xref: /openbmc/linux/fs/super.c (revision f0702555)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!trylock_super(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79 
80 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90 
91 	/*
92 	 * prune the dcache first as the icache is pinned by it, then
93 	 * prune the icache, followed by the filesystem specific caches
94 	 *
95 	 * Ensure that we always scan at least one object - memcg kmem
96 	 * accounting uses this to fully empty the caches.
97 	 */
98 	sc->nr_to_scan = dentries + 1;
99 	freed = prune_dcache_sb(sb, sc);
100 	sc->nr_to_scan = inodes + 1;
101 	freed += prune_icache_sb(sb, sc);
102 
103 	if (fs_objects) {
104 		sc->nr_to_scan = fs_objects + 1;
105 		freed += sb->s_op->free_cached_objects(sb, sc);
106 	}
107 
108 	up_read(&sb->s_umount);
109 	return freed;
110 }
111 
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 				       struct shrink_control *sc)
114 {
115 	struct super_block *sb;
116 	long	total_objects = 0;
117 
118 	sb = container_of(shrink, struct super_block, s_shrink);
119 
120 	/*
121 	 * Don't call trylock_super as it is a potential
122 	 * scalability bottleneck. The counts could get updated
123 	 * between super_cache_count and super_cache_scan anyway.
124 	 * Call to super_cache_count with shrinker_rwsem held
125 	 * ensures the safety of call to list_lru_shrink_count() and
126 	 * s_op->nr_cached_objects().
127 	 */
128 	if (sb->s_op && sb->s_op->nr_cached_objects)
129 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130 
131 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133 
134 	total_objects = vfs_pressure_ratio(total_objects);
135 	return total_objects;
136 }
137 
138 static void destroy_super_work(struct work_struct *work)
139 {
140 	struct super_block *s = container_of(work, struct super_block,
141 							destroy_work);
142 	int i;
143 
144 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
145 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146 	kfree(s);
147 }
148 
149 static void destroy_super_rcu(struct rcu_head *head)
150 {
151 	struct super_block *s = container_of(head, struct super_block, rcu);
152 	INIT_WORK(&s->destroy_work, destroy_super_work);
153 	schedule_work(&s->destroy_work);
154 }
155 
156 /**
157  *	destroy_super	-	frees a superblock
158  *	@s: superblock to free
159  *
160  *	Frees a superblock.
161  */
162 static void destroy_super(struct super_block *s)
163 {
164 	list_lru_destroy(&s->s_dentry_lru);
165 	list_lru_destroy(&s->s_inode_lru);
166 	security_sb_free(s);
167 	WARN_ON(!list_empty(&s->s_mounts));
168 	kfree(s->s_subtype);
169 	kfree(s->s_options);
170 	call_rcu(&s->rcu, destroy_super_rcu);
171 }
172 
173 /**
174  *	alloc_super	-	create new superblock
175  *	@type:	filesystem type superblock should belong to
176  *	@flags: the mount flags
177  *
178  *	Allocates and initializes a new &struct super_block.  alloc_super()
179  *	returns a pointer new superblock or %NULL if allocation had failed.
180  */
181 static struct super_block *alloc_super(struct file_system_type *type, int flags)
182 {
183 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
184 	static const struct super_operations default_op;
185 	int i;
186 
187 	if (!s)
188 		return NULL;
189 
190 	INIT_LIST_HEAD(&s->s_mounts);
191 
192 	if (security_sb_alloc(s))
193 		goto fail;
194 
195 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197 					sb_writers_name[i],
198 					&type->s_writers_key[i]))
199 			goto fail;
200 	}
201 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
202 	s->s_bdi = &noop_backing_dev_info;
203 	s->s_flags = flags;
204 	INIT_HLIST_NODE(&s->s_instances);
205 	INIT_HLIST_BL_HEAD(&s->s_anon);
206 	mutex_init(&s->s_sync_lock);
207 	INIT_LIST_HEAD(&s->s_inodes);
208 	spin_lock_init(&s->s_inode_list_lock);
209 
210 	if (list_lru_init_memcg(&s->s_dentry_lru))
211 		goto fail;
212 	if (list_lru_init_memcg(&s->s_inode_lru))
213 		goto fail;
214 
215 	init_rwsem(&s->s_umount);
216 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
217 	/*
218 	 * sget() can have s_umount recursion.
219 	 *
220 	 * When it cannot find a suitable sb, it allocates a new
221 	 * one (this one), and tries again to find a suitable old
222 	 * one.
223 	 *
224 	 * In case that succeeds, it will acquire the s_umount
225 	 * lock of the old one. Since these are clearly distrinct
226 	 * locks, and this object isn't exposed yet, there's no
227 	 * risk of deadlocks.
228 	 *
229 	 * Annotate this by putting this lock in a different
230 	 * subclass.
