1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fscrypt.h> 36 #include <linux/fsnotify.h> 37 #include <linux/lockdep.h> 38 #include <linux/user_namespace.h> 39 #include <linux/fs_context.h> 40 #include <uapi/linux/mount.h> 41 #include "internal.h" 42 43 static int thaw_super_locked(struct super_block *sb); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 /* 55 * One thing we have to be careful of with a per-sb shrinker is that we don't 56 * drop the last active reference to the superblock from within the shrinker. 57 * If that happens we could trigger unregistering the shrinker from within the 58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 59 * take a passive reference to the superblock to avoid this from occurring. 60 */ 61 static unsigned long super_cache_scan(struct shrinker *shrink, 62 struct shrink_control *sc) 63 { 64 struct super_block *sb; 65 long fs_objects = 0; 66 long total_objects; 67 long freed = 0; 68 long dentries; 69 long inodes; 70 71 sb = container_of(shrink, struct super_block, s_shrink); 72 73 /* 74 * Deadlock avoidance. We may hold various FS locks, and we don't want 75 * to recurse into the FS that called us in clear_inode() and friends.. 76 */ 77 if (!(sc->gfp_mask & __GFP_FS)) 78 return SHRINK_STOP; 79 80 if (!trylock_super(sb)) 81 return SHRINK_STOP; 82 83 if (sb->s_op->nr_cached_objects) 84 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 85 86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 88 total_objects = dentries + inodes + fs_objects + 1; 89 if (!total_objects) 90 total_objects = 1; 91 92 /* proportion the scan between the caches */ 93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 96 97 /* 98 * prune the dcache first as the icache is pinned by it, then 99 * prune the icache, followed by the filesystem specific caches 100 * 101 * Ensure that we always scan at least one object - memcg kmem 102 * accounting uses this to fully empty the caches. 103 */ 104 sc->nr_to_scan = dentries + 1; 105 freed = prune_dcache_sb(sb, sc); 106 sc->nr_to_scan = inodes + 1; 107 freed += prune_icache_sb(sb, sc); 108 109 if (fs_objects) { 110 sc->nr_to_scan = fs_objects + 1; 111 freed += sb->s_op->free_cached_objects(sb, sc); 112 } 113 114 up_read(&sb->s_umount); 115 return freed; 116 } 117 118 static unsigned long super_cache_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 struct super_block *sb; 122 long total_objects = 0; 123 124 sb = container_of(shrink, struct super_block, s_shrink); 125 126 /* 127 * We don't call trylock_super() here as it is a scalability bottleneck, 128 * so we're exposed to partial setup state. The shrinker rwsem does not 129 * protect filesystem operations backing list_lru_shrink_count() or 130 * s_op->nr_cached_objects(). Counts can change between 131 * super_cache_count and super_cache_scan, so we really don't need locks 132 * here. 133 * 134 * However, if we are currently mounting the superblock, the underlying 135 * filesystem might be in a state of partial construction and hence it 136 * is dangerous to access it. trylock_super() uses a SB_BORN check to 137 * avoid this situation, so do the same here. The memory barrier is 138 * matched with the one in mount_fs() as we don't hold locks here. 139 */ 140 if (!(sb->s_flags & SB_BORN)) 141 return 0; 142 smp_rmb(); 143 144 if (sb->s_op && sb->s_op->nr_cached_objects) 145 total_objects = sb->s_op->nr_cached_objects(sb, sc); 146 147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 149 150 if (!total_objects) 151 return SHRINK_EMPTY; 152 153 total_objects = vfs_pressure_ratio(total_objects); 154 return total_objects; 155 } 156 157 static void destroy_super_work(struct work_struct *work) 158 { 159 struct super_block *s = container_of(work, struct super_block, 160 destroy_work); 161 int i; 162 163 for (i = 0; i < SB_FREEZE_LEVELS; i++) 164 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 165 kfree(s); 166 } 167 168 static void destroy_super_rcu(struct rcu_head *head) 169 { 170 struct super_block *s = container_of(head, struct super_block, rcu); 171 INIT_WORK(&s->destroy_work, destroy_super_work); 172 schedule_work(&s->destroy_work); 173 } 174 175 /* Free a superblock that has never been seen by anyone */ 176 static void destroy_unused_super(struct super_block *s) 177 { 178 if (!s) 179 return; 180 up_write(&s->s_umount); 181 list_lru_destroy(&s->s_dentry_lru); 182 list_lru_destroy(&s->s_inode_lru); 183 security_sb_free(s); 184 put_user_ns(s->s_user_ns); 185 kfree(s->s_subtype); 186 free_prealloced_shrinker(&s->s_shrink); 187 /* no delays needed */ 188 destroy_super_work(&s->destroy_work); 189 } 190 191 /** 192 * alloc_super - create new superblock 193 * @type: filesystem type superblock should belong to 194 * @flags: the mount flags 195 * @user_ns: User namespace for the super_block 196 * 197 * Allocates and initializes a new &struct super_block. alloc_super() 198 * returns a pointer new superblock or %NULL if allocation had failed. 199 */ 200 static struct super_block *alloc_super(struct file_system_type *type, int flags, 201 struct user_namespace *user_ns) 202 { 203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 204 static const struct super_operations default_op; 205 int i; 206 207 if (!s) 208 return NULL; 209 210 INIT_LIST_HEAD(&s->s_mounts); 211 s->s_user_ns = get_user_ns(user_ns); 212 init_rwsem(&s->s_umount); 213 lockdep_set_class(&s->s_umount, &type->s_umount_key); 214 /* 215 * sget() can have s_umount recursion. 216 * 217 * When it cannot find a suitable sb, it allocates a new 218 * one (this one), and tries again to find a suitable old 219 * one. 220 * 221 * In case that succeeds, it will acquire the s_umount 222 * lock of the old one. Since these are clearly distrinct 223 * locks, and this object isn't exposed yet, there's no 224 * risk of deadlocks. 225 * 226 * Annotate this by putting this lock in a different 227 * subclass. 