1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 static int thaw_super_locked(struct super_block *sb); 41 42 static LIST_HEAD(super_blocks); 43 static DEFINE_SPINLOCK(sb_lock); 44 45 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 46 "sb_writers", 47 "sb_pagefaults", 48 "sb_internal", 49 }; 50 51 /* 52 * One thing we have to be careful of with a per-sb shrinker is that we don't 53 * drop the last active reference to the superblock from within the shrinker. 54 * If that happens we could trigger unregistering the shrinker from within the 55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 56 * take a passive reference to the superblock to avoid this from occurring. 57 */ 58 static unsigned long super_cache_scan(struct shrinker *shrink, 59 struct shrink_control *sc) 60 { 61 struct super_block *sb; 62 long fs_objects = 0; 63 long total_objects; 64 long freed = 0; 65 long dentries; 66 long inodes; 67 68 sb = container_of(shrink, struct super_block, s_shrink); 69 70 /* 71 * Deadlock avoidance. We may hold various FS locks, and we don't want 72 * to recurse into the FS that called us in clear_inode() and friends.. 73 */ 74 if (!(sc->gfp_mask & __GFP_FS)) 75 return SHRINK_STOP; 76 77 if (!trylock_super(sb)) 78 return SHRINK_STOP; 79 80 if (sb->s_op->nr_cached_objects) 81 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 82 83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 85 total_objects = dentries + inodes + fs_objects + 1; 86 if (!total_objects) 87 total_objects = 1; 88 89 /* proportion the scan between the caches */ 90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 93 94 /* 95 * prune the dcache first as the icache is pinned by it, then 96 * prune the icache, followed by the filesystem specific caches 97 * 98 * Ensure that we always scan at least one object - memcg kmem 99 * accounting uses this to fully empty the caches. 100 */ 101 sc->nr_to_scan = dentries + 1; 102 freed = prune_dcache_sb(sb, sc); 103 sc->nr_to_scan = inodes + 1; 104 freed += prune_icache_sb(sb, sc); 105 106 if (fs_objects) { 107 sc->nr_to_scan = fs_objects + 1; 108 freed += sb->s_op->free_cached_objects(sb, sc); 109 } 110 111 up_read(&sb->s_umount); 112 return freed; 113 } 114 115 static unsigned long super_cache_count(struct shrinker *shrink, 116 struct shrink_control *sc) 117 { 118 struct super_block *sb; 119 long total_objects = 0; 120 121 sb = container_of(shrink, struct super_block, s_shrink); 122 123 /* 124 * We don't call trylock_super() here as it is a scalability bottleneck, 125 * so we're exposed to partial setup state. The shrinker rwsem does not 126 * protect filesystem operations backing list_lru_shrink_count() or 127 * s_op->nr_cached_objects(). Counts can change between 128 * super_cache_count and super_cache_scan, so we really don't need locks 129 * here. 130 * 131 * However, if we are currently mounting the superblock, the underlying 132 * filesystem might be in a state of partial construction and hence it 133 * is dangerous to access it. trylock_super() uses a SB_BORN check to 134 * avoid this situation, so do the same here. The memory barrier is 135 * matched with the one in mount_fs() as we don't hold locks here. 136 */ 137 if (!(sb->s_flags & SB_BORN)) 138 return 0; 139 smp_rmb(); 140 141 if (sb->s_op && sb->s_op->nr_cached_objects) 142 total_objects = sb->s_op->nr_cached_objects(sb, sc); 143 144 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 145 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 146 147 total_objects = vfs_pressure_ratio(total_objects); 148 return total_objects; 149 } 150 151 static void destroy_super_work(struct work_struct *work) 152 { 153 struct super_block *s = container_of(work, struct super_block, 154 destroy_work); 155 int i; 156 157 for (i = 0; i < SB_FREEZE_LEVELS; i++) 158 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 159 kfree(s); 160 } 161 162 static void destroy_super_rcu(struct rcu_head *head) 163 { 164 struct super_block *s = container_of(head, struct super_block, rcu); 165 INIT_WORK(&s->destroy_work, destroy_super_work); 166 schedule_work(&s->destroy_work); 167 } 168 169 /* Free a superblock that has never been seen by anyone */ 170 static void destroy_unused_super(struct super_block *s) 171 { 172 if (!s) 173 return; 174 up_write(&s->s_umount); 175 list_lru_destroy(&s->s_dentry_lru); 176 list_lru_destroy(&s->s_inode_lru); 177 security_sb_free(s); 178 put_user_ns(s->s_user_ns); 179 kfree(s->s_subtype); 180 free_prealloced_shrinker(&s->s_shrink); 181 /* no delays needed */ 182 destroy_super_work(&s->destroy_work); 183 } 184 185 /** 186 * alloc_super - create new superblock 187 * @type: filesystem type superblock should belong to 188 * @flags: the mount flags 189 * @user_ns: User namespace for the super_block 190 * 191 * Allocates and initializes a new &struct super_block. alloc_super() 192 * returns a pointer new superblock or %NULL if allocation had failed. 193 */ 194 static struct super_block *alloc_super(struct file_system_type *type, int flags, 195 struct user_namespace *user_ns) 196 { 197 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 198 static const struct super_operations default_op; 199 int i; 200 201 if (!s) 202 return NULL; 203 204 INIT_LIST_HEAD(&s->s_mounts); 205 s->s_user_ns = get_user_ns(user_ns); 206 init_rwsem(&s->s_umount); 207 lockdep_set_class(&s->s_umount, &type->s_umount_key); 208 /* 209 * sget() can have s_umount recursion. 