231 	 */
232 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
233 	s->s_count = 1;
234 	atomic_set(&s->s_active, 1);
235 	mutex_init(&s->s_vfs_rename_mutex);
236 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
237 	mutex_init(&s->s_dquot.dqio_mutex);
238 	mutex_init(&s->s_dquot.dqonoff_mutex);
239 	s->s_maxbytes = MAX_NON_LFS;
240 	s->s_op = &default_op;
241 	s->s_time_gran = 1000000000;
242 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
243 
244 	s->s_shrink.seeks = DEFAULT_SEEKS;
245 	s->s_shrink.scan_objects = super_cache_scan;
246 	s->s_shrink.count_objects = super_cache_count;
247 	s->s_shrink.batch = 1024;
248 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
249 	return s;
250 
251 fail:
252 	destroy_super(s);
253 	return NULL;
254 }
255 
256 /* Superblock refcounting  */
257 
258 /*
259  * Drop a superblock's refcount.  The caller must hold sb_lock.
260  */
261 static void __put_super(struct super_block *sb)
262 {
263 	if (!--sb->s_count) {
264 		list_del_init(&sb->s_list);
265 		destroy_super(sb);
266 	}
267 }
268 
269 /**
270  *	put_super	-	drop a temporary reference to superblock
271  *	@sb: superblock in question
272  *
273  *	Drops a temporary reference, frees superblock if there's no
274  *	references left.
275  */
276 static void put_super(struct super_block *sb)
277 {
278 	spin_lock(&sb_lock);
279 	__put_super(sb);
280 	spin_unlock(&sb_lock);
281 }
282 
283 
284 /**
285  *	deactivate_locked_super	-	drop an active reference to superblock
286  *	@s: superblock to deactivate
287  *
288  *	Drops an active reference to superblock, converting it into a temporary
289  *	one if there is no other active references left.  In that case we
290  *	tell fs driver to shut it down and drop the temporary reference we
291  *	had just acquired.
292  *
293  *	Caller holds exclusive lock on superblock; that lock is released.
294  */
295 void deactivate_locked_super(struct super_block *s)
296 {
297 	struct file_system_type *fs = s->s_type;
298 	if (atomic_dec_and_test(&s->s_active)) {
299 		cleancache_invalidate_fs(s);
300 		unregister_shrinker(&s->s_shrink);
301 		fs->kill_sb(s);
302 
303 		/*
304 		 * Since list_lru_destroy() may sleep, we cannot call it from
305 		 * put_super(), where we hold the sb_lock. Therefore we destroy
306 		 * the lru lists right now.
307 		 */
308 		list_lru_destroy(&s->s_dentry_lru);
309 		list_lru_destroy(&s->s_inode_lru);
310 
311 		put_filesystem(fs);
312 		put_super(s);
313 	} else {
314 		up_write(&s->s_umount);
315 	}
316 }
317 
318 EXPORT_SYMBOL(deactivate_locked_super);
319 
320 /**
321  *	deactivate_super	-	drop an active reference to superblock
322  *	@s: superblock to deactivate
323  *
324  *	Variant of deactivate_locked_super(), except that superblock is *not*
325  *	locked by caller.  If we are going to drop the final active reference,
326  *	lock will be acquired prior to that.
327  */
328 void deactivate_super(struct super_block *s)
329 {
330         if (!atomic_add_unless(&s->s_active, -1, 1)) {
331 		down_write(&s->s_umount);
332 		deactivate_locked_super(s);
333 	}
334 }
335 
336 EXPORT_SYMBOL(deactivate_super);
337 
338 /**
339  *	grab_super - acquire an active reference
340  *	@s: reference we are trying to make active
341  *
342  *	Tries to acquire an active reference.  grab_super() is used when we
343  * 	had just found a superblock in super_blocks or fs_type->fs_supers
344  *	and want to turn it into a full-blown active reference.  grab_super()
345  *	is called with sb_lock held and drops it.  Returns 1 in case of
346  *	success, 0 if we had failed (superblock contents was already dead or
347  *	dying when grab_super() had been called).  Note that this is only
348  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
349  *	of their type), so increment of ->s_count is OK here.
350  */
351 static int grab_super(struct super_block *s) __releases(sb_lock)
352 {
353 	s->s_count++;
354 	spin_unlock(&sb_lock);
355 	down_write(&s->s_umount);
356 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
357 		put_super(s);
358 		return 1;
359 	}
360 	up_write(&s->s_umount);
361 	put_super(s);
362 	return 0;
363 }
364 
365 /*
366  *	trylock_super - try to grab ->s_umount shared
367  *	@sb: reference we are trying to grab
368  *
369  *	Try to prevent fs shutdown.  This is used in places where we
370  *	cannot take an active reference but we need to ensure that the
371  *	filesystem is not shut down while we are working on it. It returns
372  *	false if we cannot acquire s_umount or if we lose the race and
373  *	filesystem already got into shutdown, and returns true with the s_umount
374  *	lock held in read mode in case of success. On successful return,
375  *	the caller must drop the s_umount lock when done.
376  *
377  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378  *	The reason why it's safe is that we are OK with doing trylock instead
379  *	of down_read().  There's a couple of places that are OK with that, but
380  *	it's very much not a general-purpose interface.