228 */ 229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 230 231 if (security_sb_alloc(s)) 232 goto fail; 233 234 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 236 sb_writers_name[i], 237 &type->s_writers_key[i])) 238 goto fail; 239 } 240 init_waitqueue_head(&s->s_writers.wait_unfrozen); 241 s->s_bdi = &noop_backing_dev_info; 242 s->s_flags = flags; 243 if (s->s_user_ns != &init_user_ns) 244 s->s_iflags |= SB_I_NODEV; 245 INIT_HLIST_NODE(&s->s_instances); 246 INIT_HLIST_BL_HEAD(&s->s_roots); 247 mutex_init(&s->s_sync_lock); 248 INIT_LIST_HEAD(&s->s_inodes); 249 spin_lock_init(&s->s_inode_list_lock); 250 INIT_LIST_HEAD(&s->s_inodes_wb); 251 spin_lock_init(&s->s_inode_wblist_lock); 252 253 s->s_count = 1; 254 atomic_set(&s->s_active, 1); 255 mutex_init(&s->s_vfs_rename_mutex); 256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 257 init_rwsem(&s->s_dquot.dqio_sem); 258 s->s_maxbytes = MAX_NON_LFS; 259 s->s_op = &default_op; 260 s->s_time_gran = 1000000000; 261 s->s_time_min = TIME64_MIN; 262 s->s_time_max = TIME64_MAX; 263 s->cleancache_poolid = CLEANCACHE_NO_POOL; 264 265 s->s_shrink.seeks = DEFAULT_SEEKS; 266 s->s_shrink.scan_objects = super_cache_scan; 267 s->s_shrink.count_objects = super_cache_count; 268 s->s_shrink.batch = 1024; 269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 270 if (prealloc_shrinker(&s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 273 goto fail; 274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 275 goto fail; 276 return s; 277 278 fail: 279 destroy_unused_super(s); 280 return NULL; 281 } 282 283 /* Superblock refcounting */ 284 285 /* 286 * Drop a superblock's refcount. The caller must hold sb_lock. 287 */ 288 static void __put_super(struct super_block *s) 289 { 290 if (!--s->s_count) { 291 list_del_init(&s->s_list); 292 WARN_ON(s->s_dentry_lru.node); 293 WARN_ON(s->s_inode_lru.node); 294 WARN_ON(!list_empty(&s->s_mounts)); 295 security_sb_free(s); 296 fscrypt_sb_free(s); 297 put_user_ns(s->s_user_ns); 298 kfree(s->s_subtype); 299 call_rcu(&s->rcu, destroy_super_rcu); 300 } 301 } 302 303 /** 304 * put_super - drop a temporary reference to superblock 305 * @sb: superblock in question 306 * 307 * Drops a temporary reference, frees superblock if there's no 308 * references left. 309 */ 310 static void put_super(struct super_block *sb) 311 { 312 spin_lock(&sb_lock); 313 __put_super(sb); 314 spin_unlock(&sb_lock); 315 } 316 317 318 /** 319 * deactivate_locked_super - drop an active reference to superblock 320 * @s: superblock to deactivate 321 * 322 * Drops an active reference to superblock, converting it into a temporary 323 * one if there is no other active references left. In that case we 324 * tell fs driver to shut it down and drop the temporary reference we 325 * had just acquired. 326 * 327 * Caller holds exclusive lock on superblock; that lock is released. 328 */ 329 void deactivate_locked_super(struct super_block *s) 330 { 331 struct file_system_type *fs = s->s_type; 332 if (atomic_dec_and_test(&s->s_active)) { 333 cleancache_invalidate_fs(s); 334 unregister_shrinker(&s->s_shrink); 335 fs->kill_sb(s); 336 337 /* 338 * Since list_lru_destroy() may sleep, we cannot call it from 339 * put_super(), where we hold the sb_lock. Therefore we destroy 340 * the lru lists right now. 341 */ 342 list_lru_destroy(&s->s_dentry_lru); 343 list_lru_destroy(&s->s_inode_lru); 344 345 put_filesystem(fs); 346 put_super(s); 347 } else { 348 up_write(&s->s_umount); 349 } 350 } 351 352 EXPORT_SYMBOL(deactivate_locked_super); 353 354 /** 355 * deactivate_super - drop an active reference to superblock 356 * @s: superblock to deactivate 357 * 358 * Variant of deactivate_locked_super(), except that superblock is *not* 359 * locked by caller. If we are going to drop the final active reference, 360 * lock will be acquired prior to that. 361 */ 362 void deactivate_super(struct super_block *s) 363 { 364 if (!atomic_add_unless(&s->s_active, -1, 1)) { 365 down_write(&s->s_umount); 366 deactivate_locked_super(s); 367 } 368 } 369 370 EXPORT_SYMBOL(deactivate_super); 371 372 /** 373 * grab_super - acquire an active reference 374 * @s: reference we are trying to make active 375 * 376 * Tries to acquire an active reference. grab_super() is used when we 377 * had just found a superblock in super_blocks or fs_type->fs_supers 378 * and want to turn it into a full-blown active reference. grab_super() 379 * is called with sb_lock held and drops it. Returns 1 in case of 380 * success, 0 if we had failed (superblock contents was already dead or 381 * dying when grab_super() had been called). Note that this is only 382 * called for superblocks not in rundown mode (== ones still on ->fs_supers 383 * of their type), so increment of ->s_count is OK here. 384 */ 385 static int grab_super(struct super_block *s) __releases(sb_lock) 386 { 387 s->s_count++; 388 spin_unlock(&sb_lock); 389 down_write(&s->s_umount); 390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 391 put_super(s); 392 return 1; 393 } 394 up_write(&s->s_umount); 395 put_super(s); 396 return 0; 397 } 398 399 /* 400 * trylock_super - try to grab ->s_umount shared 401 * @sb: reference we are trying to grab 402 * 403 * Try to prevent fs shutdown. This is used in places where we 404 * cannot take an active reference but we need to ensure that the 405 * filesystem is not shut down while we are working on it. It returns 406 * false if we cannot acquire s_umount or if we lose the race and 407 * filesystem already got into shutdown, and returns true with the s_umount 408 * lock held in read mode in case of success. On successful return, 409 * the caller must drop the s_umount lock when done. 410 * 411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 412 * The reason why it's safe is that we are OK with doing trylock instead 413 * of down_read(). There's a couple of places that are OK with that, but 414 * it's very much not a general-purpose interface. 415 */ 416 bool trylock_super(struct super_block *sb) 417 { 418 if (down_read_trylock(&sb->s_umount)) { 419 if (!hlist_unhashed(&sb->s_instances) && 420 sb->s_root && (sb->s_flags & SB_BORN)) 421 return true; 422 up_read(&sb->s_umount); 423 } 424 425 return false; 426 } 427 428 /** 429 * generic_shutdown_super - common helper for ->kill_sb() 430 * @sb: superblock to kill 431 * 432 * generic_shutdown_super() does all fs-independent work on superblock 433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 434 * that need destruction out of superblock, call generic_shutdown_super() 435 * and release aforementioned objects. Note: dentries and inodes _are_ 436 * taken care of and do not need specific handling. 437 * 438 * Upon calling this function, the filesystem may no longer alter or 439 * rearrange the set of dentries belonging to this super_block, nor may it 440 * change the attachments of dentries to inodes. 