1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 static int thaw_super_locked(struct super_block *sb); 41 42 static LIST_HEAD(super_blocks); 43 static DEFINE_SPINLOCK(sb_lock); 44 45 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 46 "sb_writers", 47 "sb_pagefaults", 48 "sb_internal", 49 }; 50 51 /* 52 * One thing we have to be careful of with a per-sb shrinker is that we don't 53 * drop the last active reference to the superblock from within the shrinker. 54 * If that happens we could trigger unregistering the shrinker from within the 55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 56 * take a passive reference to the superblock to avoid this from occurring. 57 */ 58 static unsigned long super_cache_scan(struct shrinker *shrink, 59 struct shrink_control *sc) 60 { 61 struct super_block *sb; 62 long fs_objects = 0; 63 long total_objects; 64 long freed = 0; 65 long dentries; 66 long inodes; 67 68 sb = container_of(shrink, struct super_block, s_shrink); 69 70 /* 71 * Deadlock avoidance. We may hold various FS locks, and we don't want 72 * to recurse into the FS that called us in clear_inode() and friends.. 73 */ 74 if (!(sc->gfp_mask & __GFP_FS)) 75 return SHRINK_STOP; 76 77 if (!trylock_super(sb)) 78 return SHRINK_STOP; 79 80 if (sb->s_op->nr_cached_objects) 81 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 82 83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 85 total_objects = dentries + inodes + fs_objects + 1; 86 if (!total_objects) 87 total_objects = 1; 88 89 /* proportion the scan between the caches */ 90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 93 94 /* 95 * prune the dcache first as the icache is pinned by it, then 96 * prune the icache, followed by the filesystem specific caches 97 * 98 * Ensure that we always scan at least one object - memcg kmem 99 * accounting uses this to fully empty the caches. 100 */ 101 sc->nr_to_scan = dentries + 1; 102 freed = prune_dcache_sb(sb, sc); 103 sc->nr_to_scan = inodes + 1; 104 freed += prune_icache_sb(sb, sc); 105 106 if (fs_objects) { 107 sc->nr_to_scan = fs_objects + 1; 108 freed += sb->s_op->free_cached_objects(sb, sc); 109 } 110 111 up_read(&sb->s_umount); 112 return freed; 113 } 114 115 static unsigned long super_cache_count(struct shrinker *shrink, 116 struct shrink_control *sc) 117 { 118 struct super_block *sb; 119 long total_objects = 0; 120 121 sb = container_of(shrink, struct super_block, s_shrink); 122 123 /* 124 * We don't call trylock_super() here as it is a scalability bottleneck, 125 * so we're exposed to partial setup state. The shrinker rwsem does not 126 * protect filesystem operations backing list_lru_shrink_count() or 127 * s_op->nr_cached_objects(). Counts can change between 128 * super_cache_count and super_cache_scan, so we really don't need locks 129 * here. 130 * 131 * However, if we are currently mounting the superblock, the underlying 132 * filesystem might be in a state of partial construction and hence it 133 * is dangerous to access it. trylock_super() uses a SB_BORN check to 134 * avoid this situation, so do the same here. The memory barrier is 135 * matched with the one in mount_fs() as we don't hold locks here. 136 */ 137 if (!(sb->s_flags & SB_BORN)) 138 return 0; 139 smp_rmb(); 140 141 if (sb->s_op && sb->s_op->nr_cached_objects) 142 total_objects = sb->s_op->nr_cached_objects(sb, sc); 143 144 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 145 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 146 147 if (!total_objects) 148 return SHRINK_EMPTY; 149 150 total_objects = vfs_pressure_ratio(total_objects); 151 return total_objects; 152 } 153 154 static void destroy_super_work(struct work_struct *work) 155 { 156 struct super_block *s = container_of(work, struct super_block, 157 destroy_work); 158 int i; 159 160 for (i = 0; i < SB_FREEZE_LEVELS; i++) 161 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 162 kfree(s); 163 } 164 165 static void destroy_super_rcu(struct rcu_head *head) 166 { 167 struct super_block *s = container_of(head, struct super_block, rcu); 168 INIT_WORK(&s->destroy_work, destroy_super_work); 169 schedule_work(&s->destroy_work); 170 } 171 172 /* Free a superblock that has never been seen by anyone */ 173 static void destroy_unused_super(struct super_block *s) 174 { 175 if (!s) 176 return; 177 up_write(&s->s_umount); 178 list_lru_destroy(&s->s_dentry_lru); 179 list_lru_destroy(&s->s_inode_lru); 180 security_sb_free(s); 181 put_user_ns(s->s_user_ns); 182 kfree(s->s_subtype); 183 free_prealloced_shrinker(&s->s_shrink); 184 /* no delays needed */ 185 destroy_super_work(&s->destroy_work); 186 } 187 188 /** 189 * alloc_super - create new superblock 190 * @type: filesystem type superblock should belong to 191 * @flags: the mount flags 192 * @user_ns: User namespace for the super_block 193 * 194 * Allocates and initializes a new &struct super_block. alloc_super() 195 * returns a pointer new superblock or %NULL if allocation had failed. 196 */ 197 static struct super_block *alloc_super(struct file_system_type *type, int flags, 198 struct user_namespace *user_ns) 199 { 200 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 201 static const struct super_operations default_op; 202 int i; 203 204 if (!s) 205 return NULL; 206 207 INIT_LIST_HEAD(&s->s_mounts); 208 s->s_user_ns = get_user_ns(user_ns); 209 init_rwsem(&s->s_umount); 210 lockdep_set_class(&s->s_umount, &type->s_umount_key); 211 /* 212 * sget() can have s_umount recursion. 