1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->s_time_min = TIME64_MIN; 261 s->s_time_max = TIME64_MAX; 262 263 s->s_shrink.seeks = DEFAULT_SEEKS; 264 s->s_shrink.scan_objects = super_cache_scan; 265 s->s_shrink.count_objects = super_cache_count; 266 s->s_shrink.batch = 1024; 267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 268 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 269 goto fail; 270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 273 goto fail; 274 return s; 275 276 fail: 277 destroy_unused_super(s); 278 return NULL; 279 } 280 281 /* Superblock refcounting */ 282 283 /* 284 * Drop a superblock's refcount. The caller must hold sb_lock. 285 */ 286 static void __put_super(struct super_block *s) 287 { 288 if (!--s->s_count) { 289 list_del_init(&s->s_list); 290 WARN_ON(s->s_dentry_lru.node); 291 WARN_ON(s->s_inode_lru.node); 292 WARN_ON(!list_empty(&s->s_mounts)); 293 security_sb_free(s); 294 fscrypt_sb_free(s); 295 put_user_ns(s->s_user_ns); 296 kfree(s->s_subtype); 297 call_rcu(&s->rcu, destroy_super_rcu); 298 } 299 } 300 301 /** 302 * put_super - drop a temporary reference to superblock 303 * @sb: superblock in question 304 * 305 * Drops a temporary reference, frees superblock if there's no 306 * references left. 307 */ 308 void put_super(struct super_block *sb) 309 { 310 spin_lock(&sb_lock); 311 __put_super(sb); 312 spin_unlock(&sb_lock); 313 } 314 315 316 /** 317 * deactivate_locked_super - drop an active reference to superblock 318 * @s: superblock to deactivate 319 * 320 * Drops an active reference to superblock, converting it into a temporary 321 * one if there is no other active references left. In that case we 322 * tell fs driver to shut it down and drop the temporary reference we 323 * had just acquired. 324 * 325 * Caller holds exclusive lock on superblock; that lock is released. 326 */ 327 void deactivate_locked_super(struct super_block *s) 328 { 329 struct file_system_type *fs = s->s_type; 330 if (atomic_dec_and_test(&s->s_active)) { 331 unregister_shrinker(&s->s_shrink); 332 fs->kill_sb(s); 333 334 /* 335 * Since list_lru_destroy() may sleep, we cannot call it from 336 * put_super(), where we hold the sb_lock. Therefore we destroy 337 * the lru lists right now. 338 */ 339 list_lru_destroy(&s->s_dentry_lru); 340 list_lru_destroy(&s->s_inode_lru); 341 342 put_filesystem(fs); 343 put_super(s); 344 } else { 345 up_write(&s->s_umount); 346 } 347 } 348 349 EXPORT_SYMBOL(deactivate_locked_super); 350 351 /** 352 * deactivate_super - drop an active reference to superblock 353 * @s: superblock to deactivate 354 * 355 * Variant of deactivate_locked_super(), except that superblock is *not* 356 * locked by caller. If we are going to drop the final active reference, 357 * lock will be acquired prior to that. 358 */ 359 void deactivate_super(struct super_block *s) 360 { 361 if (!atomic_add_unless(&s->s_active, -1, 1)) { 362 down_write(&s->s_umount); 363 deactivate_locked_super(s); 364 } 365 } 366 367 EXPORT_SYMBOL(deactivate_super); 368 369 /** 370 * grab_super - acquire an active reference 371 * @s: reference we are trying to make active 372 * 373 * Tries to acquire an active reference. grab_super() is used when we 374 * had just found a superblock in super_blocks or fs_type->fs_supers 375 * and want to turn it into a full-blown active reference. grab_super() 376 * is called with sb_lock held and drops it. Returns 1 in case of 377 * success, 0 if we had failed (superblock contents was already dead or 378 * dying when grab_super() had been called). Note that this is only 379 * called for superblocks not in rundown mode (== ones still on ->fs_supers 380 * of their type), so increment of ->s_count is OK here. 381 */ 382 static int grab_super(struct super_block *s) __releases(sb_lock) 383 { 384 s->s_count++; 385 spin_unlock(&sb_lock); 386 down_write(&s->s_umount); 387 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 388 put_super(s); 389 return 1; 390 } 391 up_write(&s->s_umount); 392 put_super(s); 393 return 0; 394 } 395 396 /* 397 * trylock_super - try to grab ->s_umount shared 398 * @sb: reference we are trying to grab 399 * 400 * Try to prevent fs shutdown. This is used in places where we 401 * cannot take an active reference but we need to ensure that the 402 * filesystem is not shut down while we are working on it. It returns 403 * false if we cannot acquire s_umount or if we lose the race and 404 * filesystem already got into shutdown, and returns true with the s_umount 405 * lock held in read mode in case of success. On successful return, 406 * the caller must drop the s_umount lock when done. 407 * 408 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 409 * The reason why it's safe is that we are OK with doing trylock instead 410 * of down_read(). There's a couple of places that are OK with that, but 411 * it's very much not a general-purpose interface. 412 */ 413 bool trylock_super(struct super_block *sb) 414 { 415 if (down_read_trylock(&sb->s_umount)) { 416 if (!hlist_unhashed(&sb->s_instances) && 417 sb->s_root && (sb->s_flags & SB_BORN)) 418 return true; 419 up_read(&sb->s_umount); 420 } 421 422 return false; 423 } 424 425 /** 426 * retire_super - prevents superblock from being reused 427 * @sb: superblock to retire 428 * 429 * The function marks superblock to be ignored in superblock test, which 430 * prevents it from being reused for any new mounts. If the superblock has 431 * a private bdi, it also unregisters it, but doesn't reduce the refcount 432 * of the superblock to prevent potential races. The refcount is reduced 433 * by generic_shutdown_super(). The function can not be called 434 * concurrently with generic_shutdown_super(). It is safe to call the 435 * function multiple times, subsequent calls have no effect. 