xref: /openbmc/linux/fs/super.c (revision f0168042)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	s->s_bdi = &noop_backing_dev_info;
240 	s->s_flags = flags;
241 	if (s->s_user_ns != &init_user_ns)
242 		s->s_iflags |= SB_I_NODEV;
243 	INIT_HLIST_NODE(&s->s_instances);
244 	INIT_HLIST_BL_HEAD(&s->s_roots);
245 	mutex_init(&s->s_sync_lock);
246 	INIT_LIST_HEAD(&s->s_inodes);
247 	spin_lock_init(&s->s_inode_list_lock);
248 	INIT_LIST_HEAD(&s->s_inodes_wb);
249 	spin_lock_init(&s->s_inode_wblist_lock);
250 
251 	s->s_count = 1;
252 	atomic_set(&s->s_active, 1);
253 	mutex_init(&s->s_vfs_rename_mutex);
254 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
255 	init_rwsem(&s->s_dquot.dqio_sem);
256 	s->s_maxbytes = MAX_NON_LFS;
257 	s->s_op = &default_op;
258 	s->s_time_gran = 1000000000;
259 	s->s_time_min = TIME64_MIN;
260 	s->s_time_max = TIME64_MAX;
261 
262 	s->s_shrink.seeks = DEFAULT_SEEKS;
263 	s->s_shrink.scan_objects = super_cache_scan;
264 	s->s_shrink.count_objects = super_cache_count;
265 	s->s_shrink.batch = 1024;
266 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
268 		goto fail;
269 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 		goto fail;
271 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 		goto fail;
273 	return s;
274 
275 fail:
276 	destroy_unused_super(s);
277 	return NULL;
278 }
279 
280 /* Superblock refcounting  */
281 
282 /*
283  * Drop a superblock's refcount.  The caller must hold sb_lock.
284  */
285 static void __put_super(struct super_block *s)
286 {
287 	if (!--s->s_count) {
288 		list_del_init(&s->s_list);
289 		WARN_ON(s->s_dentry_lru.node);
290 		WARN_ON(s->s_inode_lru.node);
291 		WARN_ON(!list_empty(&s->s_mounts));
292 		security_sb_free(s);
293 		put_user_ns(s->s_user_ns);
294 		kfree(s->s_subtype);
295 		call_rcu(&s->rcu, destroy_super_rcu);
296 	}
297 }
298 
299 /**
300  *	put_super	-	drop a temporary reference to superblock
301  *	@sb: superblock in question
302  *
303  *	Drops a temporary reference, frees superblock if there's no
304  *	references left.
305  */
306 void put_super(struct super_block *sb)
307 {
308 	spin_lock(&sb_lock);
309 	__put_super(sb);
310 	spin_unlock(&sb_lock);
311 }
312 
313 
314 /**
315  *	deactivate_locked_super	-	drop an active reference to superblock
316  *	@s: superblock to deactivate
317  *
318  *	Drops an active reference to superblock, converting it into a temporary
319  *	one if there is no other active references left.  In that case we
320  *	tell fs driver to shut it down and drop the temporary reference we
321  *	had just acquired.
322  *
323  *	Caller holds exclusive lock on superblock; that lock is released.
324  */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 	struct file_system_type *fs = s->s_type;
328 	if (atomic_dec_and_test(&s->s_active)) {
329 		unregister_shrinker(&s->s_shrink);
330 		fs->kill_sb(s);
331 
332 		/*
333 		 * Since list_lru_destroy() may sleep, we cannot call it from
334 		 * put_super(), where we hold the sb_lock. Therefore we destroy
335 		 * the lru lists right now.
336 		 */
337 		list_lru_destroy(&s->s_dentry_lru);
338 		list_lru_destroy(&s->s_inode_lru);
339 
340 		put_filesystem(fs);
341 		put_super(s);
342 	} else {
343 		up_write(&s->s_umount);
344 	}
345 }
346 
347 EXPORT_SYMBOL(deactivate_locked_super);
348 
349 /**
350  *	deactivate_super	-	drop an active reference to superblock
351  *	@s: superblock to deactivate
352  *
353  *	Variant of deactivate_locked_super(), except that superblock is *not*
354  *	locked by caller.  If we are going to drop the final active reference,
355  *	lock will be acquired prior to that.
356  */
357 void deactivate_super(struct super_block *s)
358 {
359 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
360 		down_write(&s->s_umount);
361 		deactivate_locked_super(s);
362 	}
363 }
364 
365 EXPORT_SYMBOL(deactivate_super);
366 
367 /**
368  *	grab_super - acquire an active reference
369  *	@s: reference we are trying to make active
370  *
371  *	Tries to acquire an active reference.  grab_super() is used when we
372  * 	had just found a superblock in super_blocks or fs_type->fs_supers
373  *	and want to turn it into a full-blown active reference.  grab_super()
374  *	is called with sb_lock held and drops it.  Returns 1 in case of
375  *	success, 0 if we had failed (superblock contents was already dead or
376  *	dying when grab_super() had been called).  Note that this is only
377  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
378  *	of their type), so increment of ->s_count is OK here.
379  */
380 static int grab_super(struct super_block *s) __releases(sb_lock)
381 {
382 	s->s_count++;
383 	spin_unlock(&sb_lock);
384 	down_write(&s->s_umount);
385 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
386 		put_super(s);
387 		return 1;
388 	}
389 	up_write(&s->s_umount);
390 	put_super(s);
391 	return 0;
392 }
393 
394 /*
395  *	trylock_super - try to grab ->s_umount shared
396  *	@sb: reference we are trying to grab
397  *
398  *	Try to prevent fs shutdown.  This is used in places where we
399  *	cannot take an active reference but we need to ensure that the
400  *	filesystem is not shut down while we are working on it. It returns
401  *	false if we cannot acquire s_umount or if we lose the race and
402  *	filesystem already got into shutdown, and returns true with the s_umount
403  *	lock held in read mode in case of success. On successful return,
404  *	the caller must drop the s_umount lock when done.
405  *
406  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
407  *	The reason why it's safe is that we are OK with doing trylock instead
408  *	of down_read().  There's a couple of places that are OK with that, but
409  *	it's very much not a general-purpose interface.
