); 414 415 evict_inodes(sb); 416 417 if (sop->put_super) 418 sop->put_super(sb); 419 420 if (!list_empty(&sb->s_inodes)) { 421 printk("VFS: Busy inodes after unmount of %s. " 422 "Self-destruct in 5 seconds. Have a nice day...\n", 423 sb->s_id); 424 } 425 } 426 spin_lock(&sb_lock); 427 /* should be initialized for __put_super_and_need_restart() */ 428 hlist_del_init(&sb->s_instances); 429 spin_unlock(&sb_lock); 430 up_write(&sb->s_umount); 431 } 432 433 EXPORT_SYMBOL(generic_shutdown_super); 434 435 /** 436 * sget - find or create a superblock 437 * @type: filesystem type superblock should belong to 438 * @test: comparison callback 439 * @set: setup callback 440 * @flags: mount flags 441 * @data: argument to each of them 442 */ 443 struct super_block *sget(struct file_system_type *type, 444 int (*test)(struct super_block *,void *), 445 int (*set)(struct super_block *,void *), 446 int flags, 447 void *data) 448 { 449 struct super_block *s = NULL; 450 struct super_block *old; 451 int err; 452 453 retry: 454 spin_lock(&sb_lock); 455 if (test) { 456 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 457 if (!test(old, data)) 458 continue; 459 if (!grab_super(old)) 460 goto retry; 461 if (s) { 462 up_write(&s->s_umount); 463 destroy_super(s); 464 s = NULL; 465 } 466 down_write(&old->s_umount); 467 if (unlikely(!(old->s_flags & MS_BORN))) { 468 deactivate_locked_super(old); 469 goto retry; 470 } 471 return old; 472 } 473 } 474 if (!s) { 475 spin_unlock(&sb_lock); 476 s = alloc_super(type, flags); 477 if (!s) 478 return ERR_PTR(-ENOMEM); 479 goto retry; 480 } 481 482 err = set(s, data); 483 if (err) { 484 spin_unlock(&sb_lock); 485 up_write(&s->s_umount); 486 destroy_super(s); 487 return ERR_PTR(err); 488 } 489 s->s_type = type; 490 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 491 list_add_tail(&s->s_list, &super_blocks); 492 hlist_add_head(&s->s_instances, &type->fs_supers); 493 spin_unlock(&sb_lock); 494 get_filesystem(type); 495 register_shrinker(&s->s_shrink); 496 return s; 497 } 498 499 EXPORT_SYMBOL(sget); 500 501 void drop_super(struct super_block *sb) 502 { 503 up_read(&sb->s_umount); 504 put_super(sb); 505 } 506 507 EXPORT_SYMBOL(drop_super); 508 509 /** 510 * iterate_supers - call function for all active superblocks 511 * @f: function to call 512 * @arg: argument to pass to it 513 * 514 * Scans the superblock list and calls given function, passing it 515 * locked superblock and given argument. 516 */ 517 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 518 { 519 struct super_block *sb, *p = NULL; 520 521 spin_lock(&sb_lock); 522 list_for_each_entry(sb, &super_blocks, s_list) { 523 if (hlist_unhashed(&sb->s_instances)) 524 continue; 525 sb->s_count++; 526 spin_unlock(&sb_lock); 527 528 down_read(&sb->s_umount); 529 if (sb->s_root && (sb->s_flags & MS_BORN)) 530 f(sb, arg); 531 up_read(&sb->s_umount); 532 533 spin_lock(&sb_lock); 534 if (p) 535 __put_super(p); 536 p = sb; 537 } 538 if (p) 539 __put_super(p); 540 spin_unlock(&sb_lock); 541 } 542 543 /** 544 * iterate_supers_type - call function for superblocks of given type 545 * @type: fs type 546 * @f: function to call 547 * @arg: argument to pass to it 548 * 549 * Scans the superblock list and calls given function, passing it 550 * locked superblock and given argument. 551 */ 552 void iterate_supers_type(struct file_system_type *type, 553 void (*f)(struct super_block *, void *), void *arg) 554 { 555 struct super_block *sb, *p = NULL; 556 557 spin_lock(&sb_lock); 558 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 559 sb->s_count++; 560 spin_unlock(&sb_lock); 561 562 down_read(&sb->s_umount); 563 if (sb->s_root && (sb->s_flags & MS_BORN)) 564 f(sb, arg); 565 up_read(&sb->s_umount); 566 567 spin_lock(&sb_lock); 568 if (p) 569 __put_super(p); 570 p = sb; 571 } 572 if (p) 573 __put_super(p); 574 spin_unlock(&sb_lock); 575 } 576 577 EXPORT_SYMBOL(iterate_supers_type); 578 579 /** 580 * get_super - get the superblock of a device 581 * @bdev: device to get the superblock for 582 * 583 * Scans the superblock list and finds the superblock of the file system 584 * mounted on the device given. %NULL is returned if no match is found. 