441 */ 442 void generic_shutdown_super(struct super_block *sb) 443 { 444 const struct super_operations *sop = sb->s_op; 445 446 if (sb->s_root) { 447 shrink_dcache_for_umount(sb); 448 sync_filesystem(sb); 449 sb->s_flags &= ~SB_ACTIVE; 450 451 cgroup_writeback_umount(); 452 453 /* evict all inodes with zero refcount */ 454 evict_inodes(sb); 455 /* only nonzero refcount inodes can have marks */ 456 fsnotify_sb_delete(sb); 457 458 if (sb->s_dio_done_wq) { 459 destroy_workqueue(sb->s_dio_done_wq); 460 sb->s_dio_done_wq = NULL; 461 } 462 463 if (sop->put_super) 464 sop->put_super(sb); 465 466 if (!list_empty(&sb->s_inodes)) { 467 printk("VFS: Busy inodes after unmount of %s. " 468 "Self-destruct in 5 seconds. Have a nice day...\n", 469 sb->s_id); 470 } 471 } 472 spin_lock(&sb_lock); 473 /* should be initialized for __put_super_and_need_restart() */ 474 hlist_del_init(&sb->s_instances); 475 spin_unlock(&sb_lock); 476 up_write(&sb->s_umount); 477 if (sb->s_bdi != &noop_backing_dev_info) { 478 bdi_put(sb->s_bdi); 479 sb->s_bdi = &noop_backing_dev_info; 480 } 481 } 482 483 EXPORT_SYMBOL(generic_shutdown_super); 484 485 bool mount_capable(struct fs_context *fc) 486 { 487 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 488 return capable(CAP_SYS_ADMIN); 489 else 490 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 491 } 492 493 /** 494 * sget_fc - Find or create a superblock 495 * @fc: Filesystem context. 496 * @test: Comparison callback 497 * @set: Setup callback 498 * 499 * Find or create a superblock using the parameters stored in the filesystem 500 * context and the two callback functions. 501 * 502 * If an extant superblock is matched, then that will be returned with an 503 * elevated reference count that the caller must transfer or discard. 504 * 505 * If no match is made, a new superblock will be allocated and basic 506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 507 * the set() callback will be invoked), the superblock will be published and it 508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 509 * as yet unset. 510 */ 511 struct super_block *sget_fc(struct fs_context *fc, 512 int (*test)(struct super_block *, struct fs_context *), 513 int (*set)(struct super_block *, struct fs_context *)) 514 { 515 struct super_block *s = NULL; 516 struct super_block *old; 517 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 518 int err; 519 520 retry: 521 spin_lock(&sb_lock); 522 if (test) { 523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 524 if (test(old, fc)) 525 goto share_extant_sb; 526 } 527 } 528 if (!s) { 529 spin_unlock(&sb_lock); 530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 531 if (!s) 532 return ERR_PTR(-ENOMEM); 533 goto retry; 534 } 535 536 s->s_fs_info = fc->s_fs_info; 537 err = set(s, fc); 538 if (err) { 539 s->s_fs_info = NULL; 540 spin_unlock(&sb_lock); 541 destroy_unused_super(s); 542 return ERR_PTR(err); 543 } 544 fc->s_fs_info = NULL; 545 s->s_type = fc->fs_type; 546 s->s_iflags |= fc->s_iflags; 547 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 548 list_add_tail(&s->s_list, &super_blocks); 549 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 550 spin_unlock(&sb_lock); 551 get_filesystem(s->s_type); 552 register_shrinker_prepared(&s->s_shrink); 553 return s; 554 555 share_extant_sb: 556 if (user_ns != old->s_user_ns) { 557 spin_unlock(&sb_lock); 558 destroy_unused_super(s); 559 return ERR_PTR(-EBUSY); 560 } 561 if (!grab_super(old)) 562 goto retry; 563 destroy_unused_super(s); 564 return old; 565 } 566 EXPORT_SYMBOL(sget_fc); 567 568 /** 569 * sget - find or create a superblock 570 * @type: filesystem type superblock should belong to 571 * @test: comparison callback 572 * @set: setup callback 573 * @flags: mount flags 574 * @data: argument to each of them 575 */ 576 struct super_block *sget(struct file_system_type *type, 577 int (*test)(struct super_block *,void *), 578 int (*set)(struct super_block *,void *), 579 int flags, 580 void *data) 581 { 582 struct user_namespace *user_ns = current_user_ns(); 583 struct super_block *s = NULL; 584 struct super_block *old; 585 int err; 586 587 /* We don't yet pass the user namespace of the parent 588 * mount through to here so always use &init_user_ns 589 * until that changes. 590 */ 591 if (flags & SB_SUBMOUNT) 592 user_ns = &init_user_ns; 593 594 retry: 595 spin_lock(&sb_lock); 596 if (test) { 597 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 598 if (!test(old, data)) 599 continue; 600 if (user_ns != old->s_user_ns) { 601 spin_unlock(&sb_lock); 602 destroy_unused_super(s); 603 return ERR_PTR(-EBUSY); 604 } 605 if (!grab_super(old)) 606 goto retry; 607 destroy_unused_super(s); 608 return old; 609 } 610 } 611 if (!s) { 612 spin_unlock(&sb_lock); 613 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 614 if (!s) 615 return ERR_PTR(-ENOMEM); 616 goto retry; 617 } 618 619 err = set(s, data); 620 if (err) { 621 spin_unlock(&sb_lock); 622 destroy_unused_super(s); 623 return ERR_PTR(err); 624 } 625 s->s_type = type; 626 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 627 list_add_tail(&s->s_list, &super_blocks); 628 hlist_add_head(&s->s_instances, &type->fs_supers); 629 spin_unlock(&sb_lock); 630 get_filesystem(type); 631 register_shrinker_prepared(&s->s_shrink); 632 return s; 633 } 634 EXPORT_SYMBOL(sget); 635 636 void drop_super(struct super_block *sb) 637 { 638 up_read(&sb->s_umount); 639 put_super(sb); 640 } 641 642 EXPORT_SYMBOL(drop_super); 643 644 void drop_super_exclusive(struct super_block *sb) 645 { 646 up_write(&sb->s_umount); 647 put_super(sb); 648 } 649 EXPORT_SYMBOL(drop_super_exclusive); 650 651 static void __iterate_supers(void (*f)(struct super_block *)) 652 { 653 struct super_block *sb, *p = NULL; 654 655 spin_lock(&sb_lock); 656 list_for_each_entry(sb, &super_blocks, s_list) { 657 if (hlist_unhashed(&sb->s_instances)) 658 continue; 659 sb->s_count++; 660 spin_unlock(&sb_lock); 661 662 f(sb); 663 664 spin_lock(&sb_lock); 665 if (p) 666 __put_super(p); 667 p = sb; 668 } 669 if (p) 670 __put_super(p); 671 spin_unlock(&sb_lock); 672 } 673 /** 674 * iterate_supers - call function for all active superblocks 675 * @f: function to call 676 * @arg: argument to pass to it 677 * 678 * Scans the superblock list and calls given function, passing it 679 * locked superblock and given argument. 