410  */
411 bool trylock_super(struct super_block *sb)
412 {
413 	if (down_read_trylock(&sb->s_umount)) {
414 		if (!hlist_unhashed(&sb->s_instances) &&
415 		    sb->s_root && (sb->s_flags & SB_BORN))
416 			return true;
417 		up_read(&sb->s_umount);
418 	}
419 
420 	return false;
421 }
422 
423 /**
424  *	retire_super	-	prevents superblock from being reused
425  *	@sb: superblock to retire
426  *
427  *	The function marks superblock to be ignored in superblock test, which
428  *	prevents it from being reused for any new mounts.  If the superblock has
429  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
430  *	of the superblock to prevent potential races.  The refcount is reduced
431  *	by generic_shutdown_super().  The function can not be called
432  *	concurrently with generic_shutdown_super().  It is safe to call the
433  *	function multiple times, subsequent calls have no effect.
434  *
435  *	The marker will affect the re-use only for block-device-based
436  *	superblocks.  Other superblocks will still get marked if this function
437  *	is used, but that will not affect their reusability.
438  */
439 void retire_super(struct super_block *sb)
440 {
441 	WARN_ON(!sb->s_bdev);
442 	down_write(&sb->s_umount);
443 	if (sb->s_iflags & SB_I_PERSB_BDI) {
444 		bdi_unregister(sb->s_bdi);
445 		sb->s_iflags &= ~SB_I_PERSB_BDI;
446 	}
447 	sb->s_iflags |= SB_I_RETIRED;
448 	up_write(&sb->s_umount);
449 }
450 EXPORT_SYMBOL(retire_super);
451 
452 /**
453  *	generic_shutdown_super	-	common helper for ->kill_sb()
454  *	@sb: superblock to kill
455  *
456  *	generic_shutdown_super() does all fs-independent work on superblock
457  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
458  *	that need destruction out of superblock, call generic_shutdown_super()
459  *	and release aforementioned objects.  Note: dentries and inodes _are_
460  *	taken care of and do not need specific handling.
461  *
462  *	Upon calling this function, the filesystem may no longer alter or
463  *	rearrange the set of dentries belonging to this super_block, nor may it
464  *	change the attachments of dentries to inodes.
465  */
466 void generic_shutdown_super(struct super_block *sb)
467 {
468 	const struct super_operations *sop = sb->s_op;
469 
470 	if (sb->s_root) {
471 		shrink_dcache_for_umount(sb);
472 		sync_filesystem(sb);
473 		sb->s_flags &= ~SB_ACTIVE;
474 
475 		cgroup_writeback_umount();
476 
477 		/* Evict all inodes with zero refcount. */
478 		evict_inodes(sb);
479 
480 		/*
481 		 * Clean up and evict any inodes that still have references due
482 		 * to fsnotify or the security policy.
483 		 */
484 		fsnotify_sb_delete(sb);
485 		security_sb_delete(sb);
486 
487 		/*
488 		 * Now that all potentially-encrypted inodes have been evicted,
489 		 * the fscrypt keyring can be destroyed.
490 		 */
491 		fscrypt_destroy_keyring(sb);
492 
493 		if (sb->s_dio_done_wq) {
494 			destroy_workqueue(sb->s_dio_done_wq);
495 			sb->s_dio_done_wq = NULL;
496 		}
497 
498 		if (sop->put_super)
499 			sop->put_super(sb);
500 
501 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
502 				"VFS: Busy inodes after unmount of %s (%s)",
503 				sb->s_id, sb->s_type->name)) {
504 			/*
505 			 * Adding a proper bailout path here would be hard, but
506 			 * we can at least make it more likely that a later
507 			 * iput_final() or such crashes cleanly.
508 			 */
509 			struct inode *inode;
510 
511 			spin_lock(&sb->s_inode_list_lock);
512 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
513 				inode->i_op = VFS_PTR_POISON;
514 				inode->i_sb = VFS_PTR_POISON;
515 				inode->i_mapping = VFS_PTR_POISON;
516 			}
517 			spin_unlock(&sb->s_inode_list_lock);
518 		}
519 	}
520 	spin_lock(&sb_lock);
521 	/* should be initialized for __put_super_and_need_restart() */
522 	hlist_del_init(&sb->s_instances);
523 	spin_unlock(&sb_lock);
524 	up_write(&sb->s_umount);
525 	if (sb->s_bdi != &noop_backing_dev_info) {
526 		if (sb->s_iflags & SB_I_PERSB_BDI)
527 			bdi_unregister(sb->s_bdi);
528 		bdi_put(sb->s_bdi);
529 		sb->s_bdi = &noop_backing_dev_info;
530 	}
531 }
532 
533 EXPORT_SYMBOL(generic_shutdown_super);
534 
535 bool mount_capable(struct fs_context *fc)
536 {
537 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
538 		return capable(CAP_SYS_ADMIN);
539 	else
540 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
541 }
542 
543 /**
544  * sget_fc - Find or create a superblock
545  * @fc:	Filesystem context.
546  * @test: Comparison callback
547  * @set: Setup callback
548  *
549  * Find or create a superblock using the parameters stored in the filesystem
550  * context and the two callback functions.
551  *
552  * If an extant superblock is matched, then that will be returned with an
553  * elevated reference count that the caller must transfer or discard.
554  *
555  * If no match is made, a new superblock will be allocated and basic
556  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
557  * the set() callback will be invoked), the superblock will be published and it
558  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
559  * as yet unset.