436 * 437 * The marker will affect the re-use only for block-device-based 438 * superblocks. Other superblocks will still get marked if this function 439 * is used, but that will not affect their reusability. 440 */ 441 void retire_super(struct super_block *sb) 442 { 443 WARN_ON(!sb->s_bdev); 444 down_write(&sb->s_umount); 445 if (sb->s_iflags & SB_I_PERSB_BDI) { 446 bdi_unregister(sb->s_bdi); 447 sb->s_iflags &= ~SB_I_PERSB_BDI; 448 } 449 sb->s_iflags |= SB_I_RETIRED; 450 up_write(&sb->s_umount); 451 } 452 EXPORT_SYMBOL(retire_super); 453 454 /** 455 * generic_shutdown_super - common helper for ->kill_sb() 456 * @sb: superblock to kill 457 * 458 * generic_shutdown_super() does all fs-independent work on superblock 459 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 460 * that need destruction out of superblock, call generic_shutdown_super() 461 * and release aforementioned objects. Note: dentries and inodes _are_ 462 * taken care of and do not need specific handling. 463 * 464 * Upon calling this function, the filesystem may no longer alter or 465 * rearrange the set of dentries belonging to this super_block, nor may it 466 * change the attachments of dentries to inodes. 467 */ 468 void generic_shutdown_super(struct super_block *sb) 469 { 470 const struct super_operations *sop = sb->s_op; 471 472 if (sb->s_root) { 473 shrink_dcache_for_umount(sb); 474 sync_filesystem(sb); 475 sb->s_flags &= ~SB_ACTIVE; 476 477 cgroup_writeback_umount(); 478 479 /* evict all inodes with zero refcount */ 480 evict_inodes(sb); 481 /* only nonzero refcount inodes can have marks */ 482 fsnotify_sb_delete(sb); 483 security_sb_delete(sb); 484 485 if (sb->s_dio_done_wq) { 486 destroy_workqueue(sb->s_dio_done_wq); 487 sb->s_dio_done_wq = NULL; 488 } 489 490 if (sop->put_super) 491 sop->put_super(sb); 492 493 if (!list_empty(&sb->s_inodes)) { 494 printk("VFS: Busy inodes after unmount of %s. " 495 "Self-destruct in 5 seconds. Have a nice day...\n", 496 sb->s_id); 497 } 498 } 499 spin_lock(&sb_lock); 500 /* should be initialized for __put_super_and_need_restart() */ 501 hlist_del_init(&sb->s_instances); 502 spin_unlock(&sb_lock); 503 up_write(&sb->s_umount); 504 if (sb->s_bdi != &noop_backing_dev_info) { 505 if (sb->s_iflags & SB_I_PERSB_BDI) 506 bdi_unregister(sb->s_bdi); 507 bdi_put(sb->s_bdi); 508 sb->s_bdi = &noop_backing_dev_info; 509 } 510 } 511 512 EXPORT_SYMBOL(generic_shutdown_super); 513 514 bool mount_capable(struct fs_context *fc) 515 { 516 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 517 return capable(CAP_SYS_ADMIN); 518 else 519 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 520 } 521 522 /** 523 * sget_fc - Find or create a superblock 524 * @fc: Filesystem context. 525 * @test: Comparison callback 526 * @set: Setup callback 527 * 528 * Find or create a superblock using the parameters stored in the filesystem 529 * context and the two callback functions. 530 * 531 * If an extant superblock is matched, then that will be returned with an 532 * elevated reference count that the caller must transfer or discard. 533 * 534 * If no match is made, a new superblock will be allocated and basic 535 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 536 * the set() callback will be invoked), the superblock will be published and it 537 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 538 * as yet unset. 539 */ 540 struct super_block *sget_fc(struct fs_context *fc, 541 int (*test)(struct super_block *, struct fs_context *), 542 int (*set)(struct super_block *, struct fs_context *)) 543 { 544 struct super_block *s = NULL; 545 struct super_block *old; 546 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 547 int err; 548 549 retry: 550 spin_lock(&sb_lock); 551 if (test) { 552 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 553 if (test(old, fc)) 554 goto share_extant_sb; 555 } 556 } 557 if (!s) { 558 spin_unlock(&sb_lock); 559 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 560 if (!s) 561 return ERR_PTR(-ENOMEM); 562 goto retry; 563 } 564 565 s->s_fs_info = fc->s_fs_info; 566 err = set(s, fc); 567 if (err) { 568 s->s_fs_info = NULL; 569 spin_unlock(&sb_lock); 570 destroy_unused_super(s); 571 return ERR_PTR(err); 572 } 573 fc->s_fs_info = NULL; 574 s->s_type = fc->fs_type; 575 s->s_iflags |= fc->s_iflags; 576 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 577 list_add_tail(&s->s_list, &super_blocks); 578 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 579 spin_unlock(&sb_lock); 580 get_filesystem(s->s_type); 581 register_shrinker_prepared(&s->s_shrink); 582 return s; 583 584 share_extant_sb: 585 if (user_ns != old->s_user_ns) { 586 spin_unlock(&sb_lock); 587 destroy_unused_super(s); 588 return ERR_PTR(-EBUSY); 589 } 590 if (!grab_super(old)) 591 goto retry; 592 destroy_unused_super(s); 593 return old; 594 } 595 EXPORT_SYMBOL(sget_fc); 596 597 /** 598 * sget - find or create a superblock 599 * @type: filesystem type superblock should belong to 600 * @test: comparison callback 601 * @set: setup callback 602 * @flags: mount flags 603 * @data: argument to each of them 604 */ 605 struct super_block *sget(struct file_system_type *type, 606 int (*test)(struct super_block *,void *), 607 int (*set)(struct super_block *,void *), 608 int flags, 609 void *data) 610 { 611 struct user_namespace *user_ns = current_user_ns(); 612 struct super_block *s = NULL; 613 struct super_block *old; 614 int err; 615 616 /* We don't yet pass the user namespace of the parent 617 * mount through to here so always use &init_user_ns 618 * until that changes. 