680 */ 681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 682 { 683 struct super_block *sb, *p = NULL; 684 685 spin_lock(&sb_lock); 686 list_for_each_entry(sb, &super_blocks, s_list) { 687 if (hlist_unhashed(&sb->s_instances)) 688 continue; 689 sb->s_count++; 690 spin_unlock(&sb_lock); 691 692 down_read(&sb->s_umount); 693 if (sb->s_root && (sb->s_flags & SB_BORN)) 694 f(sb, arg); 695 up_read(&sb->s_umount); 696 697 spin_lock(&sb_lock); 698 if (p) 699 __put_super(p); 700 p = sb; 701 } 702 if (p) 703 __put_super(p); 704 spin_unlock(&sb_lock); 705 } 706 707 /** 708 * iterate_supers_type - call function for superblocks of given type 709 * @type: fs type 710 * @f: function to call 711 * @arg: argument to pass to it 712 * 713 * Scans the superblock list and calls given function, passing it 714 * locked superblock and given argument. 715 */ 716 void iterate_supers_type(struct file_system_type *type, 717 void (*f)(struct super_block *, void *), void *arg) 718 { 719 struct super_block *sb, *p = NULL; 720 721 spin_lock(&sb_lock); 722 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 723 sb->s_count++; 724 spin_unlock(&sb_lock); 725 726 down_read(&sb->s_umount); 727 if (sb->s_root && (sb->s_flags & SB_BORN)) 728 f(sb, arg); 729 up_read(&sb->s_umount); 730 731 spin_lock(&sb_lock); 732 if (p) 733 __put_super(p); 734 p = sb; 735 } 736 if (p) 737 __put_super(p); 738 spin_unlock(&sb_lock); 739 } 740 741 EXPORT_SYMBOL(iterate_supers_type); 742 743 static struct super_block *__get_super(struct block_device *bdev, bool excl) 744 { 745 struct super_block *sb; 746 747 if (!bdev) 748 return NULL; 749 750 spin_lock(&sb_lock); 751 rescan: 752 list_for_each_entry(sb, &super_blocks, s_list) { 753 if (hlist_unhashed(&sb->s_instances)) 754 continue; 755 if (sb->s_bdev == bdev) { 756 sb->s_count++; 757 spin_unlock(&sb_lock); 758 if (!excl) 759 down_read(&sb->s_umount); 760 else 761 down_write(&sb->s_umount); 762 /* still alive? */ 763 if (sb->s_root && (sb->s_flags & SB_BORN)) 764 return sb; 765 if (!excl) 766 up_read(&sb->s_umount); 767 else 768 up_write(&sb->s_umount); 769 /* nope, got unmounted */ 770 spin_lock(&sb_lock); 771 __put_super(sb); 772 goto rescan; 773 } 774 } 775 spin_unlock(&sb_lock); 776 return NULL; 777 } 778 779 /** 780 * get_super - get the superblock of a device 781 * @bdev: device to get the superblock for 782 * 783 * Scans the superblock list and finds the superblock of the file system 784 * mounted on the device given. %NULL is returned if no match is found. 785 */ 786 struct super_block *get_super(struct block_device *bdev) 787 { 788 return __get_super(bdev, false); 789 } 790 EXPORT_SYMBOL(get_super); 791 792 static struct super_block *__get_super_thawed(struct block_device *bdev, 793 bool excl) 794 { 795 while (1) { 796 struct super_block *s = __get_super(bdev, excl); 797 if (!s || s->s_writers.frozen == SB_UNFROZEN) 798 return s; 799 if (!excl) 800 up_read(&s->s_umount); 801 else 802 up_write(&s->s_umount); 803 wait_event(s->s_writers.wait_unfrozen, 804 s->s_writers.frozen == SB_UNFROZEN); 805 put_super(s); 806 } 807 } 808 809 /** 810 * get_super_thawed - get thawed superblock of a device 811 * @bdev: device to get the superblock for 812 * 813 * Scans the superblock list and finds the superblock of the file system 814 * mounted on the device. The superblock is returned once it is thawed 815 * (or immediately if it was not frozen). %NULL is returned if no match 816 * is found. 817 */ 818 struct super_block *get_super_thawed(struct block_device *bdev) 819 { 820 return __get_super_thawed(bdev, false); 821 } 822 EXPORT_SYMBOL(get_super_thawed); 823 824 /** 825 * get_super_exclusive_thawed - get thawed superblock of a device 826 * @bdev: device to get the superblock for 827 * 828 * Scans the superblock list and finds the superblock of the file system 829 * mounted on the device. The superblock is returned once it is thawed 830 * (or immediately if it was not frozen) and s_umount semaphore is held 831 * in exclusive mode. %NULL is returned if no match is found. 832 */ 833 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 834 { 835 return __get_super_thawed(bdev, true); 836 } 837 EXPORT_SYMBOL(get_super_exclusive_thawed); 838 839 /** 840 * get_active_super - get an active reference to the superblock of a device 841 * @bdev: device to get the superblock for 842 * 843 * Scans the superblock list and finds the superblock of the file system 844 * mounted on the device given. Returns the superblock with an active 845 * reference or %NULL if none was found. 846 */ 847 struct super_block *get_active_super(struct block_device *bdev) 848 { 849 struct super_block *sb; 850 851 if (!bdev) 852 return NULL; 853 854 restart: 855 spin_lock(&sb_lock); 856 list_for_each_entry(sb, &super_blocks, s_list) { 857 if (hlist_unhashed(&sb->s_instances)) 858 continue; 859 if (sb->s_bdev == bdev) { 860 if (!grab_super(sb)) 861 goto restart; 862 up_write(&sb->s_umount); 863 return sb; 864 } 865 } 866 spin_unlock(&sb_lock); 867 return NULL; 868 } 869 870 struct super_block *user_get_super(dev_t dev) 871 { 872 struct super_block *sb; 873 874 spin_lock(&sb_lock); 875 rescan: 876 list_for_each_entry(sb, &super_blocks, s_list) { 877 if (hlist_unhashed(&sb->s_instances)) 878 continue; 879 if (sb->s_dev == dev) { 880 sb->s_count++; 881 spin_unlock(&sb_lock); 882 down_read(&sb->s_umount); 883 /* still alive? */ 884 if (sb->s_root && (sb->s_flags & SB_BORN)) 885 return sb; 886 up_read(&sb->s_umount); 887 /* nope, got unmounted */ 888 spin_lock(&sb_lock); 889 __put_super(sb); 890 goto rescan; 891 } 892 } 893 spin_unlock(&sb_lock); 894 return NULL; 895 } 896 897 /** 898 * reconfigure_super - asks filesystem to change superblock parameters 899 * @fc: The superblock and configuration 900 * 901 * Alters the configuration parameters of a live superblock. 