560  */
561 struct super_block *sget_fc(struct fs_context *fc,
562 			    int (*test)(struct super_block *, struct fs_context *),
563 			    int (*set)(struct super_block *, struct fs_context *))
564 {
565 	struct super_block *s = NULL;
566 	struct super_block *old;
567 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
568 	int err;
569 
570 retry:
571 	spin_lock(&sb_lock);
572 	if (test) {
573 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
574 			if (test(old, fc))
575 				goto share_extant_sb;
576 		}
577 	}
578 	if (!s) {
579 		spin_unlock(&sb_lock);
580 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
581 		if (!s)
582 			return ERR_PTR(-ENOMEM);
583 		goto retry;
584 	}
585 
586 	s->s_fs_info = fc->s_fs_info;
587 	err = set(s, fc);
588 	if (err) {
589 		s->s_fs_info = NULL;
590 		spin_unlock(&sb_lock);
591 		destroy_unused_super(s);
592 		return ERR_PTR(err);
593 	}
594 	fc->s_fs_info = NULL;
595 	s->s_type = fc->fs_type;
596 	s->s_iflags |= fc->s_iflags;
597 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
598 	list_add_tail(&s->s_list, &super_blocks);
599 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
600 	spin_unlock(&sb_lock);
601 	get_filesystem(s->s_type);
602 	register_shrinker_prepared(&s->s_shrink);
603 	return s;
604 
605 share_extant_sb:
606 	if (user_ns != old->s_user_ns) {
607 		spin_unlock(&sb_lock);
608 		destroy_unused_super(s);
609 		return ERR_PTR(-EBUSY);
610 	}
611 	if (!grab_super(old))
612 		goto retry;
613 	destroy_unused_super(s);
614 	return old;
615 }
616 EXPORT_SYMBOL(sget_fc);
617 
618 /**
619  *	sget	-	find or create a superblock
620  *	@type:	  filesystem type superblock should belong to
621  *	@test:	  comparison callback
622  *	@set:	  setup callback
623  *	@flags:	  mount flags
624  *	@data:	  argument to each of them
625  */
626 struct super_block *sget(struct file_system_type *type,
627 			int (*test)(struct super_block *,void *),
628 			int (*set)(struct super_block *,void *),
629 			int flags,
630 			void *data)
631 {
632 	struct user_namespace *user_ns = current_user_ns();
633 	struct super_block *s = NULL;
634 	struct super_block *old;
635 	int err;
636 
637 	/* We don't yet pass the user namespace of the parent
638 	 * mount through to here so always use &init_user_ns
639 	 * until that changes.
640 	 */
641 	if (flags & SB_SUBMOUNT)
642 		user_ns = &init_user_ns;
643 
644 retry:
645 	spin_lock(&sb_lock);
646 	if (test) {
647 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
648 			if (!test(old, data))
649 				continue;
650 			if (user_ns != old->s_user_ns) {
651 				spin_unlock(&sb_lock);
652 				destroy_unused_super(s);
653 				return ERR_PTR(-EBUSY);
654 			}
655 			if (!grab_super(old))
656 				goto retry;
657 			destroy_unused_super(s);
658 			return old;
659 		}
660 	}
661 	if (!s) {
662 		spin_unlock(&sb_lock);
663 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
664 		if (!s)
665 			return ERR_PTR(-ENOMEM);
666 		goto retry;
667 	}
668 
669 	err = set(s, data);
670 	if (err) {
671 		spin_unlock(&sb_lock);
672 		destroy_unused_super(s);
673 		return ERR_PTR(err);
674 	}
675 	s->s_type = type;
676 	strscpy(s->s_id, type->name, sizeof(s->s_id));
677 	list_add_tail(&s->s_list, &super_blocks);
678 	hlist_add_head(&s->s_instances, &type->fs_supers);
679 	spin_unlock(&sb_lock);
680 	get_filesystem(type);
681 	register_shrinker_prepared(&s->s_shrink);
682 	return s;
683 }
684 EXPORT_SYMBOL(sget);
685 
686 void drop_super(struct super_block *sb)
687 {
688 	up_read(&sb->s_umount);
689 	put_super(sb);
690 }
691 
692 EXPORT_SYMBOL(drop_super);
693 
694 void drop_super_exclusive(struct super_block *sb)
695 {
696 	up_write(&sb->s_umount);
697 	put_super(sb);
698 }
699 EXPORT_SYMBOL(drop_super_exclusive);
700 
701 static void __iterate_supers(void (*f)(struct super_block *))
702 {
703 	struct super_block *sb, *p = NULL;
704 
705 	spin_lock(&sb_lock);
706 	list_for_each_entry(sb, &super_blocks, s_list) {
707 		if (hlist_unhashed(&sb->s_instances))
708 			continue;
709 		sb->s_count++;
710 		spin_unlock(&sb_lock);
711 
712 		f(sb);
713 
714 		spin_lock(&sb_lock);
715 		if (p)
716 			__put_super(p);
717 		p = sb;
718 	}
719 	if (p)
720 		__put_super(p);
721 	spin_unlock(&sb_lock);
722 }
723 /**
724  *	iterate_supers - call function for all active superblocks
725  *	@f: function to call
726  *	@arg: argument to pass to it
727  *
728  *	Scans the superblock list and calls given function, passing it
729  *	locked superblock and given argument.
730  */
731 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
732 {
733 	struct super_block *sb, *p = NULL;
734 
735 	spin_lock(&sb_lock);
736 	list_for_each_entry(sb, &super_blocks, s_list) {
737 		if (hlist_unhashed(&sb->s_instances))
738 			continue;
739 		sb->s_count++;
740 		spin_unlock(&sb_lock);
741 
742 		down_read(&sb->s_umount);
743 		if (sb->s_root && (sb->s_flags & SB_BORN))
744 			f(sb, arg);
745 		up_read(&sb->s_umount);
746 
747 		spin_lock(&sb_lock);
748 		if (p)
749 			__put_super(p);
750 		p = sb;
751 	}
752 	if (p)
753 		__put_super(p);
754 	spin_unlock(&sb_lock);
755 }
756 
757 /**
758  *	iterate_supers_type - call function for superblocks of given type
759  *	@type: fs type
760  *	@f: function to call
761  *	@arg: argument to pass to it
762  *
763  *	Scans the superblock list and calls given function, passing it
764  *	locked superblock and given argument.
765  */
766 void iterate_supers_type(struct file_system_type *type,
767 	void (*f)(struct super_block *, void *), void *arg)
768 {
769 	struct super_block *sb, *p = NULL;
770 
771 	spin_lock(&sb_lock);
772 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
773 		sb->s_count++;
774 		spin_unlock(&sb_lock);
775 
776 		down_read(&sb->s_umount);
777 		if (sb->s_root && (sb->s_flags & SB_BORN))
778 			f(sb, arg);
779 		up_read(&sb->s_umount);
780 
781 		spin_lock(&sb_lock);
782 		if (p)
783 			__put_super(p);
784 		p = sb;
785 	}
786 	if (p)
787 		__put_super(p);
788 	spin_unlock(&sb_lock);
789 }
790 
791 EXPORT_SYMBOL(iterate_supers_type);
792 
793 /**
794  * get_super - get the superblock of a device
795  * @bdev: device to get the superblock for
796  *
797  * Scans the superblock list and finds the superblock of the file system
798  * mounted on the device given. %NULL is returned if no match is found.