213 * 214 * When it cannot find a suitable sb, it allocates a new 215 * one (this one), and tries again to find a suitable old 216 * one. 217 * 218 * In case that succeeds, it will acquire the s_umount 219 * lock of the old one. Since these are clearly distrinct 220 * locks, and this object isn't exposed yet, there's no 221 * risk of deadlocks. 222 * 223 * Annotate this by putting this lock in a different 224 * subclass. 225 */ 226 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 227 228 if (security_sb_alloc(s)) 229 goto fail; 230 231 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 232 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 233 sb_writers_name[i], 234 &type->s_writers_key[i])) 235 goto fail; 236 } 237 init_waitqueue_head(&s->s_writers.wait_unfrozen); 238 s->s_bdi = &noop_backing_dev_info; 239 s->s_flags = flags; 240 if (s->s_user_ns != &init_user_ns) 241 s->s_iflags |= SB_I_NODEV; 242 INIT_HLIST_NODE(&s->s_instances); 243 INIT_HLIST_BL_HEAD(&s->s_roots); 244 mutex_init(&s->s_sync_lock); 245 INIT_LIST_HEAD(&s->s_inodes); 246 spin_lock_init(&s->s_inode_list_lock); 247 INIT_LIST_HEAD(&s->s_inodes_wb); 248 spin_lock_init(&s->s_inode_wblist_lock); 249 250 s->s_count = 1; 251 atomic_set(&s->s_active, 1); 252 mutex_init(&s->s_vfs_rename_mutex); 253 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 254 init_rwsem(&s->s_dquot.dqio_sem); 255 s->s_maxbytes = MAX_NON_LFS; 256 s->s_op = &default_op; 257 s->s_time_gran = 1000000000; 258 s->cleancache_poolid = CLEANCACHE_NO_POOL; 259 260 s->s_shrink.seeks = DEFAULT_SEEKS; 261 s->s_shrink.scan_objects = super_cache_scan; 262 s->s_shrink.count_objects = super_cache_count; 263 s->s_shrink.batch = 1024; 264 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 265 if (prealloc_shrinker(&s->s_shrink)) 266 goto fail; 267 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 270 goto fail; 271 return s; 272 273 fail: 274 destroy_unused_super(s); 275 return NULL; 276 } 277 278 /* Superblock refcounting */ 279 280 /* 281 * Drop a superblock's refcount. The caller must hold sb_lock. 282 */ 283 static void __put_super(struct super_block *s) 284 { 285 if (!--s->s_count) { 286 list_del_init(&s->s_list); 287 WARN_ON(s->s_dentry_lru.node); 288 WARN_ON(s->s_inode_lru.node); 289 WARN_ON(!list_empty(&s->s_mounts)); 290 security_sb_free(s); 291 put_user_ns(s->s_user_ns); 292 kfree(s->s_subtype); 293 call_rcu(&s->rcu, destroy_super_rcu); 294 } 295 } 296 297 /** 298 * put_super - drop a temporary reference to superblock 299 * @sb: superblock in question 300 * 301 * Drops a temporary reference, frees superblock if there's no 302 * references left. 303 */ 304 static void put_super(struct super_block *sb) 305 { 306 spin_lock(&sb_lock); 307 __put_super(sb); 308 spin_unlock(&sb_lock); 309 } 310 311 312 /** 313 * deactivate_locked_super - drop an active reference to superblock 314 * @s: superblock to deactivate 315 * 316 * Drops an active reference to superblock, converting it into a temporary 317 * one if there is no other active references left. In that case we 318 * tell fs driver to shut it down and drop the temporary reference we 319 * had just acquired. 320 * 321 * Caller holds exclusive lock on superblock; that lock is released. 322 */ 323 void deactivate_locked_super(struct super_block *s) 324 { 325 struct file_system_type *fs = s->s_type; 326 if (atomic_dec_and_test(&s->s_active)) { 327 cleancache_invalidate_fs(s); 328 unregister_shrinker(&s->s_shrink); 329 fs->kill_sb(s); 330 331 /* 332 * Since list_lru_destroy() may sleep, we cannot call it from 333 * put_super(), where we hold the sb_lock. Therefore we destroy 334 * the lru lists right now. 335 */ 336 list_lru_destroy(&s->s_dentry_lru); 337 list_lru_destroy(&s->s_inode_lru); 338 339 put_filesystem(fs); 340 put_super(s); 341 } else { 342 up_write(&s->s_umount); 343 } 344 } 345 346 EXPORT_SYMBOL(deactivate_locked_super); 347 348 /** 349 * deactivate_super - drop an active reference to superblock 350 * @s: superblock to deactivate 351 * 352 * Variant of deactivate_locked_super(), except that superblock is *not* 353 * locked by caller. If we are going to drop the final active reference, 354 * lock will be acquired prior to that. 355 */ 356 void deactivate_super(struct super_block *s) 357 { 358 if (!atomic_add_unless(&s->s_active, -1, 1)) { 359 down_write(&s->s_umount); 360 deactivate_locked_super(s); 361 } 362 } 363 364 EXPORT_SYMBOL(deactivate_super); 365 366 /** 367 * grab_super - acquire an active reference 368 * @s: reference we are trying to make active 369 * 370 * Tries to acquire an active reference. grab_super() is used when we 371 * had just found a superblock in super_blocks or fs_type->fs_supers 372 * and want to turn it into a full-blown active reference. grab_super() 373 * is called with sb_lock held and drops it. Returns 1 in case of 374 * success, 0 if we had failed (superblock contents was already dead or 375 * dying when grab_super() had been called). Note that this is only 376 * called for superblocks not in rundown mode (== ones still on ->fs_supers 377 * of their type), so increment of ->s_count is OK here. 378 */ 379 static int grab_super(struct super_block *s) __releases(sb_lock) 380 { 381 s->s_count++; 382 spin_unlock(&sb_lock); 383 down_write(&s->s_umount); 384 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 385 put_super(s); 386 return 1; 387 } 388 up_write(&s->s_umount); 389 put_super(s); 390 return 0; 391 } 392 393 /* 394 * trylock_super - try to grab ->s_umount shared 395 * @sb: reference we are trying to grab 396 * 397 * Try to prevent fs shutdown. This is used in places where we 398 * cannot take an active reference but we need to ensure that the 399 * filesystem is not shut down while we are working on it. It returns 400 * false if we cannot acquire s_umount or if we lose the race and 401 * filesystem already got into shutdown, and returns true with the s_umount 402 * lock held in read mode in case of success. On successful return, 403 * the caller must drop the s_umount lock when done. 404 * 405 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 406 * The reason why it's safe is that we are OK with doing trylock instead 407 * of down_read(). There's a couple of places that are OK with that, but 408 * it's very much not a general-purpose interface. 