381  */
382 bool trylock_super(struct super_block *sb)
383 {
384 	if (down_read_trylock(&sb->s_umount)) {
385 		if (!hlist_unhashed(&sb->s_instances) &&
386 		    sb->s_root && (sb->s_flags & MS_BORN))
387 			return true;
388 		up_read(&sb->s_umount);
389 	}
390 
391 	return false;
392 }
393 
394 /**
395  *	generic_shutdown_super	-	common helper for ->kill_sb()
396  *	@sb: superblock to kill
397  *
398  *	generic_shutdown_super() does all fs-independent work on superblock
399  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
400  *	that need destruction out of superblock, call generic_shutdown_super()
401  *	and release aforementioned objects.  Note: dentries and inodes _are_
402  *	taken care of and do not need specific handling.
403  *
404  *	Upon calling this function, the filesystem may no longer alter or
405  *	rearrange the set of dentries belonging to this super_block, nor may it
406  *	change the attachments of dentries to inodes.
407  */
408 void generic_shutdown_super(struct super_block *sb)
409 {
410 	const struct super_operations *sop = sb->s_op;
411 
412 	if (sb->s_root) {
413 		shrink_dcache_for_umount(sb);
414 		sync_filesystem(sb);
415 		sb->s_flags &= ~MS_ACTIVE;
416 
417 		fsnotify_unmount_inodes(sb);
418 		cgroup_writeback_umount();
419 
420 		evict_inodes(sb);
421 
422 		if (sb->s_dio_done_wq) {
423 			destroy_workqueue(sb->s_dio_done_wq);
424 			sb->s_dio_done_wq = NULL;
425 		}
426 
427 		if (sop->put_super)
428 			sop->put_super(sb);
429 
430 		if (!list_empty(&sb->s_inodes)) {
431 			printk("VFS: Busy inodes after unmount of %s. "
432 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
433 			   sb->s_id);
434 		}
435 	}
436 	spin_lock(&sb_lock);
437 	/* should be initialized for __put_super_and_need_restart() */
438 	hlist_del_init(&sb->s_instances);
439 	spin_unlock(&sb_lock);
440 	up_write(&sb->s_umount);
441 }
442 
443 EXPORT_SYMBOL(generic_shutdown_super);
444 
445 /**
446  *	sget	-	find or create a superblock
447  *	@type:	filesystem type superblock should belong to
448  *	@test:	comparison callback
449  *	@set:	setup callback
450  *	@flags:	mount flags
451  *	@data:	argument to each of them
452  */
453 struct super_block *sget(struct file_system_type *type,
454 			int (*test)(struct super_block *,void *),
455 			int (*set)(struct super_block *,void *),
456 			int flags,
457 			void *data)
458 {
459 	struct super_block *s = NULL;
460 	struct super_block *old;
461 	int err;
462 
463 retry:
464 	spin_lock(&sb_lock);
465 	if (test) {
466 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
467 			if (!test(old, data))
468 				continue;
469 			if (!grab_super(old))
470 				goto retry;
471 			if (s) {
472 				up_write(&s->s_umount);
473 				destroy_super(s);
474 				s = NULL;
475 			}
476 			return old;
477 		}
478 	}
479 	if (!s) {
480 		spin_unlock(&sb_lock);
481 		s = alloc_super(type, flags);
482 		if (!s)
483 			return ERR_PTR(-ENOMEM);
484 		goto retry;
485 	}
486 
487 	err = set(s, data);
488 	if (err) {
489 		spin_unlock(&sb_lock);
490 		up_write(&s->s_umount);
491 		destroy_super(s);
492 		return ERR_PTR(err);
493 	}
494 	s->s_type = type;
495 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
496 	list_add_tail(&s->s_list, &super_blocks);
497 	hlist_add_head(&s->s_instances, &type->fs_supers);
498 	spin_unlock(&sb_lock);
499 	get_filesystem(type);
500 	register_shrinker(&s->s_shrink);
501 	return s;
502 }
503 
504 EXPORT_SYMBOL(sget);
505 
506 void drop_super(struct super_block *sb)
507 {
508 	up_read(&sb->s_umount);
509 	put_super(sb);
510 }
511 
512 EXPORT_SYMBOL(drop_super);
513 
514 /**
515  *	iterate_supers - call function for all active superblocks
516  *	@f: function to call
517  *	@arg: argument to pass to it
518  *
519  *	Scans the superblock list and calls given function, passing it
520  *	locked superblock and given argument.
521  */
522 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
523 {
524 	struct super_block *sb, *p = NULL;
525 
526 	spin_lock(&sb_lock);
527 	list_for_each_entry(sb, &super_blocks, s_list) {
528 		if (hlist_unhashed(&sb->s_instances))
529 			continue;
530 		sb->s_count++;
531 		spin_unlock(&sb_lock);
532 
533 		down_read(&sb->s_umount);
534 		if (sb->s_root && (sb->s_flags & MS_BORN))
535 			f(sb, arg);
536 		up_read(&sb->s_umount);
537 
538 		spin_lock(&sb_lock);
539 		if (p)
540 			__put_super(p);
541 		p = sb;
542 	}
543 	if (p)
544 		__put_super(p);
545 	spin_unlock(&sb_lock);
546 }
547 
548 /**
549  *	iterate_supers_type - call function for superblocks of given type
550  *	@type: fs type
551  *	@f: function to call
552  *	@arg: argument to pass to it
553  *
554  *	Scans the superblock list and calls given function, passing it
555  *	locked superblock and given argument.