585 */ 586 587 struct super_block *get_super(struct block_device *bdev) 588 { 589 struct super_block *sb; 590 591 if (!bdev) 592 return NULL; 593 594 spin_lock(&sb_lock); 595 rescan: 596 list_for_each_entry(sb, &super_blocks, s_list) { 597 if (hlist_unhashed(&sb->s_instances)) 598 continue; 599 if (sb->s_bdev == bdev) { 600 sb->s_count++; 601 spin_unlock(&sb_lock); 602 down_read(&sb->s_umount); 603 /* still alive? */ 604 if (sb->s_root && (sb->s_flags & MS_BORN)) 605 return sb; 606 up_read(&sb->s_umount); 607 /* nope, got unmounted */ 608 spin_lock(&sb_lock); 609 __put_super(sb); 610 goto rescan; 611 } 612 } 613 spin_unlock(&sb_lock); 614 return NULL; 615 } 616 617 EXPORT_SYMBOL(get_super); 618 619 /** 620 * get_super_thawed - get thawed superblock of a device 621 * @bdev: device to get the superblock for 622 * 623 * Scans the superblock list and finds the superblock of the file system 624 * mounted on the device. The superblock is returned once it is thawed 625 * (or immediately if it was not frozen). %NULL is returned if no match 626 * is found. 627 */ 628 struct super_block *get_super_thawed(struct block_device *bdev) 629 { 630 while (1) { 631 struct super_block *s = get_super(bdev); 632 if (!s || s->s_writers.frozen == SB_UNFROZEN) 633 return s; 634 up_read(&s->s_umount); 635 wait_event(s->s_writers.wait_unfrozen, 636 s->s_writers.frozen == SB_UNFROZEN); 637 put_super(s); 638 } 639 } 640 EXPORT_SYMBOL(get_super_thawed); 641 642 /** 643 * get_active_super - get an active reference to the superblock of a device 644 * @bdev: device to get the superblock for 645 * 646 * Scans the superblock list and finds the superblock of the file system 647 * mounted on the device given. Returns the superblock with an active 648 * reference or %NULL if none was found. 649 */ 650 struct super_block *get_active_super(struct block_device *bdev) 651 { 652 struct super_block *sb; 653 654 if (!bdev) 655 return NULL; 656 657 restart: 658 spin_lock(&sb_lock); 659 list_for_each_entry(sb, &super_blocks, s_list) { 660 if (hlist_unhashed(&sb->s_instances)) 661 continue; 662 if (sb->s_bdev == bdev) { 663 if (grab_super(sb)) /* drops sb_lock */ 664 return sb; 665 else 666 goto restart; 667 } 668 } 669 spin_unlock(&sb_lock); 670 return NULL; 671 } 672 673 struct super_block *user_get_super(dev_t dev) 674 { 675 struct super_block *sb; 676 677 spin_lock(&sb_lock); 678 rescan: 679 list_for_each_entry(sb, &super_blocks, s_list) { 680 if (hlist_unhashed(&sb->s_instances)) 681 continue; 682 if (sb->s_dev == dev) { 683 sb->s_count++; 684 spin_unlock(&sb_lock); 685 down_read(&sb->s_umount); 686 /* still alive? */ 687 if (sb->s_root && (sb->s_flags & MS_BORN)) 688 return sb; 689 up_read(&sb->s_umount); 690 /* nope, got unmounted */ 691 spin_lock(&sb_lock); 692 __put_super(sb); 693 goto rescan; 694 } 695 } 696 spin_unlock(&sb_lock); 697 return NULL; 698 } 699 700 /** 701 * do_remount_sb - asks filesystem to change mount options. 702 * @sb: superblock in question 703 * @flags: numeric part of options 704 * @data: the rest of options 705 * @force: whether or not to force the change 706 * 707 * Alters the mount options of a mounted file system. 