902 */ 903 int reconfigure_super(struct fs_context *fc) 904 { 905 struct super_block *sb = fc->root->d_sb; 906 int retval; 907 bool remount_ro = false; 908 bool force = fc->sb_flags & SB_FORCE; 909 910 if (fc->sb_flags_mask & ~MS_RMT_MASK) 911 return -EINVAL; 912 if (sb->s_writers.frozen != SB_UNFROZEN) 913 return -EBUSY; 914 915 retval = security_sb_remount(sb, fc->security); 916 if (retval) 917 return retval; 918 919 if (fc->sb_flags_mask & SB_RDONLY) { 920 #ifdef CONFIG_BLOCK 921 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 922 return -EACCES; 923 #endif 924 925 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 926 } 927 928 if (remount_ro) { 929 if (!hlist_empty(&sb->s_pins)) { 930 up_write(&sb->s_umount); 931 group_pin_kill(&sb->s_pins); 932 down_write(&sb->s_umount); 933 if (!sb->s_root) 934 return 0; 935 if (sb->s_writers.frozen != SB_UNFROZEN) 936 return -EBUSY; 937 remount_ro = !sb_rdonly(sb); 938 } 939 } 940 shrink_dcache_sb(sb); 941 942 /* If we are reconfiguring to RDONLY and current sb is read/write, 943 * make sure there are no files open for writing. 944 */ 945 if (remount_ro) { 946 if (force) { 947 sb->s_readonly_remount = 1; 948 smp_wmb(); 949 } else { 950 retval = sb_prepare_remount_readonly(sb); 951 if (retval) 952 return retval; 953 } 954 } 955 956 if (fc->ops->reconfigure) { 957 retval = fc->ops->reconfigure(fc); 958 if (retval) { 959 if (!force) 960 goto cancel_readonly; 961 /* If forced remount, go ahead despite any errors */ 962 WARN(1, "forced remount of a %s fs returned %i\n", 963 sb->s_type->name, retval); 964 } 965 } 966 967 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 968 (fc->sb_flags & fc->sb_flags_mask))); 969 /* Needs to be ordered wrt mnt_is_readonly() */ 970 smp_wmb(); 971 sb->s_readonly_remount = 0; 972 973 /* 974 * Some filesystems modify their metadata via some other path than the 975 * bdev buffer cache (eg. use a private mapping, or directories in 976 * pagecache, etc). Also file data modifications go via their own 977 * mappings. So If we try to mount readonly then copy the filesystem 978 * from bdev, we could get stale data, so invalidate it to give a best 979 * effort at coherency. 980 */ 981 if (remount_ro && sb->s_bdev) 982 invalidate_bdev(sb->s_bdev); 983 return 0; 984 985 cancel_readonly: 986 sb->s_readonly_remount = 0; 987 return retval; 988 } 989 990 static void do_emergency_remount_callback(struct super_block *sb) 991 { 992 down_write(&sb->s_umount); 993 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 994 !sb_rdonly(sb)) { 995 struct fs_context *fc; 996 997 fc = fs_context_for_reconfigure(sb->s_root, 998 SB_RDONLY | SB_FORCE, SB_RDONLY); 999 if (!IS_ERR(fc)) { 1000 if (parse_monolithic_mount_data(fc, NULL) == 0) 1001 (void)reconfigure_super(fc); 1002 put_fs_context(fc); 1003 } 1004 } 1005 up_write(&sb->s_umount); 1006 } 1007 1008 static void do_emergency_remount(struct work_struct *work) 1009 { 1010 __iterate_supers(do_emergency_remount_callback); 1011 kfree(work); 1012 printk("Emergency Remount complete\n"); 1013 } 1014 1015 void emergency_remount(void) 1016 { 1017 struct work_struct *work; 1018 1019 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1020 if (work) { 1021 INIT_WORK(work, do_emergency_remount); 1022 schedule_work(work); 1023 } 1024 } 1025 1026 static void do_thaw_all_callback(struct super_block *sb) 1027 { 1028 down_write(&sb->s_umount); 1029 if (sb->s_root && sb->s_flags & SB_BORN) { 1030 emergency_thaw_bdev(sb); 1031 thaw_super_locked(sb); 1032 } else { 1033 up_write(&sb->s_umount); 1034 } 1035 } 1036 1037 static void do_thaw_all(struct work_struct *work) 1038 { 1039 __iterate_supers(do_thaw_all_callback); 1040 kfree(work); 1041 printk(KERN_WARNING "Emergency Thaw complete\n"); 1042 } 1043 1044 /** 1045 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1046 * 1047 * Used for emergency unfreeze of all filesystems via SysRq 1048 */ 1049 void emergency_thaw_all(void) 1050 { 1051 struct work_struct *work; 1052 1053 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1054 if (work) { 1055 INIT_WORK(work, do_thaw_all); 1056 schedule_work(work); 1057 } 1058 } 1059 1060 static DEFINE_IDA(unnamed_dev_ida); 1061 1062 /** 1063 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1064 * @p: Pointer to a dev_t. 1065 * 1066 * Filesystems which don't use real block devices can call this function 1067 * to allocate a virtual block device. 1068 * 1069 * Context: Any context. Frequently called while holding sb_lock. 1070 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1071 * or -ENOMEM if memory allocation failed. 1072 */ 1073 int get_anon_bdev(dev_t *p) 1074 { 1075 int dev; 1076 1077 /* 1078 * Many userspace utilities consider an FSID of 0 invalid. 1079 * Always return at least 1 from get_anon_bdev. 1080 */ 1081 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1082 GFP_ATOMIC); 1083 if (dev == -ENOSPC) 1084 dev = -EMFILE; 1085 if (dev < 0) 1086 return dev; 1087 1088 *p = MKDEV(0, dev); 1089 return 0; 1090 } 1091 EXPORT_SYMBOL(get_anon_bdev); 1092 1093 void free_anon_bdev(dev_t dev) 1094 { 1095 ida_free(&unnamed_dev_ida, MINOR(dev)); 1096 } 1097 EXPORT_SYMBOL(free_anon_bdev); 1098 1099 int set_anon_super(struct super_block *s, void *data) 1100 { 1101 return get_anon_bdev(&s->s_dev); 1102 } 1103 EXPORT_SYMBOL(set_anon_super); 1104 1105 void kill_anon_super(struct super_block *sb) 1106 { 1107 dev_t dev = sb->s_dev; 1108 generic_shutdown_super(sb); 1109 free_anon_bdev(dev); 1110 } 1111 EXPORT_SYMBOL(kill_anon_super); 1112 1113 void kill_litter_super(struct super_block *sb) 1114 { 1115 if (sb->s_root) 1116 d_genocide(sb->s_root); 1117 kill_anon_super(sb); 1118 } 1119 EXPORT_SYMBOL(kill_litter_super); 1120 1121 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1122 { 1123 return set_anon_super(sb, NULL); 1124 } 1125 EXPORT_SYMBOL(set_anon_super_fc); 1126 1127 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1128 { 1129 return sb->s_fs_info == fc->s_fs_info; 1130 } 1131 1132 static int test_single_super(struct super_block *s, struct fs_context *fc) 1133 { 1134 return 1; 1135 } 1136 1137 /** 1138 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1139 * @fc: The filesystem context holding the parameters 1140 * @keying: How to distinguish superblocks 1141 * @fill_super: Helper to initialise a new superblock 1142 * 1143 * Search for a superblock and create a new one if not found. The search 1144 * criterion is controlled by @keying. If the search fails, a new superblock 1145 * is created and @fill_super() is called to initialise it. 1146 * 1147 * @keying can take one of a number of values: 1148 * 1149 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1150 * system. This is typically used for special system filesystems. 