210 * 211 * When it cannot find a suitable sb, it allocates a new 212 * one (this one), and tries again to find a suitable old 213 * one. 214 * 215 * In case that succeeds, it will acquire the s_umount 216 * lock of the old one. Since these are clearly distrinct 217 * locks, and this object isn't exposed yet, there's no 218 * risk of deadlocks. 219 * 220 * Annotate this by putting this lock in a different 221 * subclass. 222 */ 223 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 224 225 if (security_sb_alloc(s)) 226 goto fail; 227 228 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 229 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 230 sb_writers_name[i], 231 &type->s_writers_key[i])) 232 goto fail; 233 } 234 init_waitqueue_head(&s->s_writers.wait_unfrozen); 235 s->s_bdi = &noop_backing_dev_info; 236 s->s_flags = flags; 237 if (s->s_user_ns != &init_user_ns) 238 s->s_iflags |= SB_I_NODEV; 239 INIT_HLIST_NODE(&s->s_instances); 240 INIT_HLIST_BL_HEAD(&s->s_roots); 241 mutex_init(&s->s_sync_lock); 242 INIT_LIST_HEAD(&s->s_inodes); 243 spin_lock_init(&s->s_inode_list_lock); 244 INIT_LIST_HEAD(&s->s_inodes_wb); 245 spin_lock_init(&s->s_inode_wblist_lock); 246 247 if (list_lru_init_memcg(&s->s_dentry_lru)) 248 goto fail; 249 if (list_lru_init_memcg(&s->s_inode_lru)) 250 goto fail; 251 s->s_count = 1; 252 atomic_set(&s->s_active, 1); 253 mutex_init(&s->s_vfs_rename_mutex); 254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 255 init_rwsem(&s->s_dquot.dqio_sem); 256 s->s_maxbytes = MAX_NON_LFS; 257 s->s_op = &default_op; 258 s->s_time_gran = 1000000000; 259 s->cleancache_poolid = CLEANCACHE_NO_POOL; 260 261 s->s_shrink.seeks = DEFAULT_SEEKS; 262 s->s_shrink.scan_objects = super_cache_scan; 263 s->s_shrink.count_objects = super_cache_count; 264 s->s_shrink.batch = 1024; 265 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 266 if (prealloc_shrinker(&s->s_shrink)) 267 goto fail; 268 return s; 269 270 fail: 271 destroy_unused_super(s); 272 return NULL; 273 } 274 275 /* Superblock refcounting */ 276 277 /* 278 * Drop a superblock's refcount. The caller must hold sb_lock. 279 */ 280 static void __put_super(struct super_block *s) 281 { 282 if (!--s->s_count) { 283 list_del_init(&s->s_list); 284 WARN_ON(s->s_dentry_lru.node); 285 WARN_ON(s->s_inode_lru.node); 286 WARN_ON(!list_empty(&s->s_mounts)); 287 security_sb_free(s); 288 put_user_ns(s->s_user_ns); 289 kfree(s->s_subtype); 290 call_rcu(&s->rcu, destroy_super_rcu); 291 } 292 } 293 294 /** 295 * put_super - drop a temporary reference to superblock 296 * @sb: superblock in question 297 * 298 * Drops a temporary reference, frees superblock if there's no 299 * references left. 300 */ 301 static void put_super(struct super_block *sb) 302 { 303 spin_lock(&sb_lock); 304 __put_super(sb); 305 spin_unlock(&sb_lock); 306 } 307 308 309 /** 310 * deactivate_locked_super - drop an active reference to superblock 311 * @s: superblock to deactivate 312 * 313 * Drops an active reference to superblock, converting it into a temporary 314 * one if there is no other active references left. In that case we 315 * tell fs driver to shut it down and drop the temporary reference we 316 * had just acquired. 317 * 318 * Caller holds exclusive lock on superblock; that lock is released. 319 */ 320 void deactivate_locked_super(struct super_block *s) 321 { 322 struct file_system_type *fs = s->s_type; 323 if (atomic_dec_and_test(&s->s_active)) { 324 cleancache_invalidate_fs(s); 325 unregister_shrinker(&s->s_shrink); 326 fs->kill_sb(s); 327 328 /* 329 * Since list_lru_destroy() may sleep, we cannot call it from 330 * put_super(), where we hold the sb_lock. Therefore we destroy 331 * the lru lists right now. 332 */ 333 list_lru_destroy(&s->s_dentry_lru); 334 list_lru_destroy(&s->s_inode_lru); 335 336 put_filesystem(fs); 337 put_super(s); 338 } else { 339 up_write(&s->s_umount); 340 } 341 } 342 343 EXPORT_SYMBOL(deactivate_locked_super); 344 345 /** 346 * deactivate_super - drop an active reference to superblock 347 * @s: superblock to deactivate 348 * 349 * Variant of deactivate_locked_super(), except that superblock is *not* 350 * locked by caller. If we are going to drop the final active reference, 351 * lock will be acquired prior to that. 352 */ 353 void deactivate_super(struct super_block *s) 354 { 355 if (!atomic_add_unless(&s->s_active, -1, 1)) { 356 down_write(&s->s_umount); 357 deactivate_locked_super(s); 358 } 359 } 360 361 EXPORT_SYMBOL(deactivate_super); 362 363 /** 364 * grab_super - acquire an active reference 365 * @s: reference we are trying to make active 366 * 367 * Tries to acquire an active reference. grab_super() is used when we 368 * had just found a superblock in super_blocks or fs_type->fs_supers 369 * and want to turn it into a full-blown active reference. grab_super() 370 * is called with sb_lock held and drops it. Returns 1 in case of 371 * success, 0 if we had failed (superblock contents was already dead or 372 * dying when grab_super() had been called). Note that this is only 373 * called for superblocks not in rundown mode (== ones still on ->fs_supers 374 * of their type), so increment of ->s_count is OK here. 375 */ 376 static int grab_super(struct super_block *s) __releases(sb_lock) 377 { 378 s->s_count++; 379 spin_unlock(&sb_lock); 380 down_write(&s->s_umount); 381 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 382 put_super(s); 383 return 1; 384 } 385 up_write(&s->s_umount); 386 put_super(s); 387 return 0; 388 } 389 390 /* 391 * trylock_super - try to grab ->s_umount shared 392 * @sb: reference we are trying to grab 393 * 394 * Try to prevent fs shutdown. This is used in places where we 395 * cannot take an active reference but we need to ensure that the 396 * filesystem is not shut down while we are working on it. It returns 397 * false if we cannot acquire s_umount or if we lose the race and 398 * filesystem already got into shutdown, and returns true with the s_umount 399 * lock held in read mode in case of success. On successful return, 400 * the caller must drop the s_umount lock when done. 401 * 402 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 403 * The reason why it's safe is that we are OK with doing trylock instead 404 * of down_read(). There's a couple of places that are OK with that, but 405 * it's very much not a general-purpose interface. 