708 */ 709 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 710 { 711 int retval; 712 int remount_ro; 713 714 if (sb->s_writers.frozen != SB_UNFROZEN) 715 return -EBUSY; 716 717 #ifdef CONFIG_BLOCK 718 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 719 return -EACCES; 720 #endif 721 722 if (flags & MS_RDONLY) 723 acct_auto_close(sb); 724 shrink_dcache_sb(sb); 725 sync_filesystem(sb); 726 727 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 728 729 /* If we are remounting RDONLY and current sb is read/write, 730 make sure there are no rw files opened */ 731 if (remount_ro) { 732 if (force) { 733 mark_files_ro(sb); 734 } else { 735 retval = sb_prepare_remount_readonly(sb); 736 if (retval) 737 return retval; 738 } 739 } 740 741 if (sb->s_op->remount_fs) { 742 retval = sb->s_op->remount_fs(sb, &flags, data); 743 if (retval) { 744 if (!force) 745 goto cancel_readonly; 746 /* If forced remount, go ahead despite any errors */ 747 WARN(1, "forced remount of a %s fs returned %i\n", 748 sb->s_type->name, retval); 749 } 750 } 751 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 752 /* Needs to be ordered wrt mnt_is_readonly() */ 753 smp_wmb(); 754 sb->s_readonly_remount = 0; 755 756 /* 757 * Some filesystems modify their metadata via some other path than the 758 * bdev buffer cache (eg. use a private mapping, or directories in 759 * pagecache, etc). Also file data modifications go via their own 760 * mappings. So If we try to mount readonly then copy the filesystem 761 * from bdev, we could get stale data, so invalidate it to give a best 762 * effort at coherency. 763 */ 764 if (remount_ro && sb->s_bdev) 765 invalidate_bdev(sb->s_bdev); 766 return 0; 767 768 cancel_readonly: 769 sb->s_readonly_remount = 0; 770 return retval; 771 } 772 773 static void do_emergency_remount(struct work_struct *work) 774 { 775 struct super_block *sb, *p = NULL; 776 777 spin_lock(&sb_lock); 778 list_for_each_entry(sb, &super_blocks, s_list) { 779 if (hlist_unhashed(&sb->s_instances)) 780 continue; 781 sb->s_count++; 782 spin_unlock(&sb_lock); 783 down_write(&sb->s_umount); 784 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 785 !(sb->s_flags & MS_RDONLY)) { 786 /* 787 * What lock protects sb->s_flags?? 788 */ 789 do_remount_sb(sb, MS_RDONLY, NULL, 1); 790 } 791 up_write(&sb->s_umount); 792 spin_lock(&sb_lock); 793 if (p) 794 __put_super(p); 795 p = sb; 796 } 797 if (p) 798 __put_super(p); 799 spin_unlock(&sb_lock); 800 kfree(work); 801 printk("Emergency Remount complete\n"); 802 } 803 804 void emergency_remount(void) 805 { 806 struct work_struct *work; 807 808 work = kmalloc(sizeof(*work), GFP_ATOMIC); 809 if (work) { 810 INIT_WORK(work, do_emergency_remount); 811 schedule_work(work); 812 } 813 } 814 815 /* 816 * Unnamed block devices are dummy devices used by virtual 817 * filesystems which don't use real block-devices. -- jrs 818 */ 819 820 static DEFINE_IDA(unnamed_dev_ida); 821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 822 static int unnamed_dev_start = 0; /* don't bother trying below it */ 823 824 int get_anon_bdev(dev_t *p) 825 { 826 int dev; 827 int error; 828 829 retry: 830 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 831 return -ENOMEM; 832 spin_lock(&unnamed_dev_lock); 833 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 834 if (!error) 835 unnamed_dev_start = dev + 1; 836 spin_unlock(&unnamed_dev_lock); 837 if (error == -EAGAIN) 838 /* We raced and lost with another CPU. */ 839 goto retry; 840 else if (error) 841 return -EAGAIN; 842 843 if (dev == (1 << MINORBITS)) { 844 spin_lock(&unnamed_dev_lock); 845 ida_remove(&unnamed_dev_ida, dev); 846 if (unnamed_dev_start > dev) 847 unnamed_dev_start = dev; 848 spin_unlock(&unnamed_dev_lock); 849 return -EMFILE; 850 } 851 *p = MKDEV(0, dev & MINORMASK); 852 return 0; 853 } 854 EXPORT_SYMBOL(get_anon_bdev); 855 856 void free_anon_bdev(dev_t dev) 857 { 858 int slot = MINOR(dev); 859 spin_lock(&unnamed_dev_lock); 860 ida_remove(&unnamed_dev_ida, slot); 