619 */ 620 if (flags & SB_SUBMOUNT) 621 user_ns = &init_user_ns; 622 623 retry: 624 spin_lock(&sb_lock); 625 if (test) { 626 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 627 if (!test(old, data)) 628 continue; 629 if (user_ns != old->s_user_ns) { 630 spin_unlock(&sb_lock); 631 destroy_unused_super(s); 632 return ERR_PTR(-EBUSY); 633 } 634 if (!grab_super(old)) 635 goto retry; 636 destroy_unused_super(s); 637 return old; 638 } 639 } 640 if (!s) { 641 spin_unlock(&sb_lock); 642 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 643 if (!s) 644 return ERR_PTR(-ENOMEM); 645 goto retry; 646 } 647 648 err = set(s, data); 649 if (err) { 650 spin_unlock(&sb_lock); 651 destroy_unused_super(s); 652 return ERR_PTR(err); 653 } 654 s->s_type = type; 655 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 656 list_add_tail(&s->s_list, &super_blocks); 657 hlist_add_head(&s->s_instances, &type->fs_supers); 658 spin_unlock(&sb_lock); 659 get_filesystem(type); 660 register_shrinker_prepared(&s->s_shrink); 661 return s; 662 } 663 EXPORT_SYMBOL(sget); 664 665 void drop_super(struct super_block *sb) 666 { 667 up_read(&sb->s_umount); 668 put_super(sb); 669 } 670 671 EXPORT_SYMBOL(drop_super); 672 673 void drop_super_exclusive(struct super_block *sb) 674 { 675 up_write(&sb->s_umount); 676 put_super(sb); 677 } 678 EXPORT_SYMBOL(drop_super_exclusive); 679 680 static void __iterate_supers(void (*f)(struct super_block *)) 681 { 682 struct super_block *sb, *p = NULL; 683 684 spin_lock(&sb_lock); 685 list_for_each_entry(sb, &super_blocks, s_list) { 686 if (hlist_unhashed(&sb->s_instances)) 687 continue; 688 sb->s_count++; 689 spin_unlock(&sb_lock); 690 691 f(sb); 692 693 spin_lock(&sb_lock); 694 if (p) 695 __put_super(p); 696 p = sb; 697 } 698 if (p) 699 __put_super(p); 700 spin_unlock(&sb_lock); 701 } 702 /** 703 * iterate_supers - call function for all active superblocks 704 * @f: function to call 705 * @arg: argument to pass to it 706 * 707 * Scans the superblock list and calls given function, passing it 708 * locked superblock and given argument. 709 */ 710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 711 { 712 struct super_block *sb, *p = NULL; 713 714 spin_lock(&sb_lock); 715 list_for_each_entry(sb, &super_blocks, s_list) { 716 if (hlist_unhashed(&sb->s_instances)) 717 continue; 718 sb->s_count++; 719 spin_unlock(&sb_lock); 720 721 down_read(&sb->s_umount); 722 if (sb->s_root && (sb->s_flags & SB_BORN)) 723 f(sb, arg); 724 up_read(&sb->s_umount); 725 726 spin_lock(&sb_lock); 727 if (p) 728 __put_super(p); 729 p = sb; 730 } 731 if (p) 732 __put_super(p); 733 spin_unlock(&sb_lock); 734 } 735 736 /** 737 * iterate_supers_type - call function for superblocks of given type 738 * @type: fs type 739 * @f: function to call 740 * @arg: argument to pass to it 741 * 742 * Scans the superblock list and calls given function, passing it 743 * locked superblock and given argument. 744 */ 745 void iterate_supers_type(struct file_system_type *type, 746 void (*f)(struct super_block *, void *), void *arg) 747 { 748 struct super_block *sb, *p = NULL; 749 750 spin_lock(&sb_lock); 751 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 752 sb->s_count++; 753 spin_unlock(&sb_lock); 754 755 down_read(&sb->s_umount); 756 if (sb->s_root && (sb->s_flags & SB_BORN)) 757 f(sb, arg); 758 up_read(&sb->s_umount); 759 760 spin_lock(&sb_lock); 761 if (p) 762 __put_super(p); 763 p = sb; 764 } 765 if (p) 766 __put_super(p); 767 spin_unlock(&sb_lock); 768 } 769 770 EXPORT_SYMBOL(iterate_supers_type); 771 772 /** 773 * get_super - get the superblock of a device 774 * @bdev: device to get the superblock for 775 * 776 * Scans the superblock list and finds the superblock of the file system 777 * mounted on the device given. %NULL is returned if no match is found. 778 */ 779 struct super_block *get_super(struct block_device *bdev) 780 { 781 struct super_block *sb; 782 783 if (!bdev) 784 return NULL; 785 786 spin_lock(&sb_lock); 787 rescan: 788 list_for_each_entry(sb, &super_blocks, s_list) { 789 if (hlist_unhashed(&sb->s_instances)) 790 continue; 791 if (sb->s_bdev == bdev) { 792 sb->s_count++; 793 spin_unlock(&sb_lock); 794 down_read(&sb->s_umount); 795 /* still alive? */ 796 if (sb->s_root && (sb->s_flags & SB_BORN)) 797 return sb; 798 up_read(&sb->s_umount); 799 /* nope, got unmounted */ 800 spin_lock(&sb_lock); 801 __put_super(sb); 802 goto rescan; 803 } 804 } 805 spin_unlock(&sb_lock); 806 return NULL; 807 } 808 809 /** 810 * get_active_super - get an active reference to the superblock of a device 811 * @bdev: device to get the superblock for 812 * 813 * Scans the superblock list and finds the superblock of the file system 814 * mounted on the device given. Returns the superblock with an active 815 * reference or %NULL if none was found. 