799  */
800 struct super_block *get_super(struct block_device *bdev)
801 {
802 	struct super_block *sb;
803 
804 	if (!bdev)
805 		return NULL;
806 
807 	spin_lock(&sb_lock);
808 rescan:
809 	list_for_each_entry(sb, &super_blocks, s_list) {
810 		if (hlist_unhashed(&sb->s_instances))
811 			continue;
812 		if (sb->s_bdev == bdev) {
813 			sb->s_count++;
814 			spin_unlock(&sb_lock);
815 			down_read(&sb->s_umount);
816 			/* still alive? */
817 			if (sb->s_root && (sb->s_flags & SB_BORN))
818 				return sb;
819 			up_read(&sb->s_umount);
820 			/* nope, got unmounted */
821 			spin_lock(&sb_lock);
822 			__put_super(sb);
823 			goto rescan;
824 		}
825 	}
826 	spin_unlock(&sb_lock);
827 	return NULL;
828 }
829 
830 /**
831  * get_active_super - get an active reference to the superblock of a device
832  * @bdev: device to get the superblock for
833  *
834  * Scans the superblock list and finds the superblock of the file system
835  * mounted on the device given.  Returns the superblock with an active
836  * reference or %NULL if none was found.
837  */
838 struct super_block *get_active_super(struct block_device *bdev)
839 {
840 	struct super_block *sb;
841 
842 	if (!bdev)
843 		return NULL;
844 
845 restart:
846 	spin_lock(&sb_lock);
847 	list_for_each_entry(sb, &super_blocks, s_list) {
848 		if (hlist_unhashed(&sb->s_instances))
849 			continue;
850 		if (sb->s_bdev == bdev) {
851 			if (!grab_super(sb))
852 				goto restart;
853 			up_write(&sb->s_umount);
854 			return sb;
855 		}
856 	}
857 	spin_unlock(&sb_lock);
858 	return NULL;
859 }
860 
861 struct super_block *user_get_super(dev_t dev, bool excl)
862 {
863 	struct super_block *sb;
864 
865 	spin_lock(&sb_lock);
866 rescan:
867 	list_for_each_entry(sb, &super_blocks, s_list) {
868 		if (hlist_unhashed(&sb->s_instances))
869 			continue;
870 		if (sb->s_dev ==  dev) {
871 			sb->s_count++;
872 			spin_unlock(&sb_lock);
873 			if (excl)
874 				down_write(&sb->s_umount);
875 			else
876 				down_read(&sb->s_umount);
877 			/* still alive? */
878 			if (sb->s_root && (sb->s_flags & SB_BORN))
879 				return sb;
880 			if (excl)
881 				up_write(&sb->s_umount);
882 			else
883 				up_read(&sb->s_umount);
884 			/* nope, got unmounted */
885 			spin_lock(&sb_lock);
886 			__put_super(sb);
887 			goto rescan;
888 		}
889 	}
890 	spin_unlock(&sb_lock);
891 	return NULL;
892 }
893 
894 /**
895  * reconfigure_super - asks filesystem to change superblock parameters
896  * @fc: The superblock and configuration
897  *
898  * Alters the configuration parameters of a live superblock.
899  */
900 int reconfigure_super(struct fs_context *fc)
901 {
902 	struct super_block *sb = fc->root->d_sb;
903 	int retval;
904 	bool remount_ro = false;
905 	bool remount_rw = false;
906 	bool force = fc->sb_flags & SB_FORCE;
907 
908 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
909 		return -EINVAL;
910 	if (sb->s_writers.frozen != SB_UNFROZEN)
911 		return -EBUSY;
912 
913 	retval = security_sb_remount(sb, fc->security);
914 	if (retval)
915 		return retval;
916 
917 	if (fc->sb_flags_mask & SB_RDONLY) {
918 #ifdef CONFIG_BLOCK
919 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
920 		    bdev_read_only(sb->s_bdev))
921 			return -EACCES;
922 #endif
923 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
924 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
925 	}
926 
927 	if (remount_ro) {
928 		if (!hlist_empty(&sb->s_pins)) {
929 			up_write(&sb->s_umount);
930 			group_pin_kill(&sb->s_pins);
931 			down_write(&sb->s_umount);
932 			if (!sb->s_root)
933 				return 0;
934 			if (sb->s_writers.frozen != SB_UNFROZEN)
935 				return -EBUSY;
936 			remount_ro = !sb_rdonly(sb);
937 		}
938 	}
939 	shrink_dcache_sb(sb);
940 
941 	/* If we are reconfiguring to RDONLY and current sb is read/write,
942 	 * make sure there are no files open for writing.
943 	 */
944 	if (remount_ro) {
945 		if (force) {
946 			sb_start_ro_state_change(sb);
947 		} else {
948 			retval = sb_prepare_remount_readonly(sb);
949 			if (retval)
950 				return retval;
951 		}
952 	} else if (remount_rw) {
953 		/*
954 		 * Protect filesystem's reconfigure code from writes from
955 		 * userspace until reconfigure finishes.
956 		 */
957 		sb_start_ro_state_change(sb);
958 	}
959 
960 	if (fc->ops->reconfigure) {
961 		retval = fc->ops->reconfigure(fc);
962 		if (retval) {
963 			if (!force)
964 				goto cancel_readonly;
965 			/* If forced remount, go ahead despite any errors */
966 			WARN(1, "forced remount of a %s fs returned %i\n",
967 			     sb->s_type->name, retval);
968 		}
969 	}
970 
971 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
972 				 (fc->sb_flags & fc->sb_flags_mask)));
973 	sb_end_ro_state_change(sb);
974 
975 	/*
976 	 * Some filesystems modify their metadata via some other path than the
977 	 * bdev buffer cache (eg. use a private mapping, or directories in
978 	 * pagecache, etc). Also file data modifications go via their own
979 	 * mappings. So If we try to mount readonly then copy the filesystem
980 	 * from bdev, we could get stale data, so invalidate it to give a best
981 	 * effort at coherency.