406 */ 407 bool trylock_super(struct super_block *sb) 408 { 409 if (down_read_trylock(&sb->s_umount)) { 410 if (!hlist_unhashed(&sb->s_instances) && 411 sb->s_root && (sb->s_flags & SB_BORN)) 412 return true; 413 up_read(&sb->s_umount); 414 } 415 416 return false; 417 } 418 419 /** 420 * generic_shutdown_super - common helper for ->kill_sb() 421 * @sb: superblock to kill 422 * 423 * generic_shutdown_super() does all fs-independent work on superblock 424 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 425 * that need destruction out of superblock, call generic_shutdown_super() 426 * and release aforementioned objects. Note: dentries and inodes _are_ 427 * taken care of and do not need specific handling. 428 * 429 * Upon calling this function, the filesystem may no longer alter or 430 * rearrange the set of dentries belonging to this super_block, nor may it 431 * change the attachments of dentries to inodes. 432 */ 433 void generic_shutdown_super(struct super_block *sb) 434 { 435 const struct super_operations *sop = sb->s_op; 436 437 if (sb->s_root) { 438 shrink_dcache_for_umount(sb); 439 sync_filesystem(sb); 440 sb->s_flags &= ~SB_ACTIVE; 441 442 fsnotify_unmount_inodes(sb); 443 cgroup_writeback_umount(); 444 445 evict_inodes(sb); 446 447 if (sb->s_dio_done_wq) { 448 destroy_workqueue(sb->s_dio_done_wq); 449 sb->s_dio_done_wq = NULL; 450 } 451 452 if (sop->put_super) 453 sop->put_super(sb); 454 455 if (!list_empty(&sb->s_inodes)) { 456 printk("VFS: Busy inodes after unmount of %s. " 457 "Self-destruct in 5 seconds. Have a nice day...\n", 458 sb->s_id); 459 } 460 } 461 spin_lock(&sb_lock); 462 /* should be initialized for __put_super_and_need_restart() */ 463 hlist_del_init(&sb->s_instances); 464 spin_unlock(&sb_lock); 465 up_write(&sb->s_umount); 466 if (sb->s_bdi != &noop_backing_dev_info) { 467 bdi_put(sb->s_bdi); 468 sb->s_bdi = &noop_backing_dev_info; 469 } 470 } 471 472 EXPORT_SYMBOL(generic_shutdown_super); 473 474 /** 475 * sget_userns - find or create a superblock 476 * @type: filesystem type superblock should belong to 477 * @test: comparison callback 478 * @set: setup callback 479 * @flags: mount flags 480 * @user_ns: User namespace for the super_block 481 * @data: argument to each of them 482 */ 483 struct super_block *sget_userns(struct file_system_type *type, 484 int (*test)(struct super_block *,void *), 485 int (*set)(struct super_block *,void *), 486 int flags, struct user_namespace *user_ns, 487 void *data) 488 { 489 struct super_block *s = NULL; 490 struct super_block *old; 491 int err; 492 493 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 494 !(type->fs_flags & FS_USERNS_MOUNT) && 495 !capable(CAP_SYS_ADMIN)) 496 return ERR_PTR(-EPERM); 497 retry: 498 spin_lock(&sb_lock); 499 if (test) { 500 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 501 if (!test(old, data)) 502 continue; 503 if (user_ns != old->s_user_ns) { 504 spin_unlock(&sb_lock); 505 destroy_unused_super(s); 506 return ERR_PTR(-EBUSY); 507 } 508 if (!grab_super(old)) 509 goto retry; 510 destroy_unused_super(s); 511 return old; 512 } 513 } 514 if (!s) { 515 spin_unlock(&sb_lock); 516 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 517 if (!s) 518 return ERR_PTR(-ENOMEM); 519 goto retry; 520 } 521 522 err = set(s, data); 523 if (err) { 524 spin_unlock(&sb_lock); 525 destroy_unused_super(s); 526 return ERR_PTR(err); 527 } 528 s->s_type = type; 529 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 530 list_add_tail(&s->s_list, &super_blocks); 531 hlist_add_head(&s->s_instances, &type->fs_supers); 532 spin_unlock(&sb_lock); 533 get_filesystem(type); 534 register_shrinker_prepared(&s->s_shrink); 535 return s; 536 } 537 538 EXPORT_SYMBOL(sget_userns); 539 540 /** 541 * sget - find or create a superblock 542 * @type: filesystem type superblock should belong to 543 * @test: comparison callback 544 * @set: setup callback 545 * @flags: mount flags 546 * @data: argument to each of them 547 */ 548 struct super_block *sget(struct file_system_type *type, 549 int (*test)(struct super_block *,void *), 550 int (*set)(struct super_block *,void *), 551 int flags, 552 void *data) 553 { 554 struct user_namespace *user_ns = current_user_ns(); 555 556 /* We don't yet pass the user namespace of the parent 557 * mount through to here so always use &init_user_ns 558 * until that changes. 