816 */ 817 struct super_block *get_active_super(struct block_device *bdev) 818 { 819 struct super_block *sb; 820 821 if (!bdev) 822 return NULL; 823 824 restart: 825 spin_lock(&sb_lock); 826 list_for_each_entry(sb, &super_blocks, s_list) { 827 if (hlist_unhashed(&sb->s_instances)) 828 continue; 829 if (sb->s_bdev == bdev) { 830 if (!grab_super(sb)) 831 goto restart; 832 up_write(&sb->s_umount); 833 return sb; 834 } 835 } 836 spin_unlock(&sb_lock); 837 return NULL; 838 } 839 840 struct super_block *user_get_super(dev_t dev, bool excl) 841 { 842 struct super_block *sb; 843 844 spin_lock(&sb_lock); 845 rescan: 846 list_for_each_entry(sb, &super_blocks, s_list) { 847 if (hlist_unhashed(&sb->s_instances)) 848 continue; 849 if (sb->s_dev == dev) { 850 sb->s_count++; 851 spin_unlock(&sb_lock); 852 if (excl) 853 down_write(&sb->s_umount); 854 else 855 down_read(&sb->s_umount); 856 /* still alive? */ 857 if (sb->s_root && (sb->s_flags & SB_BORN)) 858 return sb; 859 if (excl) 860 up_write(&sb->s_umount); 861 else 862 up_read(&sb->s_umount); 863 /* nope, got unmounted */ 864 spin_lock(&sb_lock); 865 __put_super(sb); 866 goto rescan; 867 } 868 } 869 spin_unlock(&sb_lock); 870 return NULL; 871 } 872 873 /** 874 * reconfigure_super - asks filesystem to change superblock parameters 875 * @fc: The superblock and configuration 876 * 877 * Alters the configuration parameters of a live superblock. 878 */ 879 int reconfigure_super(struct fs_context *fc) 880 { 881 struct super_block *sb = fc->root->d_sb; 882 int retval; 883 bool remount_ro = false; 884 bool force = fc->sb_flags & SB_FORCE; 885 886 if (fc->sb_flags_mask & ~MS_RMT_MASK) 887 return -EINVAL; 888 if (sb->s_writers.frozen != SB_UNFROZEN) 889 return -EBUSY; 890 891 retval = security_sb_remount(sb, fc->security); 892 if (retval) 893 return retval; 894 895 if (fc->sb_flags_mask & SB_RDONLY) { 896 #ifdef CONFIG_BLOCK 897 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 898 bdev_read_only(sb->s_bdev)) 899 return -EACCES; 900 #endif 901 902 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 903 } 904 905 if (remount_ro) { 906 if (!hlist_empty(&sb->s_pins)) { 907 up_write(&sb->s_umount); 908 group_pin_kill(&sb->s_pins); 909 down_write(&sb->s_umount); 910 if (!sb->s_root) 911 return 0; 912 if (sb->s_writers.frozen != SB_UNFROZEN) 913 return -EBUSY; 914 remount_ro = !sb_rdonly(sb); 915 } 916 } 917 shrink_dcache_sb(sb); 918 919 /* If we are reconfiguring to RDONLY and current sb is read/write, 920 * make sure there are no files open for writing. 921 */ 922 if (remount_ro) { 923 if (force) { 924 sb->s_readonly_remount = 1; 925 smp_wmb(); 926 } else { 927 retval = sb_prepare_remount_readonly(sb); 928 if (retval) 929 return retval; 930 } 931 } 932 933 if (fc->ops->reconfigure) { 934 retval = fc->ops->reconfigure(fc); 935 if (retval) { 936 if (!force) 937 goto cancel_readonly; 938 /* If forced remount, go ahead despite any errors */ 939 WARN(1, "forced remount of a %s fs returned %i\n", 940 sb->s_type->name, retval); 941 } 942 } 943 944 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 945 (fc->sb_flags & fc->sb_flags_mask))); 946 /* Needs to be ordered wrt mnt_is_readonly() */ 947 smp_wmb(); 948 sb->s_readonly_remount = 0; 949 950 /* 951 * Some filesystems modify their metadata via some other path than the 952 * bdev buffer cache (eg. use a private mapping, or directories in 953 * pagecache, etc). Also file data modifications go via their own 954 * mappings. So If we try to mount readonly then copy the filesystem 955 * from bdev, we could get stale data, so invalidate it to give a best 956 * effort at coherency. 957 */ 958 if (remount_ro && sb->s_bdev) 959 invalidate_bdev(sb->s_bdev); 960 return 0; 961 962 cancel_readonly: 963 sb->s_readonly_remount = 0; 964 return retval; 965 } 966 967 static void do_emergency_remount_callback(struct super_block *sb) 968 { 969 down_write(&sb->s_umount); 970 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 971 !sb_rdonly(sb)) { 972 struct fs_context *fc; 973 974 fc = fs_context_for_reconfigure(sb->s_root, 975 SB_RDONLY | SB_FORCE, SB_RDONLY); 976 if (!IS_ERR(fc)) { 977 if (parse_monolithic_mount_data(fc, NULL) == 0) 978 (void)reconfigure_super(fc); 979 put_fs_context(fc); 980 } 981 } 982 up_write(&sb->s_umount); 983 } 984 985 static void do_emergency_remount(struct work_struct *work) 986 { 987 __iterate_supers(do_emergency_remount_callback); 988 kfree(work); 989 printk("Emergency Remount complete\n"); 990 } 991 992 void emergency_remount(void) 993 { 994 struct work_struct *work; 995 996 work = kmalloc(sizeof(*work), GFP_ATOMIC); 997 if (work) { 998 INIT_WORK(work, do_emergency_remount); 999 schedule_work(work); 1000 } 1001 } 1002 1003 static void do_thaw_all_callback(struct super_block *sb) 1004 { 1005 down_write(&sb->s_umount); 1006 if (sb->s_root && sb->s_flags & SB_BORN) { 1007 emergency_thaw_bdev(sb); 1008 thaw_super_locked(sb); 1009 } else { 1010 up_write(&sb->s_umount); 1011 } 1012 } 1013 1014 static void do_thaw_all(struct work_struct *work) 1015 { 1016 __iterate_supers(do_thaw_all_callback); 1017 kfree(work); 1018 printk(KERN_WARNING "Emergency Thaw complete\n"); 1019 } 1020 1021 /** 1022 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1023 * 1024 * Used for emergency unfreeze of all filesystems via SysRq 1025 */ 1026 void emergency_thaw_all(void) 1027 { 1028 struct work_struct *work; 1029 1030 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1031 if (work) { 1032 INIT_WORK(work, do_thaw_all); 1033 schedule_work(work); 1034 } 1035 } 1036 1037 static DEFINE_IDA(unnamed_dev_ida); 1038 1039 /** 1040 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1041 * @p: Pointer to a dev_t. 1042 * 1043 * Filesystems which don't use real block devices can call this function 1044 * to allocate a virtual block device. 