556  */
557 void iterate_supers_type(struct file_system_type *type,
558 	void (*f)(struct super_block *, void *), void *arg)
559 {
560 	struct super_block *sb, *p = NULL;
561 
562 	spin_lock(&sb_lock);
563 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
564 		sb->s_count++;
565 		spin_unlock(&sb_lock);
566 
567 		down_read(&sb->s_umount);
568 		if (sb->s_root && (sb->s_flags & MS_BORN))
569 			f(sb, arg);
570 		up_read(&sb->s_umount);
571 
572 		spin_lock(&sb_lock);
573 		if (p)
574 			__put_super(p);
575 		p = sb;
576 	}
577 	if (p)
578 		__put_super(p);
579 	spin_unlock(&sb_lock);
580 }
581 
582 EXPORT_SYMBOL(iterate_supers_type);
583 
584 /**
585  *	get_super - get the superblock of a device
586  *	@bdev: device to get the superblock for
587  *
588  *	Scans the superblock list and finds the superblock of the file system
589  *	mounted on the device given. %NULL is returned if no match is found.
590  */
591 
592 struct super_block *get_super(struct block_device *bdev)
593 {
594 	struct super_block *sb;
595 
596 	if (!bdev)
597 		return NULL;
598 
599 	spin_lock(&sb_lock);
600 rescan:
601 	list_for_each_entry(sb, &super_blocks, s_list) {
602 		if (hlist_unhashed(&sb->s_instances))
603 			continue;
604 		if (sb->s_bdev == bdev) {
605 			sb->s_count++;
606 			spin_unlock(&sb_lock);
607 			down_read(&sb->s_umount);
608 			/* still alive? */
609 			if (sb->s_root && (sb->s_flags & MS_BORN))
610 				return sb;
611 			up_read(&sb->s_umount);
612 			/* nope, got unmounted */
613 			spin_lock(&sb_lock);
614 			__put_super(sb);
615 			goto rescan;
616 		}
617 	}
618 	spin_unlock(&sb_lock);
619 	return NULL;
620 }
621 
622 EXPORT_SYMBOL(get_super);
623 
624 /**
625  *	get_super_thawed - get thawed superblock of a device
626  *	@bdev: device to get the superblock for
627  *
628  *	Scans the superblock list and finds the superblock of the file system
629  *	mounted on the device. The superblock is returned once it is thawed
630  *	(or immediately if it was not frozen). %NULL is returned if no match
631  *	is found.
632  */
633 struct super_block *get_super_thawed(struct block_device *bdev)
634 {
635 	while (1) {
636 		struct super_block *s = get_super(bdev);
637 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
638 			return s;
639 		up_read(&s->s_umount);
640 		wait_event(s->s_writers.wait_unfrozen,
641 			   s->s_writers.frozen == SB_UNFROZEN);
642 		put_super(s);
643 	}
644 }
645 EXPORT_SYMBOL(get_super_thawed);
646 
647 /**
648  * get_active_super - get an active reference to the superblock of a device
649  * @bdev: device to get the superblock for
650  *
651  * Scans the superblock list and finds the superblock of the file system
652  * mounted on the device given.  Returns the superblock with an active
653  * reference or %NULL if none was found.
654  */
655 struct super_block *get_active_super(struct block_device *bdev)
656 {
657 	struct super_block *sb;
658 
659 	if (!bdev)
660 		return NULL;
661 
662 restart:
663 	spin_lock(&sb_lock);
664 	list_for_each_entry(sb, &super_blocks, s_list) {
665 		if (hlist_unhashed(&sb->s_instances))
666 			continue;
667 		if (sb->s_bdev == bdev) {
668 			if (!grab_super(sb))
669 				goto restart;
670 			up_write(&sb->s_umount);
671 			return sb;
672 		}
673 	}
674 	spin_unlock(&sb_lock);
675 	return NULL;
676 }
677 
678 struct super_block *user_get_super(dev_t dev)
679 {
680 	struct super_block *sb;
681 
682 	spin_lock(&sb_lock);
683 rescan:
684 	list_for_each_entry(sb, &super_blocks, s_list) {
685 		if (hlist_unhashed(&sb->s_instances))
686 			continue;
687 		if (sb->s_dev ==  dev) {
688 			sb->s_count++;
689 			spin_unlock(&sb_lock);
690 			down_read(&sb->s_umount);
691 			/* still alive? */
692 			if (sb->s_root && (sb->s_flags & MS_BORN))
693 				return sb;
694 			up_read(&sb->s_umount);
695 			/* nope, got unmounted */
696 			spin_lock(&sb_lock);
697 			__put_super(sb);
698 			goto rescan;
699 		}
700 	}
701 	spin_unlock(&sb_lock);
702 	return NULL;
703 }
704 
705 /**
706  *	do_remount_sb - asks filesystem to change mount options.