559 */ 560 if (flags & SB_SUBMOUNT) 561 user_ns = &init_user_ns; 562 563 /* Ensure the requestor has permissions over the target filesystem */ 564 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 565 return ERR_PTR(-EPERM); 566 567 return sget_userns(type, test, set, flags, user_ns, data); 568 } 569 570 EXPORT_SYMBOL(sget); 571 572 void drop_super(struct super_block *sb) 573 { 574 up_read(&sb->s_umount); 575 put_super(sb); 576 } 577 578 EXPORT_SYMBOL(drop_super); 579 580 void drop_super_exclusive(struct super_block *sb) 581 { 582 up_write(&sb->s_umount); 583 put_super(sb); 584 } 585 EXPORT_SYMBOL(drop_super_exclusive); 586 587 static void __iterate_supers(void (*f)(struct super_block *)) 588 { 589 struct super_block *sb, *p = NULL; 590 591 spin_lock(&sb_lock); 592 list_for_each_entry(sb, &super_blocks, s_list) { 593 if (hlist_unhashed(&sb->s_instances)) 594 continue; 595 sb->s_count++; 596 spin_unlock(&sb_lock); 597 598 f(sb); 599 600 spin_lock(&sb_lock); 601 if (p) 602 __put_super(p); 603 p = sb; 604 } 605 if (p) 606 __put_super(p); 607 spin_unlock(&sb_lock); 608 } 609 /** 610 * iterate_supers - call function for all active superblocks 611 * @f: function to call 612 * @arg: argument to pass to it 613 * 614 * Scans the superblock list and calls given function, passing it 615 * locked superblock and given argument. 616 */ 617 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 618 { 619 struct super_block *sb, *p = NULL; 620 621 spin_lock(&sb_lock); 622 list_for_each_entry(sb, &super_blocks, s_list) { 623 if (hlist_unhashed(&sb->s_instances)) 624 continue; 625 sb->s_count++; 626 spin_unlock(&sb_lock); 627 628 down_read(&sb->s_umount); 629 if (sb->s_root && (sb->s_flags & SB_BORN)) 630 f(sb, arg); 631 up_read(&sb->s_umount); 632 633 spin_lock(&sb_lock); 634 if (p) 635 __put_super(p); 636 p = sb; 637 } 638 if (p) 639 __put_super(p); 640 spin_unlock(&sb_lock); 641 } 642 643 /** 644 * iterate_supers_type - call function for superblocks of given type 645 * @type: fs type 646 * @f: function to call 647 * @arg: argument to pass to it 648 * 649 * Scans the superblock list and calls given function, passing it 650 * locked superblock and given argument. 651 */ 652 void iterate_supers_type(struct file_system_type *type, 653 void (*f)(struct super_block *, void *), void *arg) 654 { 655 struct super_block *sb, *p = NULL; 656 657 spin_lock(&sb_lock); 658 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 659 sb->s_count++; 660 spin_unlock(&sb_lock); 661 662 down_read(&sb->s_umount); 663 if (sb->s_root && (sb->s_flags & SB_BORN)) 664 f(sb, arg); 665 up_read(&sb->s_umount); 666 667 spin_lock(&sb_lock); 668 if (p) 669 __put_super(p); 670 p = sb; 671 } 672 if (p) 673 __put_super(p); 674 spin_unlock(&sb_lock); 675 } 676 677 EXPORT_SYMBOL(iterate_supers_type); 678 679 static struct super_block *__get_super(struct block_device *bdev, bool excl) 680 { 681 struct super_block *sb; 682 683 if (!bdev) 684 return NULL; 685 686 spin_lock(&sb_lock); 687 rescan: 688 list_for_each_entry(sb, &super_blocks, s_list) { 689 if (hlist_unhashed(&sb->s_instances)) 690 continue; 691 if (sb->s_bdev == bdev) { 692 sb->s_count++; 693 spin_unlock(&sb_lock); 694 if (!excl) 695 down_read(&sb->s_umount); 696 else 697 down_write(&sb->s_umount); 698 /* still alive? */ 699 if (sb->s_root && (sb->s_flags & SB_BORN)) 700 return sb; 701 if (!excl) 702 up_read(&sb->s_umount); 703 else 704 up_write(&sb->s_umount); 705 /* nope, got unmounted */ 706 spin_lock(&sb_lock); 707 __put_super(sb); 708 goto rescan; 709 } 710 } 711 spin_unlock(&sb_lock); 712 return NULL; 713 } 714 715 /** 716 * get_super - get the superblock of a device 717 * @bdev: device to get the superblock for 718 * 719 * Scans the superblock list and finds the superblock of the file system 720 * mounted on the device given. %NULL is returned if no match is found. 721 */ 722 struct super_block *get_super(struct block_device *bdev) 723 { 724 return __get_super(bdev, false); 725 } 726 EXPORT_SYMBOL(get_super); 727 728 static struct super_block *__get_super_thawed(struct block_device *bdev, 729 bool excl) 730 { 731 while (1) { 732 struct super_block *s = __get_super(bdev, excl); 733 if (!s || s->s_writers.frozen == SB_UNFROZEN) 734 return s; 735 if (!excl) 736 up_read(&s->s_umount); 737 else 738 up_write(&s->s_umount); 739 wait_event(s->s_writers.wait_unfrozen, 740 s->s_writers.frozen == SB_UNFROZEN); 741 put_super(s); 742 } 743 } 744 745 /** 746 * get_super_thawed - get thawed superblock of a device 747 * @bdev: device to get the superblock for 748 * 749 * Scans the superblock list and finds the superblock of the file system 750 * mounted on the device. The superblock is returned once it is thawed 751 * (or immediately if it was not frozen). %NULL is returned if no match 752 * is found. 753 */ 754 struct super_block *get_super_thawed(struct block_device *bdev) 755 { 756 return __get_super_thawed(bdev, false); 757 } 758 EXPORT_SYMBOL(get_super_thawed); 759 760 /** 761 * get_super_exclusive_thawed - get thawed superblock of a device 762 * @bdev: device to get the superblock for 763 * 764 * Scans the superblock list and finds the superblock of the file system 765 * mounted on the device. The superblock is returned once it is thawed 766 * (or immediately if it was not frozen) and s_umount semaphore is held 767 * in exclusive mode. %NULL is returned if no match is found. 768 */ 769 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 770 { 771 return __get_super_thawed(bdev, true); 772 } 773 EXPORT_SYMBOL(get_super_exclusive_thawed); 774 775 /** 776 * get_active_super - get an active reference to the superblock of a device 777 * @bdev: device to get the superblock for 778 * 779 * Scans the superblock list and finds the superblock of the file system 780 * mounted on the device given. Returns the superblock with an active 781 * reference or %NULL if none was found. 