1045 * 1046 * Context: Any context. Frequently called while holding sb_lock. 1047 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1048 * or -ENOMEM if memory allocation failed. 1049 */ 1050 int get_anon_bdev(dev_t *p) 1051 { 1052 int dev; 1053 1054 /* 1055 * Many userspace utilities consider an FSID of 0 invalid. 1056 * Always return at least 1 from get_anon_bdev. 1057 */ 1058 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1059 GFP_ATOMIC); 1060 if (dev == -ENOSPC) 1061 dev = -EMFILE; 1062 if (dev < 0) 1063 return dev; 1064 1065 *p = MKDEV(0, dev); 1066 return 0; 1067 } 1068 EXPORT_SYMBOL(get_anon_bdev); 1069 1070 void free_anon_bdev(dev_t dev) 1071 { 1072 ida_free(&unnamed_dev_ida, MINOR(dev)); 1073 } 1074 EXPORT_SYMBOL(free_anon_bdev); 1075 1076 int set_anon_super(struct super_block *s, void *data) 1077 { 1078 return get_anon_bdev(&s->s_dev); 1079 } 1080 EXPORT_SYMBOL(set_anon_super); 1081 1082 void kill_anon_super(struct super_block *sb) 1083 { 1084 dev_t dev = sb->s_dev; 1085 generic_shutdown_super(sb); 1086 free_anon_bdev(dev); 1087 } 1088 EXPORT_SYMBOL(kill_anon_super); 1089 1090 void kill_litter_super(struct super_block *sb) 1091 { 1092 if (sb->s_root) 1093 d_genocide(sb->s_root); 1094 kill_anon_super(sb); 1095 } 1096 EXPORT_SYMBOL(kill_litter_super); 1097 1098 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1099 { 1100 return set_anon_super(sb, NULL); 1101 } 1102 EXPORT_SYMBOL(set_anon_super_fc); 1103 1104 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1105 { 1106 return sb->s_fs_info == fc->s_fs_info; 1107 } 1108 1109 static int test_single_super(struct super_block *s, struct fs_context *fc) 1110 { 1111 return 1; 1112 } 1113 1114 /** 1115 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1116 * @fc: The filesystem context holding the parameters 1117 * @keying: How to distinguish superblocks 1118 * @fill_super: Helper to initialise a new superblock 1119 * 1120 * Search for a superblock and create a new one if not found. The search 1121 * criterion is controlled by @keying. If the search fails, a new superblock 1122 * is created and @fill_super() is called to initialise it. 1123 * 1124 * @keying can take one of a number of values: 1125 * 1126 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1127 * system. This is typically used for special system filesystems. 1128 * 1129 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1130 * distinct keys (where the key is in s_fs_info). Searching for the same 1131 * key again will turn up the superblock for that key. 1132 * 1133 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1134 * unkeyed. Each call will get a new superblock. 1135 * 1136 * A permissions check is made by sget_fc() unless we're getting a superblock 1137 * for a kernel-internal mount or a submount. 1138 */ 1139 int vfs_get_super(struct fs_context *fc, 1140 enum vfs_get_super_keying keying, 1141 int (*fill_super)(struct super_block *sb, 1142 struct fs_context *fc)) 1143 { 1144 int (*test)(struct super_block *, struct fs_context *); 1145 struct super_block *sb; 1146 int err; 1147 1148 switch (keying) { 1149 case vfs_get_single_super: 1150 case vfs_get_single_reconf_super: 1151 test = test_single_super; 1152 break; 1153 case vfs_get_keyed_super: 1154 test = test_keyed_super; 1155 break; 1156 case vfs_get_independent_super: 1157 test = NULL; 1158 break; 1159 default: 1160 BUG(); 1161 } 1162 1163 sb = sget_fc(fc, test, set_anon_super_fc); 1164 if (IS_ERR(sb)) 1165 return PTR_ERR(sb); 1166 1167 if (!sb->s_root) { 1168 err = fill_super(sb, fc); 1169 if (err) 1170 goto error; 1171 1172 sb->s_flags |= SB_ACTIVE; 1173 fc->root = dget(sb->s_root); 1174 } else { 1175 fc->root = dget(sb->s_root); 1176 if (keying == vfs_get_single_reconf_super) { 1177 err = reconfigure_super(fc); 1178 if (err < 0) { 1179 dput(fc->root); 1180 fc->root = NULL; 1181 goto error; 1182 } 1183 } 1184 } 1185 1186 return 0; 1187 1188 error: 1189 deactivate_locked_super(sb); 1190 return err; 1191 } 1192 EXPORT_SYMBOL(vfs_get_super); 1193 1194 int get_tree_nodev(struct fs_context *fc, 1195 int (*fill_super)(struct super_block *sb, 1196 struct fs_context *fc)) 1197 { 1198 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1199 } 1200 EXPORT_SYMBOL(get_tree_nodev); 1201 1202 int get_tree_single(struct fs_context *fc, 1203 int (*fill_super)(struct super_block *sb, 1204 struct fs_context *fc)) 1205 { 1206 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1207 } 1208 EXPORT_SYMBOL(get_tree_single); 1209 1210 int get_tree_single_reconf(struct fs_context *fc, 1211 int (*fill_super)(struct super_block *sb, 1212 struct fs_context *fc)) 1213 { 1214 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super); 1215 } 1216 EXPORT_SYMBOL(get_tree_single_reconf); 1217 1218 int get_tree_keyed(struct fs_context *fc, 1219 int (*fill_super)(struct super_block *sb, 1220 struct fs_context *fc), 1221 void *key) 1222 { 1223 fc->s_fs_info = key; 1224 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1225 } 1226 EXPORT_SYMBOL(get_tree_keyed); 1227 1228 #ifdef CONFIG_BLOCK 1229 1230 static int set_bdev_super(struct super_block *s, void *data) 1231 { 1232 s->s_bdev = data; 1233 s->s_dev = s->s_bdev->bd_dev; 1234 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi); 1235 1236 if (bdev_stable_writes(s->s_bdev)) 1237 s->s_iflags |= SB_I_STABLE_WRITES; 1238 return 0; 1239 } 1240 1241 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1242 { 1243 return set_bdev_super(s, fc->sget_key); 1244 } 1245 1246 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1247 { 1248 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key; 1249 } 1250 1251 /** 1252 * get_tree_bdev - Get a superblock based on a single block device 1253 * @fc: The filesystem context holding the parameters 1254 * @fill_super: Helper to initialise a new superblock 1255 */ 1256 int get_tree_bdev(struct fs_context *fc, 1257 int (*fill_super)(struct super_block *, 1258 struct fs_context *)) 1259 { 1260 struct block_device *bdev; 1261 struct super_block *s; 1262 fmode_t mode = FMODE_READ | FMODE_EXCL; 1263 int error = 0; 1264 1265 if (!