1151 * 1152 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1153 * distinct keys (where the key is in s_fs_info). Searching for the same 1154 * key again will turn up the superblock for that key. 1155 * 1156 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1157 * unkeyed. Each call will get a new superblock. 1158 * 1159 * A permissions check is made by sget_fc() unless we're getting a superblock 1160 * for a kernel-internal mount or a submount. 1161 */ 1162 int vfs_get_super(struct fs_context *fc, 1163 enum vfs_get_super_keying keying, 1164 int (*fill_super)(struct super_block *sb, 1165 struct fs_context *fc)) 1166 { 1167 int (*test)(struct super_block *, struct fs_context *); 1168 struct super_block *sb; 1169 int err; 1170 1171 switch (keying) { 1172 case vfs_get_single_super: 1173 case vfs_get_single_reconf_super: 1174 test = test_single_super; 1175 break; 1176 case vfs_get_keyed_super: 1177 test = test_keyed_super; 1178 break; 1179 case vfs_get_independent_super: 1180 test = NULL; 1181 break; 1182 default: 1183 BUG(); 1184 } 1185 1186 sb = sget_fc(fc, test, set_anon_super_fc); 1187 if (IS_ERR(sb)) 1188 return PTR_ERR(sb); 1189 1190 if (!sb->s_root) { 1191 err = fill_super(sb, fc); 1192 if (err) 1193 goto error; 1194 1195 sb->s_flags |= SB_ACTIVE; 1196 fc->root = dget(sb->s_root); 1197 } else { 1198 fc->root = dget(sb->s_root); 1199 if (keying == vfs_get_single_reconf_super) { 1200 err = reconfigure_super(fc); 1201 if (err < 0) { 1202 dput(fc->root); 1203 fc->root = NULL; 1204 goto error; 1205 } 1206 } 1207 } 1208 1209 return 0; 1210 1211 error: 1212 deactivate_locked_super(sb); 1213 return err; 1214 } 1215 EXPORT_SYMBOL(vfs_get_super); 1216 1217 int get_tree_nodev(struct fs_context *fc, 1218 int (*fill_super)(struct super_block *sb, 1219 struct fs_context *fc)) 1220 { 1221 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1222 } 1223 EXPORT_SYMBOL(get_tree_nodev); 1224 1225 int get_tree_single(struct fs_context *fc, 1226 int (*fill_super)(struct super_block *sb, 1227 struct fs_context *fc)) 1228 { 1229 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1230 } 1231 EXPORT_SYMBOL(get_tree_single); 1232 1233 int get_tree_single_reconf(struct fs_context *fc, 1234 int (*fill_super)(struct super_block *sb, 1235 struct fs_context *fc)) 1236 { 1237 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super); 1238 } 1239 EXPORT_SYMBOL(get_tree_single_reconf); 1240 1241 int get_tree_keyed(struct fs_context *fc, 1242 int (*fill_super)(struct super_block *sb, 1243 struct fs_context *fc), 1244 void *key) 1245 { 1246 fc->s_fs_info = key; 1247 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1248 } 1249 EXPORT_SYMBOL(get_tree_keyed); 1250 1251 #ifdef CONFIG_BLOCK 1252 1253 static int set_bdev_super(struct super_block *s, void *data) 1254 { 1255 s->s_bdev = data; 1256 s->s_dev = s->s_bdev->bd_dev; 1257 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1258 1259 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue)) 1260 s->s_iflags |= SB_I_STABLE_WRITES; 1261 return 0; 1262 } 1263 1264 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1265 { 1266 return set_bdev_super(s, fc->sget_key); 1267 } 1268 1269 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1270 { 1271 return s->s_bdev == fc->sget_key; 1272 } 1273 1274 /** 1275 * get_tree_bdev - Get a superblock based on a single block device 1276 * @fc: The filesystem context holding the parameters 1277 * @fill_super: Helper to initialise a new superblock 1278 */ 1279 int get_tree_bdev(struct fs_context *fc, 1280 int (*fill_super)(struct super_block *, 1281 struct fs_context *)) 1282 { 1283 struct block_device *bdev; 1284 struct super_block *s; 1285 fmode_t mode = FMODE_READ | FMODE_EXCL; 1286 int error = 0; 1287 1288 if (!(fc->sb_flags & SB_RDONLY)) 1289 mode |= FMODE_WRITE; 1290 1291 if (!fc->source) 1292 return invalf(fc, "No source specified"); 1293 1294 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1295 if (IS_ERR(bdev)) { 1296 errorf(fc, "%s: Can't open blockdev", fc->source); 1297 return PTR_ERR(bdev); 1298 } 1299 1300 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1301 * will protect the lockfs code from trying to start a snapshot while 1302 * we are mounting 1303 */ 1304 mutex_lock(&bdev->bd_fsfreeze_mutex); 1305 if (bdev->bd_fsfreeze_count > 0) { 1306 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1307 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1308 blkdev_put(bdev, mode); 1309 return -EBUSY; 1310 } 1311 1312 fc->sb_flags |= SB_NOSEC; 1313 fc->sget_key = bdev; 1314 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1315 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1316 if (IS_ERR(s)) { 1317 blkdev_put(bdev, mode); 1318 return PTR_ERR(s); 1319 } 1320 1321 if (s->s_root) { 1322 /* Don't summarily change the RO/RW state. */ 1323 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1324 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1325 deactivate_locked_super(s); 1326 blkdev_put(bdev, mode); 1327 return -EBUSY; 1328 } 1329 1330 /* 1331 * s_umount nests inside bd_mutex during 1332 * __invalidate_device(). blkdev_put() acquires 1333 * bd_mutex and can't be called under s_umount. Drop 1334 * s_umount temporarily. This is safe as we're 1335 * holding an active reference. 1336 */ 1337 up_write(&s->s_umount); 1338 blkdev_put(bdev, mode); 1339 down_write(&s->s_umount); 1340 } else { 1341 s->s_mode = mode; 1342 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1343 sb_set_blocksize(s, block_size(bdev)); 1344 error = fill_super(s, fc); 1345 if (error) { 1346 deactivate_locked_super(s); 1347 return error; 1348 } 1349 1350 s->s_flags |= SB_ACTIVE; 1351 bdev->bd_super = s; 1352 } 1353 1354 BUG_ON(fc->root); 1355 fc->root = dget(s->s_root); 1356 return 0; 1357 } 1358 EXPORT_SYMBOL(get_tree_bdev); 1359 1360 static int test_bdev_super(struct super_block *s, void *data) 1361 { 1362 return (void *)s->s_bdev == data; 1363 } 1364 1365 struct dentry *mount_bdev(struct file_system_type *fs_type, 1366 int flags, const char *dev_name, void *data, 1367 int (*fill_super)(struct super_block *, void *, int)) 1368 { 1369 struct block_device *bdev; 1370 struct super_block *s; 1371 fmode_t mode = FMODE_READ | FMODE_EXCL; 1372 int error = 0; 1373 1374 if (!