707  *	@sb:	superblock in question
708  *	@flags:	numeric part of options
709  *	@data:	the rest of options
710  *      @force: whether or not to force the change
711  *
712  *	Alters the mount options of a mounted file system.
713  */
714 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
715 {
716 	int retval;
717 	int remount_ro;
718 
719 	if (sb->s_writers.frozen != SB_UNFROZEN)
720 		return -EBUSY;
721 
722 #ifdef CONFIG_BLOCK
723 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
724 		return -EACCES;
725 #endif
726 
727 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
728 
729 	if (remount_ro) {
730 		if (!hlist_empty(&sb->s_pins)) {
731 			up_write(&sb->s_umount);
732 			group_pin_kill(&sb->s_pins);
733 			down_write(&sb->s_umount);
734 			if (!sb->s_root)
735 				return 0;
736 			if (sb->s_writers.frozen != SB_UNFROZEN)
737 				return -EBUSY;
738 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
739 		}
740 	}
741 	shrink_dcache_sb(sb);
742 
743 	/* If we are remounting RDONLY and current sb is read/write,
744 	   make sure there are no rw files opened */
745 	if (remount_ro) {
746 		if (force) {
747 			sb->s_readonly_remount = 1;
748 			smp_wmb();
749 		} else {
750 			retval = sb_prepare_remount_readonly(sb);
751 			if (retval)
752 				return retval;
753 		}
754 	}
755 
756 	if (sb->s_op->remount_fs) {
757 		retval = sb->s_op->remount_fs(sb, &flags, data);
758 		if (retval) {
759 			if (!force)
760 				goto cancel_readonly;
761 			/* If forced remount, go ahead despite any errors */
762 			WARN(1, "forced remount of a %s fs returned %i\n",
763 			     sb->s_type->name, retval);
764 		}
765 	}
766 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
767 	/* Needs to be ordered wrt mnt_is_readonly() */
768 	smp_wmb();
769 	sb->s_readonly_remount = 0;
770 
771 	/*
772 	 * Some filesystems modify their metadata via some other path than the
773 	 * bdev buffer cache (eg. use a private mapping, or directories in
774 	 * pagecache, etc). Also file data modifications go via their own
775 	 * mappings. So If we try to mount readonly then copy the filesystem
776 	 * from bdev, we could get stale data, so invalidate it to give a best
777 	 * effort at coherency.
778 	 */
779 	if (remount_ro && sb->s_bdev)
780 		invalidate_bdev(sb->s_bdev);
781 	return 0;
782 
783 cancel_readonly:
784 	sb->s_readonly_remount = 0;
785 	return retval;
786 }
787 
788 static void do_emergency_remount(struct work_struct *work)
789 {
790 	struct super_block *sb, *p = NULL;
791 
792 	spin_lock(&sb_lock);
793 	list_for_each_entry(sb, &super_blocks, s_list) {
794 		if (hlist_unhashed(&sb->s_instances))
795 			continue;
796 		sb->s_count++;
797 		spin_unlock(&sb_lock);
798 		down_write(&sb->s_umount);
799 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
800 		    !(sb->s_flags & MS_RDONLY)) {
801 			/*
802 			 * What lock protects sb->s_flags??
803 			 */
804 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
805 		}
806 		up_write(&sb->s_umount);
807 		spin_lock(&sb_lock);
808 		if (p)
809 			__put_super(p);
810 		p = sb;
811 	}
812 	if (p)
813 		__put_super(p);
814 	spin_unlock(&sb_lock);
815 	kfree(work);
816 	printk("Emergency Remount complete\n");
817 }
818 
819 void emergency_remount(void)
820 {
821 	struct work_struct *work;
822 
823 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
824 	if (work) {
825 		INIT_WORK(work, do_emergency_remount);
826 		schedule_work(work);
827 	}
828 }
829 
830 /*
831  * Unnamed block devices are dummy devices used by virtual
832  * filesystems which don't use real block-devices.  -- jrs
833  */
834 
835 static DEFINE_IDA(unnamed_dev_ida);
836 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
837 /* Many userspace utilities consider an FSID of 0 invalid.
838  * Always return at least 1 from get_anon_bdev.