409 */ 410 bool trylock_super(struct super_block *sb) 411 { 412 if (down_read_trylock(&sb->s_umount)) { 413 if (!hlist_unhashed(&sb->s_instances) && 414 sb->s_root && (sb->s_flags & SB_BORN)) 415 return true; 416 up_read(&sb->s_umount); 417 } 418 419 return false; 420 } 421 422 /** 423 * generic_shutdown_super - common helper for ->kill_sb() 424 * @sb: superblock to kill 425 * 426 * generic_shutdown_super() does all fs-independent work on superblock 427 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 428 * that need destruction out of superblock, call generic_shutdown_super() 429 * and release aforementioned objects. Note: dentries and inodes _are_ 430 * taken care of and do not need specific handling. 431 * 432 * Upon calling this function, the filesystem may no longer alter or 433 * rearrange the set of dentries belonging to this super_block, nor may it 434 * change the attachments of dentries to inodes. 435 */ 436 void generic_shutdown_super(struct super_block *sb) 437 { 438 const struct super_operations *sop = sb->s_op; 439 440 if (sb->s_root) { 441 shrink_dcache_for_umount(sb); 442 sync_filesystem(sb); 443 sb->s_flags &= ~SB_ACTIVE; 444 445 fsnotify_unmount_inodes(sb); 446 cgroup_writeback_umount(); 447 448 evict_inodes(sb); 449 450 if (sb->s_dio_done_wq) { 451 destroy_workqueue(sb->s_dio_done_wq); 452 sb->s_dio_done_wq = NULL; 453 } 454 455 if (sop->put_super) 456 sop->put_super(sb); 457 458 if (!list_empty(&sb->s_inodes)) { 459 printk("VFS: Busy inodes after unmount of %s. " 460 "Self-destruct in 5 seconds. Have a nice day...\n", 461 sb->s_id); 462 } 463 } 464 spin_lock(&sb_lock); 465 /* should be initialized for __put_super_and_need_restart() */ 466 hlist_del_init(&sb->s_instances); 467 spin_unlock(&sb_lock); 468 up_write(&sb->s_umount); 469 if (sb->s_bdi != &noop_backing_dev_info) { 470 bdi_put(sb->s_bdi); 471 sb->s_bdi = &noop_backing_dev_info; 472 } 473 } 474 475 EXPORT_SYMBOL(generic_shutdown_super); 476 477 /** 478 * sget_userns - find or create a superblock 479 * @type: filesystem type superblock should belong to 480 * @test: comparison callback 481 * @set: setup callback 482 * @flags: mount flags 483 * @user_ns: User namespace for the super_block 484 * @data: argument to each of them 485 */ 486 struct super_block *sget_userns(struct file_system_type *type, 487 int (*test)(struct super_block *,void *), 488 int (*set)(struct super_block *,void *), 489 int flags, struct user_namespace *user_ns, 490 void *data) 491 { 492 struct super_block *s = NULL; 493 struct super_block *old; 494 int err; 495 496 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 497 !(type->fs_flags & FS_USERNS_MOUNT) && 498 !capable(CAP_SYS_ADMIN)) 499 return ERR_PTR(-EPERM); 500 retry: 501 spin_lock(&sb_lock); 502 if (test) { 503 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 504 if (!test(old, data)) 505 continue; 506 if (user_ns != old->s_user_ns) { 507 spin_unlock(&sb_lock); 508 destroy_unused_super(s); 509 return ERR_PTR(-EBUSY); 510 } 511 if (!grab_super(old)) 512 goto retry; 513 destroy_unused_super(s); 514 return old; 515 } 516 } 517 if (!s) { 518 spin_unlock(&sb_lock); 519 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 520 if (!s) 521 return ERR_PTR(-ENOMEM); 522 goto retry; 523 } 524 525 err = set(s, data); 526 if (err) { 527 spin_unlock(&sb_lock); 528 destroy_unused_super(s); 529 return ERR_PTR(err); 530 } 531 s->s_type = type; 532 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 533 list_add_tail(&s->s_list, &super_blocks); 534 hlist_add_head(&s->s_instances, &type->fs_supers); 535 spin_unlock(&sb_lock); 536 get_filesystem(type); 537 register_shrinker_prepared(&s->s_shrink); 538 return s; 539 } 540 541 EXPORT_SYMBOL(sget_userns); 542 543 /** 544 * sget - find or create a superblock 545 * @type: filesystem type superblock should belong to 546 * @test: comparison callback 547 * @set: setup callback 548 * @flags: mount flags 549 * @data: argument to each of them 550 */ 551 struct super_block *sget(struct file_system_type *type, 552 int (*test)(struct super_block *,void *), 553 int (*set)(struct super_block *,void *), 554 int flags, 555 void *data) 556 { 557 struct user_namespace *user_ns = current_user_ns(); 558 559 /* We don't yet pass the user namespace of the parent 560 * mount through to here so always use &init_user_ns 561 * until that changes. 