782 */ 783 struct super_block *get_active_super(struct block_device *bdev) 784 { 785 struct super_block *sb; 786 787 if (!bdev) 788 return NULL; 789 790 restart: 791 spin_lock(&sb_lock); 792 list_for_each_entry(sb, &super_blocks, s_list) { 793 if (hlist_unhashed(&sb->s_instances)) 794 continue; 795 if (sb->s_bdev == bdev) { 796 if (!grab_super(sb)) 797 goto restart; 798 up_write(&sb->s_umount); 799 return sb; 800 } 801 } 802 spin_unlock(&sb_lock); 803 return NULL; 804 } 805 806 struct super_block *user_get_super(dev_t dev) 807 { 808 struct super_block *sb; 809 810 spin_lock(&sb_lock); 811 rescan: 812 list_for_each_entry(sb, &super_blocks, s_list) { 813 if (hlist_unhashed(&sb->s_instances)) 814 continue; 815 if (sb->s_dev == dev) { 816 sb->s_count++; 817 spin_unlock(&sb_lock); 818 down_read(&sb->s_umount); 819 /* still alive? */ 820 if (sb->s_root && (sb->s_flags & SB_BORN)) 821 return sb; 822 up_read(&sb->s_umount); 823 /* nope, got unmounted */ 824 spin_lock(&sb_lock); 825 __put_super(sb); 826 goto rescan; 827 } 828 } 829 spin_unlock(&sb_lock); 830 return NULL; 831 } 832 833 /** 834 * do_remount_sb - asks filesystem to change mount options. 835 * @sb: superblock in question 836 * @sb_flags: revised superblock flags 837 * @data: the rest of options 838 * @force: whether or not to force the change 839 * 840 * Alters the mount options of a mounted file system. 841 */ 842 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 843 { 844 int retval; 845 int remount_ro; 846 847 if (sb->s_writers.frozen != SB_UNFROZEN) 848 return -EBUSY; 849 850 #ifdef CONFIG_BLOCK 851 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 852 return -EACCES; 853 #endif 854 855 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 856 857 if (remount_ro) { 858 if (!hlist_empty(&sb->s_pins)) { 859 up_write(&sb->s_umount); 860 group_pin_kill(&sb->s_pins); 861 down_write(&sb->s_umount); 862 if (!sb->s_root) 863 return 0; 864 if (sb->s_writers.frozen != SB_UNFROZEN) 865 return -EBUSY; 866 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 867 } 868 } 869 shrink_dcache_sb(sb); 870 871 /* If we are remounting RDONLY and current sb is read/write, 872 make sure there are no rw files opened */ 873 if (remount_ro) { 874 if (force) { 875 sb->s_readonly_remount = 1; 876 smp_wmb(); 877 } else { 878 retval = sb_prepare_remount_readonly(sb); 879 if (retval) 880 return retval; 881 } 882 } 883 884 if (sb->s_op->remount_fs) { 885 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 886 if (retval) { 887 if (!force) 888 goto cancel_readonly; 889 /* If forced remount, go ahead despite any errors */ 890 WARN(1, "forced remount of a %s fs returned %i\n", 891 sb->s_type->name, retval); 892 } 893 } 894 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 895 /* Needs to be ordered wrt mnt_is_readonly() */ 896 smp_wmb(); 897 sb->s_readonly_remount = 0; 898 899 /* 900 * Some filesystems modify their metadata via some other path than the 901 * bdev buffer cache (eg. use a private mapping, or directories in 902 * pagecache, etc). Also file data modifications go via their own 903 * mappings. So If we try to mount readonly then copy the filesystem 904 * from bdev, we could get stale data, so invalidate it to give a best 905 * effort at coherency. 906 */ 907 if (remount_ro && sb->s_bdev) 908 invalidate_bdev(sb->s_bdev); 909 return 0; 910 911 cancel_readonly: 912 sb->s_readonly_remount = 0; 913 return retval; 914 } 915 916 static void do_emergency_remount_callback(struct super_block *sb) 917 { 918 down_write(&sb->s_umount); 919 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 920 !sb_rdonly(sb)) { 921 /* 922 * What lock protects sb->s_flags?? 923 */ 924 do_remount_sb(sb, SB_RDONLY, NULL, 1); 925 } 926 up_write(&sb->s_umount); 927 } 928 929 static void do_emergency_remount(struct work_struct *work) 930 { 931 __iterate_supers(do_emergency_remount_callback); 932 kfree(work); 933 printk("Emergency Remount complete\n"); 934 } 935 936 void emergency_remount(void) 937 { 938 struct work_struct *work; 939 940 work = kmalloc(sizeof(*work), GFP_ATOMIC); 941 if (work) { 942 INIT_WORK(work, do_emergency_remount); 943 schedule_work(work); 944 } 945 } 946 947 static void do_thaw_all_callback(struct super_block *sb) 948 { 949 down_write(&sb->s_umount); 950 if (sb->s_root && sb->s_flags & MS_BORN) { 951 emergency_thaw_bdev(sb); 952 thaw_super_locked(sb); 953 } else { 954 up_write(&sb->s_umount); 955 } 956 } 957 958 static void do_thaw_all(struct work_struct *work) 959 { 960 __iterate_supers(do_thaw_all_callback); 961 kfree(work); 962 printk(KERN_WARNING "Emergency Thaw complete\n"); 963 } 964 965 /** 966 * emergency_thaw_all -- forcibly thaw every frozen filesystem 967 * 968 * Used for emergency unfreeze of all filesystems via SysRq 969 */ 970 void emergency_thaw_all(void) 971 { 972 struct work_struct *work; 973 974 work = kmalloc(sizeof(*work), GFP_ATOMIC); 975 if (work) { 976 INIT_WORK(work, do_thaw_all); 977 schedule_work(work); 978 } 979 } 980 981 /* 982 * Unnamed block devices are dummy devices used by virtual 983 * filesystems which don't use real block-devices. -- jrs 984 */ 985 986 static DEFINE_IDA(unnamed_dev_ida); 987 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 988 /* Many userspace utilities consider an FSID of 0 invalid. 