839  */
840 static int unnamed_dev_start = 1;
841 
842 int get_anon_bdev(dev_t *p)
843 {
844 	int dev;
845 	int error;
846 
847  retry:
848 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
849 		return -ENOMEM;
850 	spin_lock(&unnamed_dev_lock);
851 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
852 	if (!error)
853 		unnamed_dev_start = dev + 1;
854 	spin_unlock(&unnamed_dev_lock);
855 	if (error == -EAGAIN)
856 		/* We raced and lost with another CPU. */
857 		goto retry;
858 	else if (error)
859 		return -EAGAIN;
860 
861 	if (dev >= (1 << MINORBITS)) {
862 		spin_lock(&unnamed_dev_lock);
863 		ida_remove(&unnamed_dev_ida, dev);
864 		if (unnamed_dev_start > dev)
865 			unnamed_dev_start = dev;
866 		spin_unlock(&unnamed_dev_lock);
867 		return -EMFILE;
868 	}
869 	*p = MKDEV(0, dev & MINORMASK);
870 	return 0;
871 }
872 EXPORT_SYMBOL(get_anon_bdev);
873 
874 void free_anon_bdev(dev_t dev)
875 {
876 	int slot = MINOR(dev);
877 	spin_lock(&unnamed_dev_lock);
878 	ida_remove(&unnamed_dev_ida, slot);
879 	if (slot < unnamed_dev_start)
880 		unnamed_dev_start = slot;
881 	spin_unlock(&unnamed_dev_lock);
882 }
883 EXPORT_SYMBOL(free_anon_bdev);
884 
885 int set_anon_super(struct super_block *s, void *data)
886 {
887 	return get_anon_bdev(&s->s_dev);
888 }
889 
890 EXPORT_SYMBOL(set_anon_super);
891 
892 void kill_anon_super(struct super_block *sb)
893 {
894 	dev_t dev = sb->s_dev;
895 	generic_shutdown_super(sb);
896 	free_anon_bdev(dev);
897 }
898 
899 EXPORT_SYMBOL(kill_anon_super);
900 
901 void kill_litter_super(struct super_block *sb)
902 {
903 	if (sb->s_root)
904 		d_genocide(sb->s_root);
905 	kill_anon_super(sb);
906 }
907 
908 EXPORT_SYMBOL(kill_litter_super);
909 
910 static int ns_test_super(struct super_block *sb, void *data)
911 {
912 	return sb->s_fs_info == data;
913 }
914 
915 static int ns_set_super(struct super_block *sb, void *data)
916 {
917 	sb->s_fs_info = data;
918 	return set_anon_super(sb, NULL);
919 }
920 
921 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
922 	void *data, int (*fill_super)(struct super_block *, void *, int))
923 {
924 	struct super_block *sb;
925 
926 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
927 	if (IS_ERR(sb))
928 		return ERR_CAST(sb);
929 
930 	if (!sb->s_root) {
931 		int err;
932 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
933 		if (err) {
934 			deactivate_locked_super(sb);
935 			return ERR_PTR(err);
936 		}
937 
938 		sb->s_flags |= MS_ACTIVE;
939 	}
940 
941 	return dget(sb->s_root);
942 }
943 
944 EXPORT_SYMBOL(mount_ns);
945 
946 #ifdef CONFIG_BLOCK
947 static int set_bdev_super(struct super_block *s, void *data)
948 {
949 	s->s_bdev = data;
950 	s->s_dev = s->s_bdev->bd_dev;
951 
952 	/*
953 	 * We set the bdi here to the queue backing, file systems can
954 	 * overwrite this in ->fill_super()
955 	 */
956 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
957 	return 0;
958 }
959 
960 static int test_bdev_super(struct super_block *s, void *data)
961 {
962 	return (void *)s->s_bdev == data;
963 }
964 
965 struct dentry *mount_bdev(struct file_system_type *fs_type,
966 	int flags, const char *dev_name, void *data,
967 	int (*fill_super)(struct super_block *, void *, int))
968 {
969 	struct block_device *bdev;
970 	struct super_block *s;
971 	fmode_t mode = FMODE_READ | FMODE_EXCL;
972 	int error = 0;
973 
974 	if (!(flags & MS_RDONLY))
975 		mode |= FMODE_WRITE;
976 
977 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
978 	if (IS_ERR(bdev))
979 		return ERR_CAST(bdev);
980 
981 	/*
982 	 * once the super is inserted into the list by sget, s_umount
983 	 * will protect the lockfs code from trying to start a snapshot
984 	 * while we are mounting
985 	 */
986 	mutex_lock(&bdev->bd_fsfreeze_mutex);
987 	if (bdev->bd_fsfreeze_count > 0) {
988 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
989 		error = -EBUSY;
990 		goto error_bdev;
991 	}
992 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
993 		 bdev);
994 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
995 	if (IS_ERR(s))
996 		goto error_s;
997 
998 	if (s->s_root) {
999 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1000 			deactivate_locked_super(s);
1001 			error = -EBUSY;
1002 			goto error_bdev;
1003 		}
1004 
1005 		/*
1006 		 * s_umount nests inside bd_mutex during
1007 		 * __invalidate_device().  blkdev_put() acquires
1008 		 * bd_mutex and can't be called under s_umount.  Drop
1009 		 * s_umount temporarily.  This is safe as we're
1010 		 * holding an active reference.