(fc->sb_flags & SB_RDONLY)) 1266 mode |= FMODE_WRITE; 1267 1268 if (!fc->source) 1269 return invalf(fc, "No source specified"); 1270 1271 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1272 if (IS_ERR(bdev)) { 1273 errorf(fc, "%s: Can't open blockdev", fc->source); 1274 return PTR_ERR(bdev); 1275 } 1276 1277 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1278 * will protect the lockfs code from trying to start a snapshot while 1279 * we are mounting 1280 */ 1281 mutex_lock(&bdev->bd_fsfreeze_mutex); 1282 if (bdev->bd_fsfreeze_count > 0) { 1283 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1284 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1285 blkdev_put(bdev, mode); 1286 return -EBUSY; 1287 } 1288 1289 fc->sb_flags |= SB_NOSEC; 1290 fc->sget_key = bdev; 1291 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1292 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1293 if (IS_ERR(s)) { 1294 blkdev_put(bdev, mode); 1295 return PTR_ERR(s); 1296 } 1297 1298 if (s->s_root) { 1299 /* Don't summarily change the RO/RW state. */ 1300 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1301 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1302 deactivate_locked_super(s); 1303 blkdev_put(bdev, mode); 1304 return -EBUSY; 1305 } 1306 1307 /* 1308 * s_umount nests inside open_mutex during 1309 * __invalidate_device(). blkdev_put() acquires 1310 * open_mutex and can't be called under s_umount. Drop 1311 * s_umount temporarily. This is safe as we're 1312 * holding an active reference. 1313 */ 1314 up_write(&s->s_umount); 1315 blkdev_put(bdev, mode); 1316 down_write(&s->s_umount); 1317 } else { 1318 s->s_mode = mode; 1319 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1320 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1321 fc->fs_type->name, s->s_id); 1322 sb_set_blocksize(s, block_size(bdev)); 1323 error = fill_super(s, fc); 1324 if (error) { 1325 deactivate_locked_super(s); 1326 return error; 1327 } 1328 1329 s->s_flags |= SB_ACTIVE; 1330 bdev->bd_super = s; 1331 } 1332 1333 BUG_ON(fc->root); 1334 fc->root = dget(s->s_root); 1335 return 0; 1336 } 1337 EXPORT_SYMBOL(get_tree_bdev); 1338 1339 static int test_bdev_super(struct super_block *s, void *data) 1340 { 1341 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data; 1342 } 1343 1344 struct dentry *mount_bdev(struct file_system_type *fs_type, 1345 int flags, const char *dev_name, void *data, 1346 int (*fill_super)(struct super_block *, void *, int)) 1347 { 1348 struct block_device *bdev; 1349 struct super_block *s; 1350 fmode_t mode = FMODE_READ | FMODE_EXCL; 1351 int error = 0; 1352 1353 if (!(flags & SB_RDONLY)) 1354 mode |= FMODE_WRITE; 1355 1356 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1357 if (IS_ERR(bdev)) 1358 return ERR_CAST(bdev); 1359 1360 /* 1361 * once the super is inserted into the list by sget, s_umount 1362 * will protect the lockfs code from trying to start a snapshot 1363 * while we are mounting 1364 */ 1365 mutex_lock(&bdev->bd_fsfreeze_mutex); 1366 if (bdev->bd_fsfreeze_count > 0) { 1367 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1368 error = -EBUSY; 1369 goto error_bdev; 1370 } 1371 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1372 bdev); 1373 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1374 if (IS_ERR(s)) 1375 goto error_s; 1376 1377 if (s->s_root) { 1378 if ((flags ^ s->s_flags) & SB_RDONLY) { 1379 deactivate_locked_super(s); 1380 error = -EBUSY; 1381 goto error_bdev; 1382 } 1383 1384 /* 1385 * s_umount nests inside open_mutex during 1386 * __invalidate_device(). blkdev_put() acquires 1387 * open_mutex and can't be called under s_umount. Drop 1388 * s_umount temporarily. This is safe as we're 1389 * holding an active reference. 1390 */ 1391 up_write(&s->s_umount); 1392 blkdev_put(bdev, mode); 1393 down_write(&s->s_umount); 1394 } else { 1395 s->s_mode = mode; 1396 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1397 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1398 fs_type->name, s->s_id); 1399 sb_set_blocksize(s, block_size(bdev)); 1400 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1401 if (error) { 1402 deactivate_locked_super(s); 1403 goto error; 1404 } 1405 1406 s->s_flags |= SB_ACTIVE; 1407 bdev->bd_super = s; 1408 } 1409 1410 return dget(s->s_root); 1411 1412 error_s: 1413 error = PTR_ERR(s); 1414 error_bdev: 1415 blkdev_put(bdev, mode); 1416 error: 1417 return ERR_PTR(error); 1418 } 1419 EXPORT_SYMBOL(mount_bdev); 1420 1421 void kill_block_super(struct super_block *sb) 1422 { 1423 struct block_device *bdev = sb->s_bdev; 1424 fmode_t mode = sb->s_mode; 1425 1426 bdev->bd_super = NULL; 1427 generic_shutdown_super(sb); 1428 sync_blockdev(bdev); 1429 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1430 blkdev_put(bdev, mode | FMODE_EXCL); 1431 } 1432 1433 EXPORT_SYMBOL(kill_block_super); 1434 #endif 1435 