982 	 */
983 	if (remount_ro && sb->s_bdev)
984 		invalidate_bdev(sb->s_bdev);
985 	return 0;
986 
987 cancel_readonly:
988 	sb_end_ro_state_change(sb);
989 	return retval;
990 }
991 
992 static void do_emergency_remount_callback(struct super_block *sb)
993 {
994 	down_write(&sb->s_umount);
995 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
996 	    !sb_rdonly(sb)) {
997 		struct fs_context *fc;
998 
999 		fc = fs_context_for_reconfigure(sb->s_root,
1000 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1001 		if (!IS_ERR(fc)) {
1002 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1003 				(void)reconfigure_super(fc);
1004 			put_fs_context(fc);
1005 		}
1006 	}
1007 	up_write(&sb->s_umount);
1008 }
1009 
1010 static void do_emergency_remount(struct work_struct *work)
1011 {
1012 	__iterate_supers(do_emergency_remount_callback);
1013 	kfree(work);
1014 	printk("Emergency Remount complete\n");
1015 }
1016 
1017 void emergency_remount(void)
1018 {
1019 	struct work_struct *work;
1020 
1021 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1022 	if (work) {
1023 		INIT_WORK(work, do_emergency_remount);
1024 		schedule_work(work);
1025 	}
1026 }
1027 
1028 static void do_thaw_all_callback(struct super_block *sb)
1029 {
1030 	down_write(&sb->s_umount);
1031 	if (sb->s_root && sb->s_flags & SB_BORN) {
1032 		emergency_thaw_bdev(sb);
1033 		thaw_super_locked(sb);
1034 	} else {
1035 		up_write(&sb->s_umount);
1036 	}
1037 }
1038 
1039 static void do_thaw_all(struct work_struct *work)
1040 {
1041 	__iterate_supers(do_thaw_all_callback);
1042 	kfree(work);
1043 	printk(KERN_WARNING "Emergency Thaw complete\n");
1044 }
1045 
1046 /**
1047  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1048  *
1049  * Used for emergency unfreeze of all filesystems via SysRq
1050  */
1051 void emergency_thaw_all(void)
1052 {
1053 	struct work_struct *work;
1054 
1055 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1056 	if (work) {
1057 		INIT_WORK(work, do_thaw_all);
1058 		schedule_work(work);
1059 	}
1060 }
1061 
1062 static DEFINE_IDA(unnamed_dev_ida);
1063 
1064 /**
1065  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1066  * @p: Pointer to a dev_t.
1067  *
1068  * Filesystems which don't use real block devices can call this function
1069  * to allocate a virtual block device.
1070  *
1071  * Context: Any context.  Frequently called while holding sb_lock.
1072  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1073  * or -ENOMEM if memory allocation failed.
1074  */
1075 int get_anon_bdev(dev_t *p)
1076 {
1077 	int dev;
1078 
1079 	/*
1080 	 * Many userspace utilities consider an FSID of 0 invalid.
1081 	 * Always return at least 1 from get_anon_bdev.
1082 	 */
1083 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1084 			GFP_ATOMIC);
1085 	if (dev == -ENOSPC)
1086 		dev = -EMFILE;
1087 	if (dev < 0)
1088 		return dev;
1089 
1090 	*p = MKDEV(0, dev);
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL(get_anon_bdev);
1094 
1095 void free_anon_bdev(dev_t dev)
1096 {
1097 	ida_free(&unnamed_dev_ida, MINOR(dev));
1098 }
1099 EXPORT_SYMBOL(free_anon_bdev);
1100 
1101 int set_anon_super(struct super_block *s, void *data)
1102 {
1103 	return get_anon_bdev(&s->s_dev);
1104 }
1105 EXPORT_SYMBOL(set_anon_super);
1106 
1107 void kill_anon_super(struct super_block *sb)
1108 {
1109 	dev_t dev = sb->s_dev;
1110 	generic_shutdown_super(sb);
1111 	free_anon_bdev(dev);
1112 }
1113 EXPORT_SYMBOL(kill_anon_super);
1114 
1115 void kill_litter_super(struct super_block *sb)
1116 {
1117 	if (sb->s_root)
1118 		d_genocide(sb->s_root);
1119 	kill_anon_super(sb);
1120 }
1121 EXPORT_SYMBOL(kill_litter_super);
1122 
1123 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1124 {
1125 	return set_anon_super(sb, NULL);
1126 }
1127 EXPORT_SYMBOL(set_anon_super_fc);
1128 
1129 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1130 {
1131 	return sb->s_fs_info == fc->s_fs_info;
1132 }
1133 
1134 static int test_single_super(struct super_block *s, struct fs_context *fc)
1135 {
1136 	return 1;
1137 }
1138 
1139 static int vfs_get_super(struct fs_context *fc, bool reconf,
1140 		int (*test)(struct super_block *, struct fs_context *),
1141 		int (*fill_super)(struct super_block *sb,
1142 				  struct fs_context *fc))
1143 {
1144 	struct super_block *sb;
1145 	int err;
1146 
1147 	sb = sget_fc(fc, test, set_anon_super_fc);
1148 	if (IS_ERR(sb))
1149 		return PTR_ERR(sb);
1150 
1151 	if (!sb->s_root) {
1152 		err = fill_super(sb, fc);
1153 		if (err)
1154 			goto error;
1155 
1156 		sb->s_flags |= SB_ACTIVE;
1157 		fc->root = dget(sb->s_root);
1158 	} else {
1159 		fc->root = dget(sb->s_root);
1160 		if (reconf) {
1161 			err = reconfigure_super(fc);
1162 			if (err < 0) {
1163 				dput(fc->root);
1164 				fc->root = NULL;
1165 				goto error;
1166 			}
1167 		}
1168 	}
1169 
1170 	return 0;
1171 
1172 error:
1173 	deactivate_locked_super(sb);
1174 	return err;
1175 }
1176 
1177 int get_tree_nodev(struct fs_context *fc,
1178 		  int (*fill_super)(struct super_block *sb,
1179 				    struct fs_context *fc))
1180 {
1181 	return vfs_get_super(fc, false, NULL, fill_super);
1182 }
1183 EXPORT_SYMBOL(get_tree_nodev);
1184 
1185 int get_tree_single(struct fs_context *fc,
1186 		  int (*fill_super)(struct super_block *sb,
1187 				    struct fs_context *fc))
1188 {
1189 	return vfs_get_super(fc, false, test_single_super, fill_super);
1190 }
1191 EXPORT_SYMBOL(get_tree_single);
1192 
1193 int get_tree_single_reconf(struct fs_context *fc,
1194 		  int (*fill_super)(struct super_block *sb,
1195 				    struct fs_context *fc))
1196 {
1197 	return vfs_get_super(fc, true, test_single_super, fill_super);