1011 		 */
1012 		up_write(&s->s_umount);
1013 		blkdev_put(bdev, mode);
1014 		down_write(&s->s_umount);
1015 	} else {
1016 		s->s_mode = mode;
1017 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018 		sb_set_blocksize(s, block_size(bdev));
1019 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020 		if (error) {
1021 			deactivate_locked_super(s);
1022 			goto error;
1023 		}
1024 
1025 		s->s_flags |= MS_ACTIVE;
1026 		bdev->bd_super = s;
1027 	}
1028 
1029 	return dget(s->s_root);
1030 
1031 error_s:
1032 	error = PTR_ERR(s);
1033 error_bdev:
1034 	blkdev_put(bdev, mode);
1035 error:
1036 	return ERR_PTR(error);
1037 }
1038 EXPORT_SYMBOL(mount_bdev);
1039 
1040 void kill_block_super(struct super_block *sb)
1041 {
1042 	struct block_device *bdev = sb->s_bdev;
1043 	fmode_t mode = sb->s_mode;
1044 
1045 	bdev->bd_super = NULL;
1046 	generic_shutdown_super(sb);
1047 	sync_blockdev(bdev);
1048 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049 	blkdev_put(bdev, mode | FMODE_EXCL);
1050 }
1051 
1052 EXPORT_SYMBOL(kill_block_super);
1053 #endif
1054 
1055 struct dentry *mount_nodev(struct file_system_type *fs_type,
1056 	int flags, void *data,
1057 	int (*fill_super)(struct super_block *, void *, int))
1058 {
1059 	int error;
1060 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061 
1062 	if (IS_ERR(s))
1063 		return ERR_CAST(s);
1064 
1065 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066 	if (error) {
1067 		deactivate_locked_super(s);
1068 		return ERR_PTR(error);
1069 	}
1070 	s->s_flags |= MS_ACTIVE;
1071 	return dget(s->s_root);
1072 }
1073 EXPORT_SYMBOL(mount_nodev);
1074 
1075 static int compare_single(struct super_block *s, void *p)
1076 {
1077 	return 1;
1078 }
1079 
1080 struct dentry *mount_single(struct file_system_type *fs_type,
1081 	int flags, void *data,
1082 	int (*fill_super)(struct super_block *, void *, int))
1083 {
1084 	struct super_block *s;
1085 	int error;
1086 
1087 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088 	if (IS_ERR(s))
1089 		return ERR_CAST(s);
1090 	if (!s->s_root) {
1091 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092 		if (error) {
1093 			deactivate_locked_super(s);
1094 			return ERR_PTR(error);
1095 		}
1096 		s->s_flags |= MS_ACTIVE;
1097 	} else {
1098 		do_remount_sb(s, flags, data, 0);
1099 	}
1100 	return dget(s->s_root);
1101 }
1102 EXPORT_SYMBOL(mount_single);
1103 
1104 struct dentry *
1105 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1106 {
1107 	struct dentry *root;
1108 	struct super_block *sb;
1109 	char *secdata = NULL;
1110 	int error = -ENOMEM;
1111 
1112 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113 		secdata = alloc_secdata();
1114 		if (!secdata)
1115 			goto out;
1116 
1117 		error = security_sb_copy_data(data, secdata);
1118 		if (error)
1119 			goto out_free_secdata;
1120 	}
1121 
1122 	root = type->mount(type, flags, name, data);
1123 	if (IS_ERR(root)) {
1124 		error = PTR_ERR(root);
1125 		goto out_free_secdata;
1126 	}
1127 	sb = root->d_sb;
1128 	BUG_ON(!sb);
1129 	WARN_ON(!sb->s_bdi);
1130 	sb->s_flags |= MS_BORN;
1131 
1132 	error = security_sb_kern_mount(sb, flags, secdata);
1133 	if (error)
1134 		goto out_sb;
1135 
1136 	/*
1137 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1139 	 * this warning for a little while to try and catch filesystems that
1140 	 * violate this rule.
1141 	 */
1142 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1144 
1145 	up_write(&sb->s_umount);
1146 	free_secdata(secdata);
1147 	return root;
1148 out_sb:
1149 	dput(root);
1150 	deactivate_locked_super(sb);
1151 out_free_secdata:
1152 	free_secdata(secdata);
1153 out:
1154 	return ERR_PTR(error);
1155 }
1156 
1157 /*
1158  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159  * instead.
1160  */
1161 void __sb_end_write(struct super_block *sb, int level)
1162 {
1163 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1164 }
1165 EXPORT_SYMBOL(__sb_end_write);
1166 
1167 /*
1168  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169  * instead.
1170  */
1171 int __sb_start_write(struct super_block *sb, int level, bool wait)
1172 {
1173 	bool force_trylock = false;
1174 	int ret = 1;
1175 
1176 #ifdef CONFIG_LOCKDEP
1177 	/*
1178 	 * We want lockdep to tell us about possible deadlocks with freezing
1179 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1180 	 * protection works as getting a read lock but there are subtle
1181 	 * problems. XFS for example gets freeze protection on internal level
1182 	 * twice in some cases, which is OK only because we already hold a
1183 	 * freeze protection also on higher level. Due to these cases we have
1184 	 * to use wait == F (trylock mode) which must not fail.
1185 	 */
1186 	if (wait) {
1187 		int i;
1188 
1189 		for (i = 0; i < level - 1; i++)
1190 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191 				force_trylock = true;
1192 				break;
1193 			}
1194 	}
1195 #endif
1196 	if (wait && !force_trylock)
1197 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1198 	else
1199 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200 
1201 	WARN_ON(force_trylock && !ret);
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL(__sb_start_write);
1205 
1206 /**
1207  * sb_wait_write - wait until all writers to given file system finish
1208  * @sb: the super for which we wait
1209  * @level: type of writers we wait for (normal vs page fault)
1210  *
1211  * This function waits until there are no writers of given type to given file
1212  * system.