562 */ 563 if (flags & SB_SUBMOUNT) 564 user_ns = &init_user_ns; 565 566 /* Ensure the requestor has permissions over the target filesystem */ 567 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 568 return ERR_PTR(-EPERM); 569 570 return sget_userns(type, test, set, flags, user_ns, data); 571 } 572 573 EXPORT_SYMBOL(sget); 574 575 void drop_super(struct super_block *sb) 576 { 577 up_read(&sb->s_umount); 578 put_super(sb); 579 } 580 581 EXPORT_SYMBOL(drop_super); 582 583 void drop_super_exclusive(struct super_block *sb) 584 { 585 up_write(&sb->s_umount); 586 put_super(sb); 587 } 588 EXPORT_SYMBOL(drop_super_exclusive); 589 590 static void __iterate_supers(void (*f)(struct super_block *)) 591 { 592 struct super_block *sb, *p = NULL; 593 594 spin_lock(&sb_lock); 595 list_for_each_entry(sb, &super_blocks, s_list) { 596 if (hlist_unhashed(&sb->s_instances)) 597 continue; 598 sb->s_count++; 599 spin_unlock(&sb_lock); 600 601 f(sb); 602 603 spin_lock(&sb_lock); 604 if (p) 605 __put_super(p); 606 p = sb; 607 } 608 if (p) 609 __put_super(p); 610 spin_unlock(&sb_lock); 611 } 612 /** 613 * iterate_supers - call function for all active superblocks 614 * @f: function to call 615 * @arg: argument to pass to it 616 * 617 * Scans the superblock list and calls given function, passing it 618 * locked superblock and given argument. 619 */ 620 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 621 { 622 struct super_block *sb, *p = NULL; 623 624 spin_lock(&sb_lock); 625 list_for_each_entry(sb, &super_blocks, s_list) { 626 if (hlist_unhashed(&sb->s_instances)) 627 continue; 628 sb->s_count++; 629 spin_unlock(&sb_lock); 630 631 down_read(&sb->s_umount); 632 if (sb->s_root && (sb->s_flags & SB_BORN)) 633 f(sb, arg); 634 up_read(&sb->s_umount); 635 636 spin_lock(&sb_lock); 637 if (p) 638 __put_super(p); 639 p = sb; 640 } 641 if (p) 642 __put_super(p); 643 spin_unlock(&sb_lock); 644 } 645 646 /** 647 * iterate_supers_type - call function for superblocks of given type 648 * @type: fs type 649 * @f: function to call 650 * @arg: argument to pass to it 651 * 652 * Scans the superblock list and calls given function, passing it 653 * locked superblock and given argument. 654 */ 655 void iterate_supers_type(struct file_system_type *type, 656 void (*f)(struct super_block *, void *), void *arg) 657 { 658 struct super_block *sb, *p = NULL; 659 660 spin_lock(&sb_lock); 661 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 662 sb->s_count++; 663 spin_unlock(&sb_lock); 664 665 down_read(&sb->s_umount); 666 if (sb->s_root && (sb->s_flags & SB_BORN)) 667 f(sb, arg); 668 up_read(&sb->s_umount); 669 670 spin_lock(&sb_lock); 671 if (p) 672 __put_super(p); 673 p = sb; 674 } 675 if (p) 676 __put_super(p); 677 spin_unlock(&sb_lock); 678 } 679 680 EXPORT_SYMBOL(iterate_supers_type); 681 682 static struct super_block *__get_super(struct block_device *bdev, bool excl) 683 { 684 struct super_block *sb; 685 686 if (!bdev) 687 return NULL; 688 689 spin_lock(&sb_lock); 690 rescan: 691 list_for_each_entry(sb, &super_blocks, s_list) { 692 if (hlist_unhashed(&sb->s_instances)) 693 continue; 694 if (sb->s_bdev == bdev) { 695 sb->s_count++; 696 spin_unlock(&sb_lock); 697 if (!excl) 698 down_read(&sb->s_umount); 699 else 700 down_write(&sb->s_umount); 701 /* still alive? */ 702 if (sb->s_root && (sb->s_flags & SB_BORN)) 703 return sb; 704 if (!excl) 705 up_read(&sb->s_umount); 706 else 707 up_write(&sb->s_umount); 708 /* nope, got unmounted */ 709 spin_lock(&sb_lock); 710 __put_super(sb); 711 goto rescan; 712 } 713 } 714 spin_unlock(&sb_lock); 715 return NULL; 716 } 717 718 /** 719 * get_super - get the superblock of a device 720 * @bdev: device to get the superblock for 721 * 722 * Scans the superblock list and finds the superblock of the file system 723 * mounted on the device given. %NULL is returned if no match is found. 724 */ 725 struct super_block *get_super(struct block_device *bdev) 726 { 727 return __get_super(bdev, false); 728 } 729 EXPORT_SYMBOL(get_super); 730 731 static struct super_block *__get_super_thawed(struct block_device *bdev, 732 bool excl) 733 { 734 while (1) { 735 struct super_block *s = __get_super(bdev, excl); 736 if (!s || s->s_writers.frozen == SB_UNFROZEN) 737 return s; 738 if (!excl) 739 up_read(&s->s_umount); 740 else 741 up_write(&s->s_umount); 742 wait_event(s->s_writers.wait_unfrozen, 743 s->s_writers.frozen == SB_UNFROZEN); 744 put_super(s); 745 } 746 } 747 748 /** 749 * get_super_thawed - get thawed superblock of a device 750 * @bdev: device to get the superblock for 751 * 752 * Scans the superblock list and finds the superblock of the file system 753 * mounted on the device. The superblock is returned once it is thawed 754 * (or immediately if it was not frozen). %NULL is returned if no match 755 * is found. 756 */ 757 struct super_block *get_super_thawed(struct block_device *bdev) 758 { 759 return __get_super_thawed(bdev, false); 760 } 761 EXPORT_SYMBOL(get_super_thawed); 762 763 /** 764 * get_super_exclusive_thawed - get thawed superblock of a device 765 * @bdev: device to get the superblock for 766 * 767 * Scans the superblock list and finds the superblock of the file system 768 * mounted on the device. The superblock is returned once it is thawed 769 * (or immediately if it was not frozen) and s_umount semaphore is held 770 * in exclusive mode. %NULL is returned if no match is found. 771 */ 772 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 773 { 774 return __get_super_thawed(bdev, true); 775 } 776 EXPORT_SYMBOL(get_super_exclusive_thawed); 777 778 /** 779 * get_active_super - get an active reference to the superblock of a device 780 * @bdev: device to get the superblock for 781 * 782 * Scans the superblock list and finds the superblock of the file system 783 * mounted on the device given. Returns the superblock with an active 784 * reference or %NULL if none was found. 