989 * Always return at least 1 from get_anon_bdev. 990 */ 991 static int unnamed_dev_start = 1; 992 993 int get_anon_bdev(dev_t *p) 994 { 995 int dev; 996 int error; 997 998 retry: 999 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 1000 return -ENOMEM; 1001 spin_lock(&unnamed_dev_lock); 1002 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 1003 if (!error) 1004 unnamed_dev_start = dev + 1; 1005 spin_unlock(&unnamed_dev_lock); 1006 if (error == -EAGAIN) 1007 /* We raced and lost with another CPU. */ 1008 goto retry; 1009 else if (error) 1010 return -EAGAIN; 1011 1012 if (dev >= (1 << MINORBITS)) { 1013 spin_lock(&unnamed_dev_lock); 1014 ida_remove(&unnamed_dev_ida, dev); 1015 if (unnamed_dev_start > dev) 1016 unnamed_dev_start = dev; 1017 spin_unlock(&unnamed_dev_lock); 1018 return -EMFILE; 1019 } 1020 *p = MKDEV(0, dev & MINORMASK); 1021 return 0; 1022 } 1023 EXPORT_SYMBOL(get_anon_bdev); 1024 1025 void free_anon_bdev(dev_t dev) 1026 { 1027 int slot = MINOR(dev); 1028 spin_lock(&unnamed_dev_lock); 1029 ida_remove(&unnamed_dev_ida, slot); 1030 if (slot < unnamed_dev_start) 1031 unnamed_dev_start = slot; 1032 spin_unlock(&unnamed_dev_lock); 1033 } 1034 EXPORT_SYMBOL(free_anon_bdev); 1035 1036 int set_anon_super(struct super_block *s, void *data) 1037 { 1038 return get_anon_bdev(&s->s_dev); 1039 } 1040 1041 EXPORT_SYMBOL(set_anon_super); 1042 1043 void kill_anon_super(struct super_block *sb) 1044 { 1045 dev_t dev = sb->s_dev; 1046 generic_shutdown_super(sb); 1047 free_anon_bdev(dev); 1048 } 1049 1050 EXPORT_SYMBOL(kill_anon_super); 1051 1052 void kill_litter_super(struct super_block *sb) 1053 { 1054 if (sb->s_root) 1055 d_genocide(sb->s_root); 1056 kill_anon_super(sb); 1057 } 1058 1059 EXPORT_SYMBOL(kill_litter_super); 1060 1061 static int ns_test_super(struct super_block *sb, void *data) 1062 { 1063 return sb->s_fs_info == data; 1064 } 1065 1066 static int ns_set_super(struct super_block *sb, void *data) 1067 { 1068 sb->s_fs_info = data; 1069 return set_anon_super(sb, NULL); 1070 } 1071 1072 struct dentry *mount_ns(struct file_system_type *fs_type, 1073 int flags, void *data, void *ns, struct user_namespace *user_ns, 1074 int (*fill_super)(struct super_block *, void *, int)) 1075 { 1076 struct super_block *sb; 1077 1078 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1079 * over the namespace. 1080 */ 1081 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1082 return ERR_PTR(-EPERM); 1083 1084 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1085 user_ns, ns); 1086 if (IS_ERR(sb)) 1087 return ERR_CAST(sb); 1088 1089 if (!sb->s_root) { 1090 int err; 1091 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1092 if (err) { 1093 deactivate_locked_super(sb); 1094 return ERR_PTR(err); 1095 } 1096 1097 sb->s_flags |= SB_ACTIVE; 1098 } 1099 1100 return dget(sb->s_root); 1101 } 1102 1103 EXPORT_SYMBOL(mount_ns); 1104 1105 #ifdef CONFIG_BLOCK 1106 static int set_bdev_super(struct super_block *s, void *data) 1107 { 1108 s->s_bdev = data; 1109 s->s_dev = s->s_bdev->bd_dev; 1110 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1111 1112 return 0; 1113 } 1114 1115 static int test_bdev_super(struct super_block *s, void *data) 1116 { 1117 return (void *)s->s_bdev == data; 1118 } 1119 1120 struct dentry *mount_bdev(struct file_system_type *fs_type, 1121 int flags, const char *dev_name, void *data, 1122 int (*fill_super)(struct super_block *, void *, int)) 1123 { 1124 struct block_device *bdev; 1125 struct super_block *s; 1126 fmode_t mode = FMODE_READ | FMODE_EXCL; 1127 int error = 0; 1128 1129 if (!(flags & SB_RDONLY)) 1130 mode |= FMODE_WRITE; 1131 1132 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1133 if (IS_ERR(bdev)) 1134 return ERR_CAST(bdev); 1135 1136 /* 1137 * once the super is inserted into the list by sget, s_umount 1138 * will protect the lockfs code from trying to start a snapshot 1139 * while we are mounting 1140 */ 1141 mutex_lock(&bdev->bd_fsfreeze_mutex); 1142 if (bdev->bd_fsfreeze_count > 0) { 1143 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1144 error = -EBUSY; 1145 goto error_bdev; 1146 } 1147 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1148 bdev); 1149 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1150 if (IS_ERR(s)) 1151 goto error_s; 1152 1153 if (s->s_root) { 1154 if ((flags ^ s->s_flags) & SB_RDONLY) { 1155 deactivate_locked_super(s); 1156 error = -EBUSY; 1157 goto error_bdev; 1158 } 1159 1160 /* 1161 * s_umount nests inside bd_mutex during 1162 * __invalidate_device(). blkdev_put() acquires 1163 * bd_mutex and can't be called under s_umount. Drop 1164 * s_umount temporarily. This is safe as we're 1165 * holding an active reference. 1166 */ 1167 up_write(&s->s_umount); 1168 blkdev_put(bdev, mode); 1169 down_write(&s->s_umount); 1170 } else { 1171 s->s_mode = mode; 1172 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1173 sb_set_blocksize(s, block_size(bdev)); 1174 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1175 if (error) { 1176 deactivate_locked_super(s); 1177 goto error; 1178 } 1179 1180 s->s_flags |= SB_ACTIVE; 1181 bdev->bd_super = s; 1182 } 1183 1184 return dget(s->s_root); 1185 1186 error_s: 1187 error = PTR_ERR(s); 1188 error_bdev: 1189 blkdev_put(bdev, mode); 1190 error: 1191 return ERR_PTR(error); 1192 } 1193 EXPORT_SYMBOL(mount_bdev); 1194 1195 void kill_block_super(struct super_block *sb) 1196 { 1197 struct block_device *bdev = sb->s_bdev; 1198 fmode_t mode = sb->s_mode; 1199 1200 bdev->bd_super = NULL; 1201 generic_shutdown_super(sb); 1202 sync_blockdev(bdev); 1203 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1204 blkdev_put(bdev, mode | FMODE_EXCL); 1205 } 1206 1207 EXPORT_SYMBOL(kill_block_super); 1208 #endif 1209 1210 struct dentry *mount_nodev(struct file_system_type *fs_type, 1211 int flags, void *data, 1212 int (*fill_super)(struct super_block *, void *, int)) 1213 { 1214 int error; 1215 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1216 1217 if (IS_ERR(s)) 1218 return ERR_CAST(s); 1219 1220 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1221 if (error) { 1222 deactivate_locked_super(s); 1223 return ERR_PTR(error); 1224 } 1225 s->s_flags |= SB_ACTIVE; 1226 return dget(s->s_root); 1227 } 1228 EXPORT_SYMBOL(mount_nodev); 1229 1230 static int compare_single(struct super_block *s, void *p) 1231 { 1232 return 1; 1233 } 1234 1235 struct dentry *mount_single(struct file_system_type *fs_type, 1236 int flags, void *data, 1237 int (*fill_super)(struct super_block *, void *, int)) 1238 { 1239 struct super_block *s; 1240 int error; 1241 1242 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1243 if (IS_ERR(s)) 1244 return ERR_CAST(s); 1245 if (!s->s_root) { 1246 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1247 if (error) { 1248 deactivate_locked_super(s); 1249 return ERR_PTR(error); 1250 } 1251 s->s_flags |= SB_ACTIVE; 1252 } else { 1253 do_remount_sb(s, flags, data, 0); 1254 } 1255 return dget(s->s_root); 1256 } 1257 EXPORT_SYMBOL(mount_single); 1258 1259 struct dentry * 1260 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1261 { 1262 struct dentry *root; 1263 struct super_block *sb; 1264 char *secdata = NULL; 1265 int error = -ENOMEM; 1266 1267 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1268 secdata = alloc_secdata(); 1269 if (!secdata) 1270 goto out; 1271 1272 error = security_sb_copy_data(data, secdata); 1273 if (error) 1274 goto out_free_secdata; 1275 } 1276 1277 root = type->mount(type, flags, name, data); 1278 if (IS_ERR(root)) { 1279 error = PTR_ERR(root); 1280 goto out_free_secdata; 1281 } 1282 sb = root->d_sb; 1283 BUG_ON(!sb); 1284 WARN_ON(!sb->s_bdi); 1285 1286 /* 1287 * Write barrier is for super_cache_count(). We place it before setting 1288 * SB_BORN as the data dependency between the two functions is the 1289 * superblock structure contents that we just set up, not the SB_BORN 1290 * flag. 1291 */ 1292 smp_wmb(); 1293 sb->s_flags |= SB_BORN; 1294 1295 error = security_sb_kern_mount(sb, flags, secdata); 1296 if (error) 1297 goto out_sb; 1298 1299 /* 1300 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1301 * but s_maxbytes was an unsigned long long for many releases. Throw 1302 * this warning for a little while to try and catch filesystems that 1303 * violate this rule. 1304 */ 1305 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1306 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1307 1308 up_write(&sb->s_umount); 1309 free_secdata(secdata); 1310 return root; 1311 out_sb: 1312 dput(root); 1313 deactivate_locked_super(sb); 1314 out_free_secdata: 1315 free_secdata(secdata); 1316 out: 1317 return ERR_PTR(error); 1318 } 1319 1320 /* 1321 * Setup private BDI for given superblock. It gets automatically cleaned up 1322 * in generic_shutdown_super(). 1323 */ 1324 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1325 { 1326 struct backing_dev_info *bdi; 1327 int err; 1328 va_list args; 1329 1330 bdi = bdi_alloc(GFP_KERNEL); 1331 if (!bdi) 1332 return -ENOMEM; 1333 1334 bdi->name = sb->s_type->name; 1335 1336 va_start(args, fmt); 1337 err = bdi_register_va(bdi, fmt, args); 1338 va_end(args); 1339 if (err) { 1340 bdi_put(bdi); 1341 return err; 1342 } 1343 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1344 sb->s_bdi = bdi; 1345 1346 return 0; 1347 } 1348 EXPORT_SYMBOL(super_setup_bdi_name); 1349 1350 /* 1351 * Setup private BDI for given superblock. I gets automatically cleaned up 1352 * in generic_shutdown_super(). 1353 */ 1354 int super_setup_bdi(struct super_block *sb) 1355 { 1356 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1357 1358 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1359 atomic_long_inc_return(&bdi_seq)); 1360 } 1361 EXPORT_SYMBOL(super_setup_bdi); 1362 1363 /* 1364 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1365 * instead. 1366 */ 1367 void __sb_end_write(struct super_block *sb, int level) 1368 { 1369 percpu_up_read(sb->s_writers.rw_sem + level-1); 1370 } 1371 EXPORT_SYMBOL(__sb_end_write); 1372 1373 /* 1374 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1375 * instead. 1376 */ 1377 int __sb_start_write(struct super_block *sb, int level, bool wait) 1378 { 1379 bool force_trylock = false; 1380 int ret = 1; 1381 1382 #ifdef CONFIG_LOCKDEP 1383 /* 1384 * We want lockdep to tell us about possible deadlocks with freezing 1385 * but it's it bit tricky to properly instrument it. Getting a freeze 1386 * protection works as getting a read lock but there are subtle 1387 * problems. XFS for example gets freeze protection on internal level 1388 * twice in some cases, which is OK only because we already hold a 1389 * freeze protection also on higher level. Due to these cases we have 1390 * to use wait == F (trylock mode) which must not fail. 1391 */ 1392 if (wait) { 1393 int i; 1394 1395 for (i = 0; i < level - 1; i++) 1396 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1397 force_trylock = true; 1398 break; 1399 } 1400 } 1401 #endif 1402 if (wait && !force_trylock) 1403 percpu_down_read(sb->s_writers.rw_sem + level-1); 1404 else 1405 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1406 1407 WARN_ON(force_trylock && !ret); 1408 return ret; 1409 } 1410 EXPORT_SYMBOL(__sb_start_write); 1411 1412 /** 1413 * sb_wait_write - wait until all writers to given file system finish 1414 * @sb: the super for which we wait 1415 * @level: type of writers we wait for (normal vs page fault) 1416 * 1417 * This function waits until there are no writers of given type to given file 1418 * system. 