1198 }
1199 EXPORT_SYMBOL(get_tree_single_reconf);
1200 
1201 int get_tree_keyed(struct fs_context *fc,
1202 		  int (*fill_super)(struct super_block *sb,
1203 				    struct fs_context *fc),
1204 		void *key)
1205 {
1206 	fc->s_fs_info = key;
1207 	return vfs_get_super(fc, false, test_keyed_super, fill_super);
1208 }
1209 EXPORT_SYMBOL(get_tree_keyed);
1210 
1211 #ifdef CONFIG_BLOCK
1212 static void fs_mark_dead(struct block_device *bdev)
1213 {
1214 	struct super_block *sb;
1215 
1216 	sb = get_super(bdev);
1217 	if (!sb)
1218 		return;
1219 
1220 	if (sb->s_op->shutdown)
1221 		sb->s_op->shutdown(sb);
1222 	drop_super(sb);
1223 }
1224 
1225 static const struct blk_holder_ops fs_holder_ops = {
1226 	.mark_dead		= fs_mark_dead,
1227 };
1228 
1229 static int set_bdev_super(struct super_block *s, void *data)
1230 {
1231 	s->s_bdev = data;
1232 	s->s_dev = s->s_bdev->bd_dev;
1233 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1234 
1235 	if (bdev_stable_writes(s->s_bdev))
1236 		s->s_iflags |= SB_I_STABLE_WRITES;
1237 	return 0;
1238 }
1239 
1240 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1241 {
1242 	return set_bdev_super(s, fc->sget_key);
1243 }
1244 
1245 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1246 {
1247 	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1248 }
1249 
1250 /**
1251  * get_tree_bdev - Get a superblock based on a single block device
1252  * @fc: The filesystem context holding the parameters
1253  * @fill_super: Helper to initialise a new superblock
1254  */
1255 int get_tree_bdev(struct fs_context *fc,
1256 		int (*fill_super)(struct super_block *,
1257 				  struct fs_context *))
1258 {
1259 	struct block_device *bdev;
1260 	struct super_block *s;
1261 	int error = 0;
1262 
1263 	if (!fc->source)
1264 		return invalf(fc, "No source specified");
1265 
1266 	bdev = blkdev_get_by_path(fc->source, sb_open_mode(fc->sb_flags),
1267 				  fc->fs_type, &fs_holder_ops);
1268 	if (IS_ERR(bdev)) {
1269 		errorf(fc, "%s: Can't open blockdev", fc->source);
1270 		return PTR_ERR(bdev);
1271 	}
1272 
1273 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1274 	 * will protect the lockfs code from trying to start a snapshot while
1275 	 * we are mounting
1276 	 */
1277 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1278 	if (bdev->bd_fsfreeze_count > 0) {
1279 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1280 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1281 		blkdev_put(bdev, fc->fs_type);
1282 		return -EBUSY;
1283 	}
1284 
1285 	fc->sb_flags |= SB_NOSEC;
1286 	fc->sget_key = bdev;
1287 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1288 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1289 	if (IS_ERR(s)) {
1290 		blkdev_put(bdev, fc->fs_type);
1291 		return PTR_ERR(s);
1292 	}
1293 
1294 	if (s->s_root) {
1295 		/* Don't summarily change the RO/RW state. */
1296 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1297 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1298 			deactivate_locked_super(s);
1299 			blkdev_put(bdev, fc->fs_type);
1300 			return -EBUSY;
1301 		}
1302 
1303 		/*
1304 		 * s_umount nests inside open_mutex during
1305 		 * __invalidate_device().  blkdev_put() acquires
1306 		 * open_mutex and can't be called under s_umount.  Drop
1307 		 * s_umount temporarily.  This is safe as we're
1308 		 * holding an active reference.
1309 		 */
1310 		up_write(&s->s_umount);
1311 		blkdev_put(bdev, fc->fs_type);
1312 		down_write(&s->s_umount);
1313 	} else {
1314 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1315 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1316 					fc->fs_type->name, s->s_id);
1317 		sb_set_blocksize(s, block_size(bdev));
1318 		error = fill_super(s, fc);
1319 		if (error) {
1320 			deactivate_locked_super(s);
1321 			return error;
1322 		}
1323 
1324 		s->s_flags |= SB_ACTIVE;
1325 		bdev->bd_super = s;
1326 	}
1327 
1328 	BUG_ON(fc->root);
1329 	fc->root = dget(s->s_root);
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL(get_tree_bdev);
1333 
1334 static int test_bdev_super(struct super_block *s, void *data)
1335 {
1336 	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1337 }
1338 
1339 struct dentry *mount_bdev(struct file_system_type *fs_type,
1340 	int flags, const char *dev_name, void *data,
1341 	int (*fill_super)(struct super_block *, void *, int))
1342 {
1343 	struct block_device *bdev;
1344 	struct super_block *s;
1345 	int error = 0;
1346 
1347 	bdev = blkdev_get_by_path(dev_name, sb_open_mode(flags), fs_type,
1348 				  &fs_holder_ops);
1349 	if (IS_ERR(bdev))
1350 		return ERR_CAST(bdev);
1351 
1352 	/*
1353 	 * once the super is inserted into the list by sget, s_umount
1354 	 * will protect the lockfs code from trying to start a snapshot
1355 	 * while we are mounting
1356 	 */
1357 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1358 	if (bdev->bd_fsfreeze_count > 0) {
1359 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1360 		error = -EBUSY;
1361 		goto error_bdev;
1362 	}
1363 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1364 		 bdev);
1365 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1366 	if (IS_ERR(s))
1367 		goto error_s;
1368 
1369 	if (s->s_root) {
1370 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1371 			deactivate_locked_super(s);
1372 			error = -EBUSY;
1373 			goto error_bdev;
1374 		}
1375 
1376 		/*
1377 		 * s_umount nests inside open_mutex during
1378 		 * __invalidate_device().  blkdev_put() acquires
1379 		 * open_mutex and can't be called under s_umount.  Drop
1380 		 * s_umount temporarily.  This is safe as we're
1381 		 * holding an active reference.