785 */ 786 struct super_block *get_active_super(struct block_device *bdev) 787 { 788 struct super_block *sb; 789 790 if (!bdev) 791 return NULL; 792 793 restart: 794 spin_lock(&sb_lock); 795 list_for_each_entry(sb, &super_blocks, s_list) { 796 if (hlist_unhashed(&sb->s_instances)) 797 continue; 798 if (sb->s_bdev == bdev) { 799 if (!grab_super(sb)) 800 goto restart; 801 up_write(&sb->s_umount); 802 return sb; 803 } 804 } 805 spin_unlock(&sb_lock); 806 return NULL; 807 } 808 809 struct super_block *user_get_super(dev_t dev) 810 { 811 struct super_block *sb; 812 813 spin_lock(&sb_lock); 814 rescan: 815 list_for_each_entry(sb, &super_blocks, s_list) { 816 if (hlist_unhashed(&sb->s_instances)) 817 continue; 818 if (sb->s_dev == dev) { 819 sb->s_count++; 820 spin_unlock(&sb_lock); 821 down_read(&sb->s_umount); 822 /* still alive? */ 823 if (sb->s_root && (sb->s_flags & SB_BORN)) 824 return sb; 825 up_read(&sb->s_umount); 826 /* nope, got unmounted */ 827 spin_lock(&sb_lock); 828 __put_super(sb); 829 goto rescan; 830 } 831 } 832 spin_unlock(&sb_lock); 833 return NULL; 834 } 835 836 /** 837 * do_remount_sb - asks filesystem to change mount options. 838 * @sb: superblock in question 839 * @sb_flags: revised superblock flags 840 * @data: the rest of options 841 * @force: whether or not to force the change 842 * 843 * Alters the mount options of a mounted file system. 844 */ 845 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 846 { 847 int retval; 848 int remount_ro; 849 850 if (sb->s_writers.frozen != SB_UNFROZEN) 851 return -EBUSY; 852 853 #ifdef CONFIG_BLOCK 854 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 855 return -EACCES; 856 #endif 857 858 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 859 860 if (remount_ro) { 861 if (!hlist_empty(&sb->s_pins)) { 862 up_write(&sb->s_umount); 863 group_pin_kill(&sb->s_pins); 864 down_write(&sb->s_umount); 865 if (!sb->s_root) 866 return 0; 867 if (sb->s_writers.frozen != SB_UNFROZEN) 868 return -EBUSY; 869 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 870 } 871 } 872 shrink_dcache_sb(sb); 873 874 /* If we are remounting RDONLY and current sb is read/write, 875 make sure there are no rw files opened */ 876 if (remount_ro) { 877 if (force) { 878 sb->s_readonly_remount = 1; 879 smp_wmb(); 880 } else { 881 retval = sb_prepare_remount_readonly(sb); 882 if (retval) 883 return retval; 884 } 885 } 886 887 if (sb->s_op->remount_fs) { 888 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 889 if (retval) { 890 if (!force) 891 goto cancel_readonly; 892 /* If forced remount, go ahead despite any errors */ 893 WARN(1, "forced remount of a %s fs returned %i\n", 894 sb->s_type->name, retval); 895 } 896 } 897 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 898 /* Needs to be ordered wrt mnt_is_readonly() */ 899 smp_wmb(); 900 sb->s_readonly_remount = 0; 901 902 /* 903 * Some filesystems modify their metadata via some other path than the 904 * bdev buffer cache (eg. use a private mapping, or directories in 905 * pagecache, etc). Also file data modifications go via their own 906 * mappings. So If we try to mount readonly then copy the filesystem 907 * from bdev, we could get stale data, so invalidate it to give a best 908 * effort at coherency. 909 */ 910 if (remount_ro && sb->s_bdev) 911 invalidate_bdev(sb->s_bdev); 912 return 0; 913 914 cancel_readonly: 915 sb->s_readonly_remount = 0; 916 return retval; 917 } 918 919 static void do_emergency_remount_callback(struct super_block *sb) 920 { 921 down_write(&sb->s_umount); 922 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 923 !sb_rdonly(sb)) { 924 /* 925 * What lock protects sb->s_flags?? 926 */ 927 do_remount_sb(sb, SB_RDONLY, NULL, 1); 928 } 929 up_write(&sb->s_umount); 930 } 931 932 static void do_emergency_remount(struct work_struct *work) 933 { 934 __iterate_supers(do_emergency_remount_callback); 935 kfree(work); 936 printk("Emergency Remount complete\n"); 937 } 938 939 void emergency_remount(void) 940 { 941 struct work_struct *work; 942 943 work = kmalloc(sizeof(*work), GFP_ATOMIC); 944 if (work) { 945 INIT_WORK(work, do_emergency_remount); 946 schedule_work(work); 947 } 948 } 949 950 static void do_thaw_all_callback(struct super_block *sb) 951 { 952 down_write(&sb->s_umount); 953 if (sb->s_root && sb->s_flags & SB_BORN) { 954 emergency_thaw_bdev(sb); 955 thaw_super_locked(sb); 956 } else { 957 up_write(&sb->s_umount); 958 } 959 } 960 961 static void do_thaw_all(struct work_struct *work) 962 { 963 __iterate_supers(do_thaw_all_callback); 964 kfree(work); 965 printk(KERN_WARNING "Emergency Thaw complete\n"); 966 } 967 968 /** 969 * emergency_thaw_all -- forcibly thaw every frozen filesystem 970 * 971 * Used for emergency unfreeze of all filesystems via SysRq 972 */ 973 void emergency_thaw_all(void) 974 { 975 struct work_struct *work; 976 977 work = kmalloc(sizeof(*work), GFP_ATOMIC); 978 if (work) { 979 INIT_WORK(work, do_thaw_all); 980 schedule_work(work); 981 } 982 } 983 984 /* 985 * Unnamed block devices are dummy devices used by virtual 986 * filesystems which don't use real block-devices. -- jrs 987 */ 988 989 static DEFINE_IDA(unnamed_dev_ida); 990 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 991 /* Many userspace utilities consider an FSID of 0 invalid. 