861 if (slot < unnamed_dev_start) 862 unnamed_dev_start = slot; 863 spin_unlock(&unnamed_dev_lock); 864 } 865 EXPORT_SYMBOL(free_anon_bdev); 866 867 int set_anon_super(struct super_block *s, void *data) 868 { 869 int error = get_anon_bdev(&s->s_dev); 870 if (!error) 871 s->s_bdi = &noop_backing_dev_info; 872 return error; 873 } 874 875 EXPORT_SYMBOL(set_anon_super); 876 877 void kill_anon_super(struct super_block *sb) 878 { 879 dev_t dev = sb->s_dev; 880 generic_shutdown_super(sb); 881 free_anon_bdev(dev); 882 } 883 884 EXPORT_SYMBOL(kill_anon_super); 885 886 void kill_litter_super(struct super_block *sb) 887 { 888 if (sb->s_root) 889 d_genocide(sb->s_root); 890 kill_anon_super(sb); 891 } 892 893 EXPORT_SYMBOL(kill_litter_super); 894 895 static int ns_test_super(struct super_block *sb, void *data) 896 { 897 return sb->s_fs_info == data; 898 } 899 900 static int ns_set_super(struct super_block *sb, void *data) 901 { 902 sb->s_fs_info = data; 903 return set_anon_super(sb, NULL); 904 } 905 906 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 907 void *data, int (*fill_super)(struct super_block *, void *, int)) 908 { 909 struct super_block *sb; 910 911 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 912 if (IS_ERR(sb)) 913 return ERR_CAST(sb); 914 915 if (!sb->s_root) { 916 int err; 917 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 918 if (err) { 919 deactivate_locked_super(sb); 920 return ERR_PTR(err); 921 } 922 923 sb->s_flags |= MS_ACTIVE; 924 } 925 926 return dget(sb->s_root); 927 } 928 929 EXPORT_SYMBOL(mount_ns); 930 931 #ifdef CONFIG_BLOCK 932 static int set_bdev_super(struct super_block *s, void *data) 933 { 934 s->s_bdev = data; 935 s->s_dev = s->s_bdev->bd_dev; 936 937 /* 938 * We set the bdi here to the queue backing, file systems can 939 * overwrite this in ->fill_super() 940 */ 941 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 942 return 0; 943 } 944 945 static int test_bdev_super(struct super_block *s, void *data) 946 { 947 return (void *)s->s_bdev == data; 948 } 949 950 struct dentry *mount_bdev(struct file_system_type *fs_type, 951 int flags, const char *dev_name, void *data, 952 int (*fill_super)(struct super_block *, void *, int)) 953 { 954 struct block_device *bdev; 955 struct super_block *s; 956 fmode_t mode = FMODE_READ | FMODE_EXCL; 957 int error = 0; 958 959 if (!(flags & MS_RDONLY)) 960 mode |= FMODE_WRITE; 961 962 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 963 if (IS_ERR(bdev)) 964 return ERR_CAST(bdev); 965 966 /* 967 * once the super is inserted into the list by sget, s_umount 968 * will protect the lockfs code from trying to start a snapshot 969 * while we are mounting 970 */ 971 mutex_lock(&bdev->bd_fsfreeze_mutex); 972 if (bdev->bd_fsfreeze_count > 0) { 973 mutex_unlock(&bdev->bd_fsfreeze_mutex); 974 error = -EBUSY; 975 goto error_bdev; 976 } 977 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 978 bdev); 979 mutex_unlock(&bdev->bd_fsfreeze_mutex); 980 if (IS_ERR(s)) 981 goto error_s; 982 983 if (s->s_root) { 984 if ((flags ^ s->s_flags) & MS_RDONLY) { 985 deactivate_locked_super(s); 986 error = -EBUSY; 987 goto error_bdev; 988 } 989 990 /* 991 * s_umount nests inside bd_mutex during 992 * __invalidate_device(). blkdev_put() acquires 993 * bd_mutex and can't be called under s_umount. Drop 994 * s_umount temporarily. This is safe as we're 995 * holding an active reference. 