1419 */ 1420 static void sb_wait_write(struct super_block *sb, int level) 1421 { 1422 percpu_down_write(sb->s_writers.rw_sem + level-1); 1423 } 1424 1425 /* 1426 * We are going to return to userspace and forget about these locks, the 1427 * ownership goes to the caller of thaw_super() which does unlock(). 1428 */ 1429 static void lockdep_sb_freeze_release(struct super_block *sb) 1430 { 1431 int level; 1432 1433 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1434 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1435 } 1436 1437 /* 1438 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1439 */ 1440 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1441 { 1442 int level; 1443 1444 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1445 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1446 } 1447 1448 static void sb_freeze_unlock(struct super_block *sb) 1449 { 1450 int level; 1451 1452 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1453 percpu_up_write(sb->s_writers.rw_sem + level); 1454 } 1455 1456 /** 1457 * freeze_super - lock the filesystem and force it into a consistent state 1458 * @sb: the super to lock 1459 * 1460 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1461 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1462 * -EBUSY. 1463 * 1464 * During this function, sb->s_writers.frozen goes through these values: 1465 * 1466 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1467 * 1468 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1469 * writes should be blocked, though page faults are still allowed. We wait for 1470 * all writes to complete and then proceed to the next stage. 1471 * 1472 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1473 * but internal fs threads can still modify the filesystem (although they 1474 * should not dirty new pages or inodes), writeback can run etc. After waiting 1475 * for all running page faults we sync the filesystem which will clean all 1476 * dirty pages and inodes (no new dirty pages or inodes can be created when 1477 * sync is running). 1478 * 1479 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1480 * modification are blocked (e.g. XFS preallocation truncation on inode 1481 * reclaim). This is usually implemented by blocking new transactions for 1482 * filesystems that have them and need this additional guard. After all 1483 * internal writers are finished we call ->freeze_fs() to finish filesystem 1484 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1485 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1486 * 1487 * sb->s_writers.frozen is protected by sb->s_umount. 1488 */ 1489 int freeze_super(struct super_block *sb) 1490 { 1491 int ret; 1492 1493 atomic_inc(&sb->s_active); 1494 down_write(&sb->s_umount); 1495 if (sb->s_writers.frozen != SB_UNFROZEN) { 1496 deactivate_locked_super(sb); 1497 return -EBUSY; 1498 } 1499 1500 if (!(sb->s_flags & SB_BORN)) { 1501 up_write(&sb->s_umount); 1502 return 0; /* sic - it's "nothing to do" */ 1503 } 1504 1505 if (sb_rdonly(sb)) { 1506 /* Nothing to do really... */ 1507 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1508 up_write(&sb->s_umount); 1509 return 0; 1510 } 1511 1512 sb->s_writers.frozen = SB_FREEZE_WRITE; 1513 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1514 up_write(&sb->s_umount); 1515 sb_wait_write(sb, SB_FREEZE_WRITE); 1516 down_write(&sb->s_umount); 1517 1518 /* Now we go and block page faults... */ 1519 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1520 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1521 1522 /* All writers are done so after syncing there won't be dirty data */ 1523 sync_filesystem(sb); 1524 1525 /* Now wait for internal filesystem counter */ 1526 sb->s_writers.frozen = SB_FREEZE_FS; 1527 sb_wait_write(sb, SB_FREEZE_FS); 1528 1529 if (sb->s_op->freeze_fs) { 1530 ret = sb->s_op->freeze_fs(sb); 1531 if (ret) { 1532 printk(KERN_ERR 1533 "VFS:Filesystem freeze failed\n"); 1534 sb->s_writers.frozen = SB_UNFROZEN; 1535 sb_freeze_unlock(sb); 1536 wake_up(&sb->s_writers.wait_unfrozen); 1537 deactivate_locked_super(sb); 1538 return ret; 1539 } 1540 } 1541 /* 1542 * For debugging purposes so that fs can warn if it sees write activity 1543 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1544 */ 1545 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1546 lockdep_sb_freeze_release(sb); 1547 up_write(&sb->s_umount); 1548 return 0; 1549 } 1550 EXPORT_SYMBOL(freeze_super); 1551 1552 /** 1553 * thaw_super -- unlock filesystem 1554 * @sb: the super to thaw 1555 * 1556 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1557 */ 1558 static int thaw_super_locked(struct super_block *sb) 1559 { 1560 int error; 1561 1562 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1563 up_write(&sb->s_umount); 1564 return -EINVAL; 1565 } 1566 1567 if (sb_rdonly(sb)) { 1568 sb->s_writers.frozen = SB_UNFROZEN; 1569 goto out; 1570 } 1571 1572 lockdep_sb_freeze_acquire(sb); 1573 1574 if (sb->s_op->unfreeze_fs) { 1575 error = sb->s_op->unfreeze_fs(sb); 1576 if (error) { 1577 printk(KERN_ERR 1578 "VFS:Filesystem thaw failed\n"); 1579 lockdep_sb_freeze_release(sb); 1580 up_write(&sb->s_umount); 1581 return error; 1582 } 1583 } 1584 1585 sb->s_writers.frozen = SB_UNFROZEN; 1586 sb_freeze_unlock(sb); 1587 out: 1588 wake_up(&sb->s_writers.wait_unfrozen); 1589 deactivate_locked_super(sb); 1590 return 0; 1591 } 1592 1593 int thaw_super(struct super_block *sb) 1594 { 1595 down_write(&sb->s_umount); 1596 return thaw_super_locked(sb); 1597 } 1598 EXPORT_SYMBOL(thaw_super); 1599