(flags & SB_RDONLY)) 1375 mode |= FMODE_WRITE; 1376 1377 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1378 if (IS_ERR(bdev)) 1379 return ERR_CAST(bdev); 1380 1381 /* 1382 * once the super is inserted into the list by sget, s_umount 1383 * will protect the lockfs code from trying to start a snapshot 1384 * while we are mounting 1385 */ 1386 mutex_lock(&bdev->bd_fsfreeze_mutex); 1387 if (bdev->bd_fsfreeze_count > 0) { 1388 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1389 error = -EBUSY; 1390 goto error_bdev; 1391 } 1392 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1393 bdev); 1394 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1395 if (IS_ERR(s)) 1396 goto error_s; 1397 1398 if (s->s_root) { 1399 if ((flags ^ s->s_flags) & SB_RDONLY) { 1400 deactivate_locked_super(s); 1401 error = -EBUSY; 1402 goto error_bdev; 1403 } 1404 1405 /* 1406 * s_umount nests inside bd_mutex during 1407 * __invalidate_device(). blkdev_put() acquires 1408 * bd_mutex and can't be called under s_umount. Drop 1409 * s_umount temporarily. This is safe as we're 1410 * holding an active reference. 1411 */ 1412 up_write(&s->s_umount); 1413 blkdev_put(bdev, mode); 1414 down_write(&s->s_umount); 1415 } else { 1416 s->s_mode = mode; 1417 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1418 sb_set_blocksize(s, block_size(bdev)); 1419 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1420 if (error) { 1421 deactivate_locked_super(s); 1422 goto error; 1423 } 1424 1425 s->s_flags |= SB_ACTIVE; 1426 bdev->bd_super = s; 1427 } 1428 1429 return dget(s->s_root); 1430 1431 error_s: 1432 error = PTR_ERR(s); 1433 error_bdev: 1434 blkdev_put(bdev, mode); 1435 error: 1436 return ERR_PTR(error); 1437 } 1438 EXPORT_SYMBOL(mount_bdev); 1439 1440 void kill_block_super(struct super_block *sb) 1441 { 1442 struct block_device *bdev = sb->s_bdev; 1443 fmode_t mode = sb->s_mode; 1444 1445 bdev->bd_super = NULL; 1446 generic_shutdown_super(sb); 1447 sync_blockdev(bdev); 1448 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1449 blkdev_put(bdev, mode | FMODE_EXCL); 1450 } 1451 1452 EXPORT_SYMBOL(kill_block_super); 1453 #endif 1454 1455 struct dentry *mount_nodev(struct file_system_type *fs_type, 1456 int flags, void *data, 1457 int (*fill_super)(struct super_block *, void *, int)) 1458 { 1459 int error; 1460 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1461 1462 if (IS_ERR(s)) 1463 return ERR_CAST(s); 1464 1465 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1466 if (error) { 1467 deactivate_locked_super(s); 1468 return ERR_PTR(error); 1469 } 1470 s->s_flags |= SB_ACTIVE; 1471 return dget(s->s_root); 1472 } 1473 EXPORT_SYMBOL(mount_nodev); 1474 1475 static int reconfigure_single(struct super_block *s, 1476 int flags, void *data) 1477 { 1478 struct fs_context *fc; 1479 int ret; 1480 1481 /* The caller really need to be passing fc down into mount_single(), 1482 * then a chunk of this can be removed. [Bollocks -- AV] 1483 * Better yet, reconfiguration shouldn't happen, but rather the second 1484 * mount should be rejected if the parameters are not compatible. 1485 */ 1486 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1487 if (IS_ERR(fc)) 1488 return PTR_ERR(fc); 1489 1490 ret = parse_monolithic_mount_data(fc, data); 1491 if (ret < 0) 1492 goto out; 1493 1494 ret = reconfigure_super(fc); 1495 out: 1496 put_fs_context(fc); 1497 return ret; 1498 } 1499 1500 static int compare_single(struct super_block *s, void *p) 1501 { 1502 return 1; 1503 } 1504 1505 struct dentry *mount_single(struct file_system_type *fs_type, 1506 int flags, void *data, 1507 int (*fill_super)(struct super_block *, void *, int)) 1508 { 1509 struct super_block *s; 1510 int error; 1511 1512 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1513 if (IS_ERR(s)) 1514 return ERR_CAST(s); 1515 if (!s->s_root) { 1516 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1517 if (!error) 1518 s->s_flags |= SB_ACTIVE; 1519 } else { 1520 error = reconfigure_single(s, flags, data); 1521 } 1522 if (unlikely(error)) { 1523 deactivate_locked_super(s); 1524 return ERR_PTR(error); 1525 } 1526 return dget(s->s_root); 1527 } 1528 EXPORT_SYMBOL(mount_single); 1529 1530 /** 1531 * vfs_get_tree - Get the mountable root 1532 * @fc: The superblock configuration context. 1533 * 1534 * The filesystem is invoked to get or create a superblock which can then later 1535 * be used for mounting. The filesystem places a pointer to the root to be 1536 * used for mounting in @fc->root. 1537 */ 1538 int vfs_get_tree(struct fs_context *fc) 1539 { 1540 struct super_block *sb; 1541 int error; 1542 1543 if (fc->root) 1544 return -EBUSY; 1545 1546 /* Get the mountable root in fc->root, with a ref on the root and a ref 1547 * on the superblock. 1548 */ 1549 error = fc->ops->get_tree(fc); 1550 if (error < 0) 1551 return error; 1552 1553 if (!fc->root) { 1554 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1555 fc->fs_type->name); 1556 /* We don't know what the locking state of the superblock is - 1557 * if there is a superblock. 1558 */ 1559 BUG(); 1560 } 1561 1562 sb = fc->root->d_sb; 1563 WARN_ON(!sb->s_bdi); 1564 1565 /* 1566 * Write barrier is for super_cache_count(). We place it before setting 1567 * SB_BORN as the data dependency between the two functions is the 1568 * superblock structure contents that we just set up, not the SB_BORN 1569 * flag. 1570 */ 1571 smp_wmb(); 1572 sb->s_flags |= SB_BORN; 1573 1574 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1575 if (unlikely(error)) { 1576 fc_drop_locked(fc); 1577 return error; 1578 } 1579 1580 /* 1581 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1582 * but s_maxbytes was an unsigned long long for many releases. Throw 1583 * this warning for a little while to try and catch filesystems that 1584 * violate this rule. 1585 */ 1586 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1587 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1588 1589 return 0; 1590 } 1591 EXPORT_SYMBOL(vfs_get_tree); 1592 1593 /* 1594 * Setup private BDI for given superblock. It gets automatically cleaned up 1595 * in generic_shutdown_super(). 1596 */ 1597 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1598 { 1599 struct backing_dev_info *bdi; 1600 int err; 1601 va_list args; 1602 1603 bdi = bdi_alloc(NUMA_NO_NODE); 1604 if (!bdi) 1605 return -ENOMEM; 1606 1607 va_start(args, fmt); 1608 err = bdi_register_va(bdi, fmt, args); 1609 va_end(args); 1610 if (err) { 1611 bdi_put(bdi); 1612 return err; 1613 } 1614 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1615 sb->s_bdi = bdi; 1616 1617 return 0; 1618 } 1619 EXPORT_SYMBOL(super_setup_bdi_name); 1620 1621 /* 1622 * Setup private BDI for given superblock. I gets automatically cleaned up 1623 * in generic_shutdown_super(). 