1382 		 */
1383 		up_write(&s->s_umount);
1384 		blkdev_put(bdev, fs_type);
1385 		down_write(&s->s_umount);
1386 	} else {
1387 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1388 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1389 					fs_type->name, s->s_id);
1390 		sb_set_blocksize(s, block_size(bdev));
1391 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1392 		if (error) {
1393 			deactivate_locked_super(s);
1394 			goto error;
1395 		}
1396 
1397 		s->s_flags |= SB_ACTIVE;
1398 		bdev->bd_super = s;
1399 	}
1400 
1401 	return dget(s->s_root);
1402 
1403 error_s:
1404 	error = PTR_ERR(s);
1405 error_bdev:
1406 	blkdev_put(bdev, fs_type);
1407 error:
1408 	return ERR_PTR(error);
1409 }
1410 EXPORT_SYMBOL(mount_bdev);
1411 
1412 void kill_block_super(struct super_block *sb)
1413 {
1414 	struct block_device *bdev = sb->s_bdev;
1415 
1416 	bdev->bd_super = NULL;
1417 	generic_shutdown_super(sb);
1418 	sync_blockdev(bdev);
1419 	blkdev_put(bdev, sb->s_type);
1420 }
1421 
1422 EXPORT_SYMBOL(kill_block_super);
1423 #endif
1424 
1425 struct dentry *mount_nodev(struct file_system_type *fs_type,
1426 	int flags, void *data,
1427 	int (*fill_super)(struct super_block *, void *, int))
1428 {
1429 	int error;
1430 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1431 
1432 	if (IS_ERR(s))
1433 		return ERR_CAST(s);
1434 
1435 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1436 	if (error) {
1437 		deactivate_locked_super(s);
1438 		return ERR_PTR(error);
1439 	}
1440 	s->s_flags |= SB_ACTIVE;
1441 	return dget(s->s_root);
1442 }
1443 EXPORT_SYMBOL(mount_nodev);
1444 
1445 int reconfigure_single(struct super_block *s,
1446 		       int flags, void *data)
1447 {
1448 	struct fs_context *fc;
1449 	int ret;
1450 
1451 	/* The caller really need to be passing fc down into mount_single(),
1452 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1453 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1454 	 * mount should be rejected if the parameters are not compatible.
1455 	 */
1456 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1457 	if (IS_ERR(fc))
1458 		return PTR_ERR(fc);
1459 
1460 	ret = parse_monolithic_mount_data(fc, data);
1461 	if (ret < 0)
1462 		goto out;
1463 
1464 	ret = reconfigure_super(fc);
1465 out:
1466 	put_fs_context(fc);
1467 	return ret;
1468 }
1469 
1470 static int compare_single(struct super_block *s, void *p)
1471 {
1472 	return 1;
1473 }
1474 
1475 struct dentry *mount_single(struct file_system_type *fs_type,
1476 	int flags, void *data,
1477 	int (*fill_super)(struct super_block *, void *, int))
1478 {
1479 	struct super_block *s;
1480 	int error;
1481 
1482 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1483 	if (IS_ERR(s))
1484 		return ERR_CAST(s);
1485 	if (!s->s_root) {
1486 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1487 		if (!error)
1488 			s->s_flags |= SB_ACTIVE;
1489 	} else {
1490 		error = reconfigure_single(s, flags, data);
1491 	}
1492 	if (unlikely(error)) {
1493 		deactivate_locked_super(s);
1494 		return ERR_PTR(error);
1495 	}
1496 	return dget(s->s_root);
1497 }
1498 EXPORT_SYMBOL(mount_single);
1499 
1500 /**
1501  * vfs_get_tree - Get the mountable root
1502  * @fc: The superblock configuration context.
1503  *
1504  * The filesystem is invoked to get or create a superblock which can then later
1505  * be used for mounting.  The filesystem places a pointer to the root to be
1506  * used for mounting in @fc->root.
1507  */
1508 int vfs_get_tree(struct fs_context *fc)
1509 {
1510 	struct super_block *sb;
1511 	int error;
1512 
1513 	if (fc->root)
1514 		return -EBUSY;
1515 
1516 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1517 	 * on the superblock.
1518 	 */
1519 	error = fc->ops->get_tree(fc);
1520 	if (error < 0)
1521 		return error;
1522 
1523 	if (!fc->root) {
1524 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1525 		       fc->fs_type->name);
1526 		/* We don't know what the locking state of the superblock is -
1527 		 * if there is a superblock.
1528 		 */
1529 		BUG();
1530 	}
1531 
1532 	sb = fc->root->d_sb;
1533 	WARN_ON(!sb->s_bdi);
1534 
1535 	/*
1536 	 * Write barrier is for super_cache_count(). We place it before setting
1537 	 * SB_BORN as the data dependency between the two functions is the
1538 	 * superblock structure contents that we just set up, not the SB_BORN
1539 	 * flag.
1540 	 */
1541 	smp_wmb();
1542 	sb->s_flags |= SB_BORN;
1543 
1544 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1545 	if (unlikely(error)) {
1546 		fc_drop_locked(fc);
1547 		return error;
1548 	}
1549 
1550 	/*
1551 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1552 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1553 	 * this warning for a little while to try and catch filesystems that
1554 	 * violate this rule.
1555 	 */
1556 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1557 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL(vfs_get_tree);
1562 
1563 /*
1564  * Setup private BDI for given superblock. It gets automatically cleaned up
1565  * in generic_shutdown_super().
1566  */
1567 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1568 {
1569 	struct backing_dev_info *bdi;
1570 	int err;
1571 	va_list args;
1572 
1573 	bdi = bdi_alloc(NUMA_NO_NODE);
1574 	if (!bdi)
1575 		return -ENOMEM;
1576 
1577 	va_start(args, fmt);
1578 	err = bdi_register_va(bdi, fmt, args);
1579 	va_end(args);
1580 	if (err) {
1581 		bdi_put(bdi);
1582 		return err;
1583 	}
1584 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1585 	sb->s_bdi = bdi;
1586 	sb->s_iflags |= SB_I_PERSB_BDI;
1587 
1588 	return 0;
1589 }
1590 EXPORT_SYMBOL(super_setup_bdi_name);
1591 
1592 /*
1593  * Setup private BDI for given superblock. I gets automatically cleaned up
1594  * in generic_shutdown_super().
1595  */
1596 int super_setup_bdi(struct super_block *sb)
1597 {
1598 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1599 
1600 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1601 				    atomic_long_inc_return(&bdi_seq));
1602 }
1603 EXPORT_SYMBOL(super_setup_bdi);
1604 
1605 /**
1606  * sb_wait_write - wait until all writers to given file system finish
1607  * @sb: the super for which we wait
1608  * @level: type of writers we wait for (normal vs page fault)
1609  *
1610  * This function waits until there are no writers of given type to given file
1611  * system.