992 * Always return at least 1 from get_anon_bdev. 993 */ 994 static int unnamed_dev_start = 1; 995 996 int get_anon_bdev(dev_t *p) 997 { 998 int dev; 999 int error; 1000 1001 retry: 1002 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 1003 return -ENOMEM; 1004 spin_lock(&unnamed_dev_lock); 1005 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 1006 if (!error) 1007 unnamed_dev_start = dev + 1; 1008 spin_unlock(&unnamed_dev_lock); 1009 if (error == -EAGAIN) 1010 /* We raced and lost with another CPU. */ 1011 goto retry; 1012 else if (error) 1013 return -EAGAIN; 1014 1015 if (dev >= (1 << MINORBITS)) { 1016 spin_lock(&unnamed_dev_lock); 1017 ida_remove(&unnamed_dev_ida, dev); 1018 if (unnamed_dev_start > dev) 1019 unnamed_dev_start = dev; 1020 spin_unlock(&unnamed_dev_lock); 1021 return -EMFILE; 1022 } 1023 *p = MKDEV(0, dev & MINORMASK); 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(get_anon_bdev); 1027 1028 void free_anon_bdev(dev_t dev) 1029 { 1030 int slot = MINOR(dev); 1031 spin_lock(&unnamed_dev_lock); 1032 ida_remove(&unnamed_dev_ida, slot); 1033 if (slot < unnamed_dev_start) 1034 unnamed_dev_start = slot; 1035 spin_unlock(&unnamed_dev_lock); 1036 } 1037 EXPORT_SYMBOL(free_anon_bdev); 1038 1039 int set_anon_super(struct super_block *s, void *data) 1040 { 1041 return get_anon_bdev(&s->s_dev); 1042 } 1043 1044 EXPORT_SYMBOL(set_anon_super); 1045 1046 void kill_anon_super(struct super_block *sb) 1047 { 1048 dev_t dev = sb->s_dev; 1049 generic_shutdown_super(sb); 1050 free_anon_bdev(dev); 1051 } 1052 1053 EXPORT_SYMBOL(kill_anon_super); 1054 1055 void kill_litter_super(struct super_block *sb) 1056 { 1057 if (sb->s_root) 1058 d_genocide(sb->s_root); 1059 kill_anon_super(sb); 1060 } 1061 1062 EXPORT_SYMBOL(kill_litter_super); 1063 1064 static int ns_test_super(struct super_block *sb, void *data) 1065 { 1066 return sb->s_fs_info == data; 1067 } 1068 1069 static int ns_set_super(struct super_block *sb, void *data) 1070 { 1071 sb->s_fs_info = data; 1072 return set_anon_super(sb, NULL); 1073 } 1074 1075 struct dentry *mount_ns(struct file_system_type *fs_type, 1076 int flags, void *data, void *ns, struct user_namespace *user_ns, 1077 int (*fill_super)(struct super_block *, void *, int)) 1078 { 1079 struct super_block *sb; 1080 1081 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1082 * over the namespace. 1083 */ 1084 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1085 return ERR_PTR(-EPERM); 1086 1087 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1088 user_ns, ns); 1089 if (IS_ERR(sb)) 1090 return ERR_CAST(sb); 1091 1092 if (!sb->s_root) { 1093 int err; 1094 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1095 if (err) { 1096 deactivate_locked_super(sb); 1097 return ERR_PTR(err); 1098 } 1099 1100 sb->s_flags |= SB_ACTIVE; 1101 } 1102 1103 return dget(sb->s_root); 1104 } 1105 1106 EXPORT_SYMBOL(mount_ns); 1107 1108 #ifdef CONFIG_BLOCK 1109 static int set_bdev_super(struct super_block *s, void *data) 1110 { 1111 s->s_bdev = data; 1112 s->s_dev = s->s_bdev->bd_dev; 1113 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1114 1115 return 0; 1116 } 1117 1118 static int test_bdev_super(struct super_block *s, void *data) 1119 { 1120 return (void *)s->s_bdev == data; 1121 } 1122 1123 struct dentry *mount_bdev(struct file_system_type *fs_type, 1124 int flags, const char *dev_name, void *data, 1125 int (*fill_super)(struct super_block *, void *, int)) 1126 { 1127 struct block_device *bdev; 1128 struct super_block *s; 1129 fmode_t mode = FMODE_READ | FMODE_EXCL; 1130 int error = 0; 1131 1132 if (!(flags & SB_RDONLY)) 1133 mode |= FMODE_WRITE; 1134 1135 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1136 if (IS_ERR(bdev)) 1137 return ERR_CAST(bdev); 1138 1139 /* 1140 * once the super is inserted into the list by sget, s_umount 1141 * will protect the lockfs code from trying to start a snapshot 1142 * while we are mounting 1143 */ 1144 mutex_lock(&bdev->bd_fsfreeze_mutex); 1145 if (bdev->bd_fsfreeze_count > 0) { 1146 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1147 error = -EBUSY; 1148 goto error_bdev; 1149 } 1150 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1151 bdev); 1152 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1153 if (IS_ERR(s)) 1154 goto error_s; 1155 1156 if (s->s_root) { 1157 if ((flags ^ s->s_flags) & SB_RDONLY) { 1158 deactivate_locked_super(s); 1159 error = -EBUSY; 1160 goto error_bdev; 1161 } 1162 1163 /* 1164 * s_umount nests inside bd_mutex during 1165 * __invalidate_device(). blkdev_put() acquires 1166 * bd_mutex and can't be called under s_umount. Drop 1167 * s_umount temporarily. This is safe as we're 1168 * holding an active reference. 1169 */ 1170 up_write(&s->s_umount); 1171 blkdev_put(bdev, mode); 1172 down_write(&s->s_umount); 1173 } else { 1174 s->s_mode = mode; 1175 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1176 sb_set_blocksize(s, block_size(bdev)); 1177 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1178 if (error) { 1179 deactivate_locked_super(s); 1180 goto error; 1181 } 1182 1183 s->s_flags |= SB_ACTIVE; 1184 bdev->bd_super = s; 1185 } 1186 1187 return dget(s->s_root); 1188 1189 error_s: 1190 error = PTR_ERR(s); 1191 error_bdev: 1192 blkdev_put(bdev, mode); 1193 error: 1194 return ERR_PTR(error); 1195 } 1196 EXPORT_SYMBOL(mount_bdev); 1197 1198 void kill_block_super(struct super_block *sb) 1199 { 1200 struct block_device *bdev = sb->s_bdev; 1201 fmode_t mode = sb->s_mode; 1202 1203 bdev->bd_super = NULL; 1204 generic_shutdown_super(sb); 1205 sync_blockdev(bdev); 1206 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1207 blkdev_put(bdev, mode | FMODE_EXCL); 1208 } 1209 1210 EXPORT_SYMBOL(kill_block_super); 1211 #endif 1212 1213 struct dentry *mount_nodev(struct file_system_type *fs_type, 1214 int flags, void *data, 1215 int (*fill_super)(struct super_block *, void *, int)) 1216 { 1217 int error; 1218 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1219 1220 