996 */ 997 up_write(&s->s_umount); 998 blkdev_put(bdev, mode); 999 down_write(&s->s_umount); 1000 } else { 1001 char b[BDEVNAME_SIZE]; 1002 1003 s->s_mode = mode; 1004 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1005 sb_set_blocksize(s, block_size(bdev)); 1006 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1007 if (error) { 1008 deactivate_locked_super(s); 1009 goto error; 1010 } 1011 1012 s->s_flags |= MS_ACTIVE; 1013 bdev->bd_super = s; 1014 } 1015 1016 return dget(s->s_root); 1017 1018 error_s: 1019 error = PTR_ERR(s); 1020 error_bdev: 1021 blkdev_put(bdev, mode); 1022 error: 1023 return ERR_PTR(error); 1024 } 1025 EXPORT_SYMBOL(mount_bdev); 1026 1027 void kill_block_super(struct super_block *sb) 1028 { 1029 struct block_device *bdev = sb->s_bdev; 1030 fmode_t mode = sb->s_mode; 1031 1032 bdev->bd_super = NULL; 1033 generic_shutdown_super(sb); 1034 sync_blockdev(bdev); 1035 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1036 blkdev_put(bdev, mode | FMODE_EXCL); 1037 } 1038 1039 EXPORT_SYMBOL(kill_block_super); 1040 #endif 1041 1042 struct dentry *mount_nodev(struct file_system_type *fs_type, 1043 int flags, void *data, 1044 int (*fill_super)(struct super_block *, void *, int)) 1045 { 1046 int error; 1047 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1048 1049 if (IS_ERR(s)) 1050 return ERR_CAST(s); 1051 1052 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1053 if (error) { 1054 deactivate_locked_super(s); 1055 return ERR_PTR(error); 1056 } 1057 s->s_flags |= MS_ACTIVE; 1058 return dget(s->s_root); 1059 } 1060 EXPORT_SYMBOL(mount_nodev); 1061 1062 static int compare_single(struct super_block *s, void *p) 1063 { 1064 return 1; 1065 } 1066 1067 struct dentry *mount_single(struct file_system_type *fs_type, 1068 int flags, void *data, 1069 int (*fill_super)(struct super_block *, void *, int)) 1070 { 1071 struct super_block *s; 1072 int error; 1073 1074 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1075 if (IS_ERR(s)) 1076 return ERR_CAST(s); 1077 if (!s->s_root) { 1078 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1079 if (error) { 1080 deactivate_locked_super(s); 1081 return ERR_PTR(error); 1082 } 1083 s->s_flags |= MS_ACTIVE; 1084 } else { 1085 do_remount_sb(s, flags, data, 0); 1086 } 1087 return dget(s->s_root); 1088 } 1089 EXPORT_SYMBOL(mount_single); 1090 1091 struct dentry * 1092 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1093 { 1094 struct dentry *root; 1095 struct super_block *sb; 1096 char *secdata = NULL; 1097 int error = -ENOMEM; 1098 1099 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1100 secdata = alloc_secdata(); 1101 if (!secdata) 1102 goto out; 1103 1104 error = security_sb_copy_data(data, secdata); 1105 if (error) 1106 goto out_free_secdata; 1107 } 1108 1109 root = type->mount(type, flags, name, data); 1110 if (IS_ERR(root)) { 1111 error = PTR_ERR(root); 1112 goto out_free_secdata; 1113 } 1114 sb = root->d_sb; 1115 BUG_ON(!sb); 1116 WARN_ON(!sb->s_bdi); 1117 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1118 sb->s_flags |= MS_BORN; 1119 1120 error = security_sb_kern_mount(sb, flags, secdata); 1121 if (error) 1122 goto out_sb; 1123 1124 /* 1125 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1126 * but s_maxbytes was an unsigned long long for many releases. Throw 1127 * this warning for a little while to try and catch filesystems that 1128 * violate this rule. 1129 */ 1130 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1131 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1132 1133 up_write(&sb->s_umount); 1134 free_secdata(secdata); 1135 return root; 1136 out_sb: 1137 dput(root); 1138 deactivate_locked_super(sb); 1139 out_free_secdata: 1140 free_secdata(secdata); 1141 out: 1142 return ERR_PTR(error); 1143 } 1144 1145 /* 1146 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1147 * instead. 1148 */ 1149 void __sb_end_write(struct super_block *sb, int level) 1150 { 1151 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1152 /* 1153 * Make sure s_writers are updated before we wake up waiters in 1154 * freeze_super(). 