1612  */
1613 static void sb_wait_write(struct super_block *sb, int level)
1614 {
1615 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1616 }
1617 
1618 /*
1619  * We are going to return to userspace and forget about these locks, the
1620  * ownership goes to the caller of thaw_super() which does unlock().
1621  */
1622 static void lockdep_sb_freeze_release(struct super_block *sb)
1623 {
1624 	int level;
1625 
1626 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1627 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1628 }
1629 
1630 /*
1631  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1632  */
1633 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1634 {
1635 	int level;
1636 
1637 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1638 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1639 }
1640 
1641 static void sb_freeze_unlock(struct super_block *sb, int level)
1642 {
1643 	for (level--; level >= 0; level--)
1644 		percpu_up_write(sb->s_writers.rw_sem + level);
1645 }
1646 
1647 /**
1648  * freeze_super - lock the filesystem and force it into a consistent state
1649  * @sb: the super to lock
1650  *
1651  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1652  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1653  * -EBUSY.
1654  *
1655  * During this function, sb->s_writers.frozen goes through these values:
1656  *
1657  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1658  *
1659  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1660  * writes should be blocked, though page faults are still allowed. We wait for
1661  * all writes to complete and then proceed to the next stage.
1662  *
1663  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1664  * but internal fs threads can still modify the filesystem (although they
1665  * should not dirty new pages or inodes), writeback can run etc. After waiting
1666  * for all running page faults we sync the filesystem which will clean all
1667  * dirty pages and inodes (no new dirty pages or inodes can be created when
1668  * sync is running).
1669  *
1670  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1671  * modification are blocked (e.g. XFS preallocation truncation on inode
1672  * reclaim). This is usually implemented by blocking new transactions for
1673  * filesystems that have them and need this additional guard. After all
1674  * internal writers are finished we call ->freeze_fs() to finish filesystem
1675  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1676  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1677  *
1678  * sb->s_writers.frozen is protected by sb->s_umount.
1679  */
1680 int freeze_super(struct super_block *sb)
1681 {
1682 	int ret;
1683 
1684 	atomic_inc(&sb->s_active);
1685 	down_write(&sb->s_umount);
1686 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1687 		deactivate_locked_super(sb);
1688 		return -EBUSY;
1689 	}
1690 
1691 	if (!(sb->s_flags & SB_BORN)) {
1692 		up_write(&sb->s_umount);
1693 		return 0;	/* sic - it's "nothing to do" */
1694 	}
1695 
1696 	if (sb_rdonly(sb)) {
1697 		/* Nothing to do really... */
1698 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1699 		up_write(&sb->s_umount);
1700 		return 0;
1701 	}
1702 
1703 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1704 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1705 	up_write(&sb->s_umount);
1706 	sb_wait_write(sb, SB_FREEZE_WRITE);
1707 	down_write(&sb->s_umount);
1708 
1709 	/* Now we go and block page faults... */
1710 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1711 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1712 
1713 	/* All writers are done so after syncing there won't be dirty data */
1714 	ret = sync_filesystem(sb);
1715 	if (ret) {
1716 		sb->s_writers.frozen = SB_UNFROZEN;
1717 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1718 		deactivate_locked_super(sb);
1719 		return ret;
1720 	}
1721 
1722 	/* Now wait for internal filesystem counter */
1723 	sb->s_writers.frozen = SB_FREEZE_FS;
1724 	sb_wait_write(sb, SB_FREEZE_FS);
1725 
1726 	if (sb->s_op->freeze_fs) {
1727 		ret = sb->s_op->freeze_fs(sb);
1728 		if (ret) {
1729 			printk(KERN_ERR
1730 				"VFS:Filesystem freeze failed\n");
1731 			sb->s_writers.frozen = SB_UNFROZEN;
1732 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1733 			deactivate_locked_super(sb);
1734 			return ret;
1735 		}
1736 	}
1737 	/*
1738 	 * For debugging purposes so that fs can warn if it sees write activity
1739 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1740 	 */
1741 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1742 	lockdep_sb_freeze_release(sb);
1743 	up_write(&sb->s_umount);
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL(freeze_super);
1747 
1748 static int thaw_super_locked(struct super_block *sb)
1749 {
1750 	int error;
1751 
1752 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1753 		up_write(&sb->s_umount);
1754 		return -EINVAL;
1755 	}
1756 
1757 	if (sb_rdonly(sb)) {
1758 		sb->s_writers.frozen = SB_UNFROZEN;
1759 		goto out;
1760 	}
1761 
1762 	lockdep_sb_freeze_acquire(sb);
1763 
1764 	if (sb->s_op->unfreeze_fs) {
1765 		error = sb->s_op->unfreeze_fs(sb);
1766 		if (error) {
1767 			printk(KERN_ERR
1768 				"VFS:Filesystem thaw failed\n");
1769 			lockdep_sb_freeze_release(sb);
1770 			up_write(&sb->s_umount);
1771 			return error;
1772 		}
1773 	}
1774 
1775 	sb->s_writers.frozen = SB_UNFROZEN;
1776 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1777 out:
1778 	deactivate_locked_super(sb);
1779 	return 0;
1780 }
1781 
1782 /**
1783  * thaw_super -- unlock filesystem
1784  * @sb: the super to thaw
1785  *
1786  * Unlocks the filesystem and marks it writeable again after freeze_super().
1787  */
1788 int thaw_super(struct super_block *sb)
1789 {
1790 	down_write(&sb->s_umount);
1791 	return thaw_super_locked(sb);
1792 }
1793 EXPORT_SYMBOL(thaw_super);
1794 
1795 /*
1796  * Create workqueue for deferred direct IO completions. We allocate the
1797  * workqueue when it's first needed. This avoids creating workqueue for
1798  * filesystems that don't need it and also allows us to create the workqueue
1799  * late enough so the we can include s_id in the name of the workqueue.
1800  */
1801 int sb_init_dio_done_wq(struct super_block *sb)
1802 {
1803 	struct workqueue_struct *old;
1804 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
1805 						      WQ_MEM_RECLAIM, 0,
1806 						      sb->s_id);
1807 	if (!wq)
1808 		return -ENOMEM;
1809 	/*
1810 	 * This has to be atomic as more DIOs can race to create the workqueue
1811 	 */
1812 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
1813 	/* Someone created workqueue before us? Free ours... */
1814 	if (old)
1815 		destroy_workqueue(wq);
1816 	return 0;
1817 }
1818