if (IS_ERR(s)) 1221 return ERR_CAST(s); 1222 1223 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1224 if (error) { 1225 deactivate_locked_super(s); 1226 return ERR_PTR(error); 1227 } 1228 s->s_flags |= SB_ACTIVE; 1229 return dget(s->s_root); 1230 } 1231 EXPORT_SYMBOL(mount_nodev); 1232 1233 static int compare_single(struct super_block *s, void *p) 1234 { 1235 return 1; 1236 } 1237 1238 struct dentry *mount_single(struct file_system_type *fs_type, 1239 int flags, void *data, 1240 int (*fill_super)(struct super_block *, void *, int)) 1241 { 1242 struct super_block *s; 1243 int error; 1244 1245 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1246 if (IS_ERR(s)) 1247 return ERR_CAST(s); 1248 if (!s->s_root) { 1249 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1250 if (error) { 1251 deactivate_locked_super(s); 1252 return ERR_PTR(error); 1253 } 1254 s->s_flags |= SB_ACTIVE; 1255 } else { 1256 do_remount_sb(s, flags, data, 0); 1257 } 1258 return dget(s->s_root); 1259 } 1260 EXPORT_SYMBOL(mount_single); 1261 1262 struct dentry * 1263 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1264 { 1265 struct dentry *root; 1266 struct super_block *sb; 1267 char *secdata = NULL; 1268 int error = -ENOMEM; 1269 1270 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1271 secdata = alloc_secdata(); 1272 if (!secdata) 1273 goto out; 1274 1275 error = security_sb_copy_data(data, secdata); 1276 if (error) 1277 goto out_free_secdata; 1278 } 1279 1280 root = type->mount(type, flags, name, data); 1281 if (IS_ERR(root)) { 1282 error = PTR_ERR(root); 1283 goto out_free_secdata; 1284 } 1285 sb = root->d_sb; 1286 BUG_ON(!sb); 1287 WARN_ON(!sb->s_bdi); 1288 1289 /* 1290 * Write barrier is for super_cache_count(). We place it before setting 1291 * SB_BORN as the data dependency between the two functions is the 1292 * superblock structure contents that we just set up, not the SB_BORN 1293 * flag. 1294 */ 1295 smp_wmb(); 1296 sb->s_flags |= SB_BORN; 1297 1298 error = security_sb_kern_mount(sb, flags, secdata); 1299 if (error) 1300 goto out_sb; 1301 1302 /* 1303 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1304 * but s_maxbytes was an unsigned long long for many releases. Throw 1305 * this warning for a little while to try and catch filesystems that 1306 * violate this rule. 1307 */ 1308 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1309 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1310 1311 up_write(&sb->s_umount); 1312 free_secdata(secdata); 1313 return root; 1314 out_sb: 1315 dput(root); 1316 deactivate_locked_super(sb); 1317 out_free_secdata: 1318 free_secdata(secdata); 1319 out: 1320 return ERR_PTR(error); 1321 } 1322 1323 /* 1324 * Setup private BDI for given superblock. It gets automatically cleaned up 1325 * in generic_shutdown_super(). 1326 */ 1327 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1328 { 1329 struct backing_dev_info *bdi; 1330 int err; 1331 va_list args; 1332 1333 bdi = bdi_alloc(GFP_KERNEL); 1334 if (!bdi) 1335 return -ENOMEM; 1336 1337 bdi->name = sb->s_type->name; 1338 1339 va_start(args, fmt); 1340 err = bdi_register_va(bdi, fmt, args); 1341 va_end(args); 1342 if (err) { 1343 bdi_put(bdi); 1344 return err; 1345 } 1346 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1347 sb->s_bdi = bdi; 1348 1349 return 0; 1350 } 1351 EXPORT_SYMBOL(super_setup_bdi_name); 1352 1353 /* 1354 * Setup private BDI for given superblock. I gets automatically cleaned up 1355 * in generic_shutdown_super(). 1356 */ 1357 int super_setup_bdi(struct super_block *sb) 1358 { 1359 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1360 1361 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1362 atomic_long_inc_return(&bdi_seq)); 1363 } 1364 EXPORT_SYMBOL(super_setup_bdi); 1365 1366 /* 1367 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1368 * instead. 1369 */ 1370 void __sb_end_write(struct super_block *sb, int level) 1371 { 1372 percpu_up_read(sb->s_writers.rw_sem + level-1); 1373 } 1374 EXPORT_SYMBOL(__sb_end_write); 1375 1376 /* 1377 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1378 * instead. 1379 */ 1380 int __sb_start_write(struct super_block *sb, int level, bool wait) 1381 { 1382 bool force_trylock = false; 1383 int ret = 1; 1384 1385 #ifdef CONFIG_LOCKDEP 1386 /* 1387 * We want lockdep to tell us about possible deadlocks with freezing 1388 * but it's it bit tricky to properly instrument it. Getting a freeze 1389 * protection works as getting a read lock but there are subtle 1390 * problems. XFS for example gets freeze protection on internal level 1391 * twice in some cases, which is OK only because we already hold a 1392 * freeze protection also on higher level. Due to these cases we have 1393 * to use wait == F (trylock mode) which must not fail. 1394 */ 1395 if (wait) { 1396 int i; 1397 1398 for (i = 0; i < level - 1; i++) 1399 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1400 force_trylock = true; 1401 break; 1402 } 1403 } 1404 #endif 1405 if (wait && !force_trylock) 1406 percpu_down_read(sb->s_writers.rw_sem + level-1); 1407 else 1408 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1409 1410 WARN_ON(force_trylock && !ret); 1411 return ret; 1412 } 1413 EXPORT_SYMBOL(__sb_start_write); 1414 1415 /** 1416 * sb_wait_write - wait until all writers to given file system finish 1417 * @sb: the super for which we wait 1418 * @level: type of writers we wait for (normal vs page fault) 1419 * 1420 * This function waits until there are no writers of given type to given file 1421 * system. 