1155 */ 1156 smp_mb(); 1157 if (waitqueue_active(&sb->s_writers.wait)) 1158 wake_up(&sb->s_writers.wait); 1159 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1160 } 1161 EXPORT_SYMBOL(__sb_end_write); 1162 1163 #ifdef CONFIG_LOCKDEP 1164 /* 1165 * We want lockdep to tell us about possible deadlocks with freezing but 1166 * it's it bit tricky to properly instrument it. Getting a freeze protection 1167 * works as getting a read lock but there are subtle problems. XFS for example 1168 * gets freeze protection on internal level twice in some cases, which is OK 1169 * only because we already hold a freeze protection also on higher level. Due 1170 * to these cases we have to tell lockdep we are doing trylock when we 1171 * already hold a freeze protection for a higher freeze level. 1172 */ 1173 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1174 unsigned long ip) 1175 { 1176 int i; 1177 1178 if (!trylock) { 1179 for (i = 0; i < level - 1; i++) 1180 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1181 trylock = true; 1182 break; 1183 } 1184 } 1185 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1186 } 1187 #endif 1188 1189 /* 1190 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1191 * instead. 1192 */ 1193 int __sb_start_write(struct super_block *sb, int level, bool wait) 1194 { 1195 retry: 1196 if (unlikely(sb->s_writers.frozen >= level)) { 1197 if (!wait) 1198 return 0; 1199 wait_event(sb->s_writers.wait_unfrozen, 1200 sb->s_writers.frozen < level); 1201 } 1202 1203 #ifdef CONFIG_LOCKDEP 1204 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1205 #endif 1206 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1207 /* 1208 * Make sure counter is updated before we check for frozen. 1209 * freeze_super() first sets frozen and then checks the counter. 1210 */ 1211 smp_mb(); 1212 if (unlikely(sb->s_writers.frozen >= level)) { 1213 __sb_end_write(sb, level); 1214 goto retry; 1215 } 1216 return 1; 1217 } 1218 EXPORT_SYMBOL(__sb_start_write); 1219 1220 /** 1221 * sb_wait_write - wait until all writers to given file system finish 1222 * @sb: the super for which we wait 1223 * @level: type of writers we wait for (normal vs page fault) 1224 * 1225 * This function waits until there are no writers of given type to given file 1226 * system. Caller of this function should make sure there can be no new writers 1227 * of type @level before calling this function. Otherwise this function can 1228 * livelock. 1229 */ 1230 static void sb_wait_write(struct super_block *sb, int level) 1231 { 1232 s64 writers; 1233 1234 /* 1235 * We just cycle-through lockdep here so that it does not complain 1236 * about returning with lock to userspace 1237 */ 1238 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1239 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1240 1241 do { 1242 DEFINE_WAIT(wait); 1243 1244 /* 1245 * We use a barrier in prepare_to_wait() to separate setting 1246 * of frozen and checking of the counter 1247 */ 1248 prepare_to_wait(&sb->s_writers.wait, &wait, 1249 TASK_UNINTERRUPTIBLE); 1250 1251 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1252 if (writers) 1253 schedule(); 1254 1255 finish_wait(&sb->s_writers.wait, &wait); 1256 } while (writers); 1257 } 1258 1259 /** 1260 * freeze_super - lock the filesystem and force it into a consistent state 1261 * @sb: the super to lock 1262 * 1263 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1264 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1265 * -EBUSY. 1266 * 1267 * During this function, sb->s_writers.frozen goes through these values: 1268 * 1269 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1270 * 1271 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1272 * writes should be blocked, though page faults are still allowed. We wait for 1273 * all writes to complete and then proceed to the next stage. 