1436 struct dentry *mount_nodev(struct file_system_type *fs_type, 1437 int flags, void *data, 1438 int (*fill_super)(struct super_block *, void *, int)) 1439 { 1440 int error; 1441 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1442 1443 if (IS_ERR(s)) 1444 return ERR_CAST(s); 1445 1446 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1447 if (error) { 1448 deactivate_locked_super(s); 1449 return ERR_PTR(error); 1450 } 1451 s->s_flags |= SB_ACTIVE; 1452 return dget(s->s_root); 1453 } 1454 EXPORT_SYMBOL(mount_nodev); 1455 1456 int reconfigure_single(struct super_block *s, 1457 int flags, void *data) 1458 { 1459 struct fs_context *fc; 1460 int ret; 1461 1462 /* The caller really need to be passing fc down into mount_single(), 1463 * then a chunk of this can be removed. [Bollocks -- AV] 1464 * Better yet, reconfiguration shouldn't happen, but rather the second 1465 * mount should be rejected if the parameters are not compatible. 1466 */ 1467 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1468 if (IS_ERR(fc)) 1469 return PTR_ERR(fc); 1470 1471 ret = parse_monolithic_mount_data(fc, data); 1472 if (ret < 0) 1473 goto out; 1474 1475 ret = reconfigure_super(fc); 1476 out: 1477 put_fs_context(fc); 1478 return ret; 1479 } 1480 1481 static int compare_single(struct super_block *s, void *p) 1482 { 1483 return 1; 1484 } 1485 1486 struct dentry *mount_single(struct file_system_type *fs_type, 1487 int flags, void *data, 1488 int (*fill_super)(struct super_block *, void *, int)) 1489 { 1490 struct super_block *s; 1491 int error; 1492 1493 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1494 if (IS_ERR(s)) 1495 return ERR_CAST(s); 1496 if (!s->s_root) { 1497 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1498 if (!error) 1499 s->s_flags |= SB_ACTIVE; 1500 } else { 1501 error = reconfigure_single(s, flags, data); 1502 } 1503 if (unlikely(error)) { 1504 deactivate_locked_super(s); 1505 return ERR_PTR(error); 1506 } 1507 return dget(s->s_root); 1508 } 1509 EXPORT_SYMBOL(mount_single); 1510 1511 /** 1512 * vfs_get_tree - Get the mountable root 1513 * @fc: The superblock configuration context. 1514 * 1515 * The filesystem is invoked to get or create a superblock which can then later 1516 * be used for mounting. The filesystem places a pointer to the root to be 1517 * used for mounting in @fc->root. 1518 */ 1519 int vfs_get_tree(struct fs_context *fc) 1520 { 1521 struct super_block *sb; 1522 int error; 1523 1524 if (fc->root) 1525 return -EBUSY; 1526 1527 /* Get the mountable root in fc->root, with a ref on the root and a ref 1528 * on the superblock. 1529 */ 1530 error = fc->ops->get_tree(fc); 1531 if (error < 0) 1532 return error; 1533 1534 if (!fc->root) { 1535 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1536 fc->fs_type->name); 1537 /* We don't know what the locking state of the superblock is - 1538 * if there is a superblock. 1539 */ 1540 BUG(); 1541 } 1542 1543 sb = fc->root->d_sb; 1544 WARN_ON(!sb->s_bdi); 1545 1546 /* 1547 * Write barrier is for super_cache_count(). We place it before setting 1548 * SB_BORN as the data dependency between the two functions is the 1549 * superblock structure contents that we just set up, not the SB_BORN 1550 * flag. 1551 */ 1552 smp_wmb(); 1553 sb->s_flags |= SB_BORN; 1554 1555 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1556 if (unlikely(error)) { 1557 fc_drop_locked(fc); 1558 return error; 1559 } 1560 1561 /* 1562 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1563 * but s_maxbytes was an unsigned long long for many releases. Throw 1564 * this warning for a little while to try and catch filesystems that 1565 * violate this rule. 1566 */ 1567 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1568 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL(vfs_get_tree); 1573 1574 /* 1575 * Setup private BDI for given superblock. It gets automatically cleaned up 1576 * in generic_shutdown_super(). 1577 */ 1578 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1579 { 1580 struct backing_dev_info *bdi; 1581 int err; 1582 va_list args; 1583 1584 bdi = bdi_alloc(NUMA_NO_NODE); 1585 if (!bdi) 1586 return -ENOMEM; 1587 1588 va_start(args, fmt); 1589 err = bdi_register_va(bdi, fmt, args); 1590 va_end(args); 1591 if (err) { 1592 bdi_put(bdi); 1593 return err; 1594 } 1595 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1596 sb->s_bdi = bdi; 1597 sb->s_iflags |= SB_I_PERSB_BDI; 1598 1599 return 0; 1600 } 1601 EXPORT_SYMBOL(super_setup_bdi_name); 1602 1603 /* 1604 * Setup private BDI for given superblock. I gets automatically cleaned up 1605 * in generic_shutdown_super(). 1606 */ 1607 int super_setup_bdi(struct super_block *sb) 1608 { 1609 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1610 1611 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1612 atomic_long_inc_return(&bdi_seq)); 1613 } 1614 EXPORT_SYMBOL(super_setup_bdi); 1615 1616 /** 1617 * sb_wait_write - wait until all writers to given file system finish 1618 * @sb: the super for which we wait 1619 * @level: type of writers we wait for (normal vs page fault) 1620 * 1621 * This function waits until there are no writers of given type to given file 1622 * system. 1623 */ 1624 static void sb_wait_write(struct super_block *sb, int level) 1625 { 1626 percpu_down_write(sb->s_writers.rw_sem + level-1); 1627 } 1628 1629 /* 1630 * We are going to return to userspace and forget about these locks, the 1631 * ownership goes to the caller of thaw_super() which does unlock(). 