1624 */ 1625 int super_setup_bdi(struct super_block *sb) 1626 { 1627 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1628 1629 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1630 atomic_long_inc_return(&bdi_seq)); 1631 } 1632 EXPORT_SYMBOL(super_setup_bdi); 1633 1634 /** 1635 * sb_wait_write - wait until all writers to given file system finish 1636 * @sb: the super for which we wait 1637 * @level: type of writers we wait for (normal vs page fault) 1638 * 1639 * This function waits until there are no writers of given type to given file 1640 * system. 1641 */ 1642 static void sb_wait_write(struct super_block *sb, int level) 1643 { 1644 percpu_down_write(sb->s_writers.rw_sem + level-1); 1645 } 1646 1647 /* 1648 * We are going to return to userspace and forget about these locks, the 1649 * ownership goes to the caller of thaw_super() which does unlock(). 1650 */ 1651 static void lockdep_sb_freeze_release(struct super_block *sb) 1652 { 1653 int level; 1654 1655 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1656 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1657 } 1658 1659 /* 1660 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1661 */ 1662 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1663 { 1664 int level; 1665 1666 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1667 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1668 } 1669 1670 static void sb_freeze_unlock(struct super_block *sb) 1671 { 1672 int level; 1673 1674 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1675 percpu_up_write(sb->s_writers.rw_sem + level); 1676 } 1677 1678 /** 1679 * freeze_super - lock the filesystem and force it into a consistent state 1680 * @sb: the super to lock 1681 * 1682 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1683 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1684 * -EBUSY. 1685 * 1686 * During this function, sb->s_writers.frozen goes through these values: 1687 * 1688 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1689 * 1690 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1691 * writes should be blocked, though page faults are still allowed. We wait for 1692 * all writes to complete and then proceed to the next stage. 1693 * 1694 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1695 * but internal fs threads can still modify the filesystem (although they 1696 * should not dirty new pages or inodes), writeback can run etc. After waiting 1697 * for all running page faults we sync the filesystem which will clean all 1698 * dirty pages and inodes (no new dirty pages or inodes can be created when 1699 * sync is running). 1700 * 1701 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1702 * modification are blocked (e.g. XFS preallocation truncation on inode 1703 * reclaim). This is usually implemented by blocking new transactions for 1704 * filesystems that have them and need this additional guard. After all 1705 * internal writers are finished we call ->freeze_fs() to finish filesystem 1706 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1707 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1708 * 1709 * sb->s_writers.frozen is protected by sb->s_umount. 1710 */ 1711 int freeze_super(struct super_block *sb) 1712 { 1713 int ret; 1714 1715 atomic_inc(&sb->s_active); 1716 down_write(&sb->s_umount); 1717 if (sb->s_writers.frozen != SB_UNFROZEN) { 1718 deactivate_locked_super(sb); 1719 return -EBUSY; 1720 } 1721 1722 if (!(sb->s_flags & SB_BORN)) { 1723 up_write(&sb->s_umount); 1724 return 0; /* sic - it's "nothing to do" */ 1725 } 1726 1727 if (sb_rdonly(sb)) { 1728 /* Nothing to do really... */ 1729 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1730 up_write(&sb->s_umount); 1731 return 0; 1732 } 1733 1734 sb->s_writers.frozen = SB_FREEZE_WRITE; 1735 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1736 up_write(&sb->s_umount); 1737 sb_wait_write(sb, SB_FREEZE_WRITE); 1738 down_write(&sb->s_umount); 1739 1740 /* Now we go and block page faults... */ 1741 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1742 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1743 1744 /* All writers are done so after syncing there won't be dirty data */ 1745 sync_filesystem(sb); 1746 1747 /* Now wait for internal filesystem counter */ 1748 sb->s_writers.frozen = SB_FREEZE_FS; 1749 sb_wait_write(sb, SB_FREEZE_FS); 1750 1751 if (sb->s_op->freeze_fs) { 1752 ret = sb->s_op->freeze_fs(sb); 1753 if (ret) { 1754 printk(KERN_ERR 1755 "VFS:Filesystem freeze failed\n"); 1756 sb->s_writers.frozen = SB_UNFROZEN; 1757 sb_freeze_unlock(sb); 1758 wake_up(&sb->s_writers.wait_unfrozen); 1759 deactivate_locked_super(sb); 1760 return ret; 1761 } 1762 } 1763 /* 1764 * For debugging purposes so that fs can warn if it sees write activity 1765 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1766 */ 1767 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1768 lockdep_sb_freeze_release(sb); 1769 up_write(&sb->s_umount); 1770 return 0; 1771 } 1772 EXPORT_SYMBOL(freeze_super); 1773 1774 /** 1775 * thaw_super -- unlock filesystem 1776 * @sb: the super to thaw 1777 * 1778 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1779 */ 1780 static int thaw_super_locked(struct super_block *sb) 1781 { 1782 int error; 1783 1784 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1785 up_write(&sb->s_umount); 1786 return -EINVAL; 1787 } 1788 1789 if (sb_rdonly(sb)) { 1790 sb->s_writers.frozen = SB_UNFROZEN; 1791 goto out; 1792 } 1793 1794 lockdep_sb_freeze_acquire(sb); 1795 1796 if (sb->s_op->unfreeze_fs) { 1797 error = sb->s_op->unfreeze_fs(sb); 1798 if (error) { 1799 printk(KERN_ERR 1800 "VFS:Filesystem thaw failed\n"); 1801 lockdep_sb_freeze_release(sb); 1802 up_write(&sb->s_umount); 1803 return error; 1804 } 1805 } 1806 1807 sb->s_writers.frozen = SB_UNFROZEN; 1808 sb_freeze_unlock(sb); 1809 out: 1810 wake_up(&sb->s_writers.wait_unfrozen); 1811 deactivate_locked_super(sb); 1812 return 0; 1813 } 1814 1815 int thaw_super(struct super_block *sb) 1816 { 1817 down_write(&sb->s_umount); 1818 return thaw_super_locked(sb); 1819 } 1820 EXPORT_SYMBOL(thaw_super); 1821