1274 * 1275 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1276 * but internal fs threads can still modify the filesystem (although they 1277 * should not dirty new pages or inodes), writeback can run etc. After waiting 1278 * for all running page faults we sync the filesystem which will clean all 1279 * dirty pages and inodes (no new dirty pages or inodes can be created when 1280 * sync is running). 1281 * 1282 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1283 * modification are blocked (e.g. XFS preallocation truncation on inode 1284 * reclaim). This is usually implemented by blocking new transactions for 1285 * filesystems that have them and need this additional guard. After all 1286 * internal writers are finished we call ->freeze_fs() to finish filesystem 1287 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1288 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1289 * 1290 * sb->s_writers.frozen is protected by sb->s_umount. 1291 */ 1292 int freeze_super(struct super_block *sb) 1293 { 1294 int ret; 1295 1296 atomic_inc(&sb->s_active); 1297 down_write(&sb->s_umount); 1298 if (sb->s_writers.frozen != SB_UNFROZEN) { 1299 deactivate_locked_super(sb); 1300 return -EBUSY; 1301 } 1302 1303 if (!(sb->s_flags & MS_BORN)) { 1304 up_write(&sb->s_umount); 1305 return 0; /* sic - it's "nothing to do" */ 1306 } 1307 1308 if (sb->s_flags & MS_RDONLY) { 1309 /* Nothing to do really... */ 1310 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1311 up_write(&sb->s_umount); 1312 return 0; 1313 } 1314 1315 /* From now on, no new normal writers can start */ 1316 sb->s_writers.frozen = SB_FREEZE_WRITE; 1317 smp_wmb(); 1318 1319 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1320 up_write(&sb->s_umount); 1321 1322 sb_wait_write(sb, SB_FREEZE_WRITE); 1323 1324 /* Now we go and block page faults... */ 1325 down_write(&sb->s_umount); 1326 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1327 smp_wmb(); 1328 1329 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1330 1331 /* All writers are done so after syncing there won't be dirty data */ 1332 sync_filesystem(sb); 1333 1334 /* Now wait for internal filesystem counter */ 1335 sb->s_writers.frozen = SB_FREEZE_FS; 1336 smp_wmb(); 1337 sb_wait_write(sb, SB_FREEZE_FS); 1338 1339 if (sb->s_op->freeze_fs) { 1340 ret = sb->s_op->freeze_fs(sb); 1341 if (ret) { 1342 printk(KERN_ERR 1343 "VFS:Filesystem freeze failed\n"); 1344 sb->s_writers.frozen = SB_UNFROZEN; 1345 smp_wmb(); 1346 wake_up(&sb->s_writers.wait_unfrozen); 1347 deactivate_locked_super(sb); 1348 return ret; 1349 } 1350 } 1351 /* 1352 * This is just for debugging purposes so that fs can warn if it 1353 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1354 */ 1355 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1356 up_write(&sb->s_umount); 1357 return 0; 1358 } 1359 EXPORT_SYMBOL(freeze_super); 1360 1361 /** 1362 * thaw_super -- unlock filesystem 1363 * @sb: the super to thaw 1364 * 1365 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1366 */ 1367 int thaw_super(struct super_block *sb) 1368 { 1369 int error; 1370 1371 down_write(&sb->s_umount); 1372 if (sb->s_writers.frozen == SB_UNFROZEN) { 1373 up_write(&sb->s_umount); 1374 return -EINVAL; 1375 } 1376 1377 if (sb->s_flags & MS_RDONLY) 1378 goto out; 1379 1380 if (sb->s_op->unfreeze_fs) { 1381 error = sb->s_op->unfreeze_fs(sb); 1382 if (error) { 1383 printk(KERN_ERR 1384 "VFS:Filesystem thaw failed\n"); 1385 up_write(&sb->s_umount); 1386 return error; 1387 } 1388 } 1389 1390 out: 1391 sb->s_writers.frozen = SB_UNFROZEN; 1392 smp_wmb(); 1393 wake_up(&sb->s_writers.wait_unfrozen); 1394 deactivate_locked_super(sb); 1395 1396 return 0; 1397 } 1398 EXPORT_SYMBOL(thaw_super); 1399