1632 */ 1633 static void lockdep_sb_freeze_release(struct super_block *sb) 1634 { 1635 int level; 1636 1637 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1638 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1639 } 1640 1641 /* 1642 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1643 */ 1644 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1645 { 1646 int level; 1647 1648 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1649 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1650 } 1651 1652 static void sb_freeze_unlock(struct super_block *sb, int level) 1653 { 1654 for (level--; level >= 0; level--) 1655 percpu_up_write(sb->s_writers.rw_sem + level); 1656 } 1657 1658 /** 1659 * freeze_super - lock the filesystem and force it into a consistent state 1660 * @sb: the super to lock 1661 * 1662 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1663 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1664 * -EBUSY. 1665 * 1666 * During this function, sb->s_writers.frozen goes through these values: 1667 * 1668 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1669 * 1670 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1671 * writes should be blocked, though page faults are still allowed. We wait for 1672 * all writes to complete and then proceed to the next stage. 1673 * 1674 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1675 * but internal fs threads can still modify the filesystem (although they 1676 * should not dirty new pages or inodes), writeback can run etc. After waiting 1677 * for all running page faults we sync the filesystem which will clean all 1678 * dirty pages and inodes (no new dirty pages or inodes can be created when 1679 * sync is running). 1680 * 1681 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1682 * modification are blocked (e.g. XFS preallocation truncation on inode 1683 * reclaim). This is usually implemented by blocking new transactions for 1684 * filesystems that have them and need this additional guard. After all 1685 * internal writers are finished we call ->freeze_fs() to finish filesystem 1686 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1687 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1688 * 1689 * sb->s_writers.frozen is protected by sb->s_umount. 1690 */ 1691 int freeze_super(struct super_block *sb) 1692 { 1693 int ret; 1694 1695 atomic_inc(&sb->s_active); 1696 down_write(&sb->s_umount); 1697 if (sb->s_writers.frozen != SB_UNFROZEN) { 1698 deactivate_locked_super(sb); 1699 return -EBUSY; 1700 } 1701 1702 if (!(sb->s_flags & SB_BORN)) { 1703 up_write(&sb->s_umount); 1704 return 0; /* sic - it's "nothing to do" */ 1705 } 1706 1707 if (sb_rdonly(sb)) { 1708 /* Nothing to do really... */ 1709 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1710 up_write(&sb->s_umount); 1711 return 0; 1712 } 1713 1714 sb->s_writers.frozen = SB_FREEZE_WRITE; 1715 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1716 up_write(&sb->s_umount); 1717 sb_wait_write(sb, SB_FREEZE_WRITE); 1718 down_write(&sb->s_umount); 1719 1720 /* Now we go and block page faults... */ 1721 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1722 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1723 1724 /* All writers are done so after syncing there won't be dirty data */ 1725 ret = sync_filesystem(sb); 1726 if (ret) { 1727 sb->s_writers.frozen = SB_UNFROZEN; 1728 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1729 wake_up(&sb->s_writers.wait_unfrozen); 1730 deactivate_locked_super(sb); 1731 return ret; 1732 } 1733 1734 /* Now wait for internal filesystem counter */ 1735 sb->s_writers.frozen = SB_FREEZE_FS; 1736 sb_wait_write(sb, SB_FREEZE_FS); 1737 1738 if (sb->s_op->freeze_fs) { 1739 ret = sb->s_op->freeze_fs(sb); 1740 if (ret) { 1741 printk(KERN_ERR 1742 "VFS:Filesystem freeze failed\n"); 1743 sb->s_writers.frozen = SB_UNFROZEN; 1744 sb_freeze_unlock(sb, SB_FREEZE_FS); 1745 wake_up(&sb->s_writers.wait_unfrozen); 1746 deactivate_locked_super(sb); 1747 return ret; 1748 } 1749 } 1750 /* 1751 * For debugging purposes so that fs can warn if it sees write activity 1752 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1753 */ 1754 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1755 lockdep_sb_freeze_release(sb); 1756 up_write(&sb->s_umount); 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(freeze_super); 1760 1761 static int thaw_super_locked(struct super_block *sb) 1762 { 1763 int error; 1764 1765 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1766 up_write(&sb->s_umount); 1767 return -EINVAL; 1768 } 1769 1770 if (sb_rdonly(sb)) { 1771 sb->s_writers.frozen = SB_UNFROZEN; 1772 goto out; 1773 } 1774 1775 lockdep_sb_freeze_acquire(sb); 1776 1777 if (sb->s_op->unfreeze_fs) { 1778 error = sb->s_op->unfreeze_fs(sb); 1779 if (error) { 1780 printk(KERN_ERR 1781 "VFS:Filesystem thaw failed\n"); 1782 lockdep_sb_freeze_release(sb); 1783 up_write(&sb->s_umount); 1784 return error; 1785 } 1786 } 1787 1788 sb->s_writers.frozen = SB_UNFROZEN; 1789 sb_freeze_unlock(sb, SB_FREEZE_FS); 1790 out: 1791 wake_up(&sb->s_writers.wait_unfrozen); 1792 deactivate_locked_super(sb); 1793 return 0; 1794 } 1795 1796 /** 1797 * thaw_super -- unlock filesystem 1798 * @sb: the super to thaw 1799 * 1800 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1801 */ 1802 int thaw_super(struct super_block *sb) 1803 { 1804 down_write(&sb->s_umount); 1805 return thaw_super_locked(sb); 1806 } 1807 EXPORT_SYMBOL(thaw_super); 1808