1422 */ 1423 static void sb_wait_write(struct super_block *sb, int level) 1424 { 1425 percpu_down_write(sb->s_writers.rw_sem + level-1); 1426 } 1427 1428 /* 1429 * We are going to return to userspace and forget about these locks, the 1430 * ownership goes to the caller of thaw_super() which does unlock(). 1431 */ 1432 static void lockdep_sb_freeze_release(struct super_block *sb) 1433 { 1434 int level; 1435 1436 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1437 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1438 } 1439 1440 /* 1441 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1442 */ 1443 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1444 { 1445 int level; 1446 1447 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1448 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1449 } 1450 1451 static void sb_freeze_unlock(struct super_block *sb) 1452 { 1453 int level; 1454 1455 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1456 percpu_up_write(sb->s_writers.rw_sem + level); 1457 } 1458 1459 /** 1460 * freeze_super - lock the filesystem and force it into a consistent state 1461 * @sb: the super to lock 1462 * 1463 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1464 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1465 * -EBUSY. 1466 * 1467 * During this function, sb->s_writers.frozen goes through these values: 1468 * 1469 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1470 * 1471 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1472 * writes should be blocked, though page faults are still allowed. We wait for 1473 * all writes to complete and then proceed to the next stage. 1474 * 1475 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1476 * but internal fs threads can still modify the filesystem (although they 1477 * should not dirty new pages or inodes), writeback can run etc. After waiting 1478 * for all running page faults we sync the filesystem which will clean all 1479 * dirty pages and inodes (no new dirty pages or inodes can be created when 1480 * sync is running). 1481 * 1482 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1483 * modification are blocked (e.g. XFS preallocation truncation on inode 1484 * reclaim). This is usually implemented by blocking new transactions for 1485 * filesystems that have them and need this additional guard. After all 1486 * internal writers are finished we call ->freeze_fs() to finish filesystem 1487 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1488 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1489 * 1490 * sb->s_writers.frozen is protected by sb->s_umount. 1491 */ 1492 int freeze_super(struct super_block *sb) 1493 { 1494 int ret; 1495 1496 atomic_inc(&sb->s_active); 1497 down_write(&sb->s_umount); 1498 if (sb->s_writers.frozen != SB_UNFROZEN) { 1499 deactivate_locked_super(sb); 1500 return -EBUSY; 1501 } 1502 1503 if (!(sb->s_flags & SB_BORN)) { 1504 up_write(&sb->s_umount); 1505 return 0; /* sic - it's "nothing to do" */ 1506 } 1507 1508 if (sb_rdonly(sb)) { 1509 /* Nothing to do really... */ 1510 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1511 up_write(&sb->s_umount); 1512 return 0; 1513 } 1514 1515 sb->s_writers.frozen = SB_FREEZE_WRITE; 1516 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1517 up_write(&sb->s_umount); 1518 sb_wait_write(sb, SB_FREEZE_WRITE); 1519 down_write(&sb->s_umount); 1520 1521 /* Now we go and block page faults... */ 1522 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1523 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1524 1525 /* All writers are done so after syncing there won't be dirty data */ 1526 sync_filesystem(sb); 1527 1528 /* Now wait for internal filesystem counter */ 1529 sb->s_writers.frozen = SB_FREEZE_FS; 1530 sb_wait_write(sb, SB_FREEZE_FS); 1531 1532 if (sb->s_op->freeze_fs) { 1533 ret = sb->s_op->freeze_fs(sb); 1534 if (ret) { 1535 printk(KERN_ERR 1536 "VFS:Filesystem freeze failed\n"); 1537 sb->s_writers.frozen = SB_UNFROZEN; 1538 sb_freeze_unlock(sb); 1539 wake_up(&sb->s_writers.wait_unfrozen); 1540 deactivate_locked_super(sb); 1541 return ret; 1542 } 1543 } 1544 /* 1545 * For debugging purposes so that fs can warn if it sees write activity 1546 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1547 */ 1548 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1549 lockdep_sb_freeze_release(sb); 1550 up_write(&sb->s_umount); 1551 return 0; 1552 } 1553 EXPORT_SYMBOL(freeze_super); 1554 1555 /** 1556 * thaw_super -- unlock filesystem 1557 * @sb: the super to thaw 1558 * 1559 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1560 */ 1561 static int thaw_super_locked(struct super_block *sb) 1562 { 1563 int error; 1564 1565 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1566 up_write(&sb->s_umount); 1567 return -EINVAL; 1568 } 1569 1570 if (sb_rdonly(sb)) { 1571 sb->s_writers.frozen = SB_UNFROZEN; 1572 goto out; 1573 } 1574 1575 lockdep_sb_freeze_acquire(sb); 1576 1577 if (sb->s_op->unfreeze_fs) { 1578 error = sb->s_op->unfreeze_fs(sb); 1579 if (error) { 1580 printk(KERN_ERR 1581 "VFS:Filesystem thaw failed\n"); 1582 lockdep_sb_freeze_release(sb); 1583 up_write(&sb->s_umount); 1584 return error; 1585 } 1586 } 1587 1588 sb->s_writers.frozen = SB_UNFROZEN; 1589 sb_freeze_unlock(sb); 1590 out: 1591 wake_up(&sb->s_writers.wait_unfrozen); 1592 deactivate_locked_super(sb); 1593 return 0; 1594 } 1595 1596 int thaw_super(struct super_block *sb) 1597 { 1598 down_write(&sb->s_umount); 1599 return thaw_super_locked(sb); 1600 } 1601 EXPORT_SYMBOL(thaw_super); 1602