1213  */
1214 static void sb_wait_write(struct super_block *sb, int level)
1215 {
1216 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1217 	/*
1218 	 * We are going to return to userspace and forget about this lock, the
1219 	 * ownership goes to the caller of thaw_super() which does unlock.
1220 	 *
1221 	 * FIXME: we should do this before return from freeze_super() after we
1222 	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223 	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224 	 * this leads to lockdep false-positives, so currently we do the early
1225 	 * release right after acquire.
1226 	 */
1227 	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228 }
1229 
1230 static void sb_freeze_unlock(struct super_block *sb)
1231 {
1232 	int level;
1233 
1234 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1236 
1237 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238 		percpu_up_write(sb->s_writers.rw_sem + level);
1239 }
1240 
1241 /**
1242  * freeze_super - lock the filesystem and force it into a consistent state
1243  * @sb: the super to lock
1244  *
1245  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247  * -EBUSY.
1248  *
1249  * During this function, sb->s_writers.frozen goes through these values:
1250  *
1251  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252  *
1253  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254  * writes should be blocked, though page faults are still allowed. We wait for
1255  * all writes to complete and then proceed to the next stage.
1256  *
1257  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258  * but internal fs threads can still modify the filesystem (although they
1259  * should not dirty new pages or inodes), writeback can run etc. After waiting
1260  * for all running page faults we sync the filesystem which will clean all
1261  * dirty pages and inodes (no new dirty pages or inodes can be created when
1262  * sync is running).
1263  *
1264  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265  * modification are blocked (e.g. XFS preallocation truncation on inode
1266  * reclaim). This is usually implemented by blocking new transactions for
1267  * filesystems that have them and need this additional guard. After all
1268  * internal writers are finished we call ->freeze_fs() to finish filesystem
1269  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271  *
1272  * sb->s_writers.frozen is protected by sb->s_umount.
1273  */
1274 int freeze_super(struct super_block *sb)
1275 {
1276 	int ret;
1277 
1278 	atomic_inc(&sb->s_active);
1279 	down_write(&sb->s_umount);
1280 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1281 		deactivate_locked_super(sb);
1282 		return -EBUSY;
1283 	}
1284 
1285 	if (!(sb->s_flags & MS_BORN)) {
1286 		up_write(&sb->s_umount);
1287 		return 0;	/* sic - it's "nothing to do" */
1288 	}
1289 
1290 	if (sb->s_flags & MS_RDONLY) {
1291 		/* Nothing to do really... */
1292 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293 		up_write(&sb->s_umount);
1294 		return 0;
1295 	}
1296 
1297 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299 	up_write(&sb->s_umount);
1300 	sb_wait_write(sb, SB_FREEZE_WRITE);
1301 	down_write(&sb->s_umount);
1302 
1303 	/* Now we go and block page faults... */
1304 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306 
1307 	/* All writers are done so after syncing there won't be dirty data */
1308 	sync_filesystem(sb);
1309 
1310 	/* Now wait for internal filesystem counter */
1311 	sb->s_writers.frozen = SB_FREEZE_FS;
1312 	sb_wait_write(sb, SB_FREEZE_FS);
1313 
1314 	if (sb->s_op->freeze_fs) {
1315 		ret = sb->s_op->freeze_fs(sb);
1316 		if (ret) {
1317 			printk(KERN_ERR
1318 				"VFS:Filesystem freeze failed\n");
1319 			sb->s_writers.frozen = SB_UNFROZEN;
1320 			sb_freeze_unlock(sb);
1321 			wake_up(&sb->s_writers.wait_unfrozen);
1322 			deactivate_locked_super(sb);
1323 			return ret;
1324 		}
1325 	}
1326 	/*
1327 	 * This is just for debugging purposes so that fs can warn if it
1328 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329 	 */
1330 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1331 	up_write(&sb->s_umount);
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL(freeze_super);
1335 
1336 /**
1337  * thaw_super -- unlock filesystem
1338  * @sb: the super to thaw
1339  *
1340  * Unlocks the filesystem and marks it writeable again after freeze_super().
1341  */
1342 int thaw_super(struct super_block *sb)
1343 {
1344 	int error;
1345 
1346 	down_write(&sb->s_umount);
1347 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1348 		up_write(&sb->s_umount);
1349 		return -EINVAL;
1350 	}
1351 
1352 	if (sb->s_flags & MS_RDONLY) {
1353 		sb->s_writers.frozen = SB_UNFROZEN;
1354 		goto out;
1355 	}
1356 
1357 	if (sb->s_op->unfreeze_fs) {
1358 		error = sb->s_op->unfreeze_fs(sb);
1359 		if (error) {
1360 			printk(KERN_ERR
1361 				"VFS:Filesystem thaw failed\n");
1362 			up_write(&sb->s_umount);
1363 			return error;
1364 		}
1365 	}
1366 
1367 	sb->s_writers.frozen = SB_UNFROZEN;
1368 	sb_freeze_unlock(sb);
1369 out:
1370 	wake_up(&sb->s_writers.wait_unfrozen);
1371 	deactivate_locked_super(sb);
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL(thaw_super);
1375