xref: /openbmc/linux/fs/super.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
35 
36 
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
39 
40 /**
41  *	alloc_super	-	create new superblock
42  *	@type:	filesystem type superblock should belong to
43  *
44  *	Allocates and initializes a new &struct super_block.  alloc_super()
45  *	returns a pointer new superblock or %NULL if allocation had failed.
46  */
47 static struct super_block *alloc_super(struct file_system_type *type)
48 {
49 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
50 	static const struct super_operations default_op;
51 
52 	if (s) {
53 		if (security_sb_alloc(s)) {
54 			kfree(s);
55 			s = NULL;
56 			goto out;
57 		}
58 #ifdef CONFIG_SMP
59 		s->s_files = alloc_percpu(struct list_head);
60 		if (!s->s_files) {
61 			security_sb_free(s);
62 			kfree(s);
63 			s = NULL;
64 			goto out;
65 		} else {
66 			int i;
67 
68 			for_each_possible_cpu(i)
69 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
70 		}
71 #else
72 		INIT_LIST_HEAD(&s->s_files);
73 #endif
74 		INIT_LIST_HEAD(&s->s_instances);
75 		INIT_HLIST_BL_HEAD(&s->s_anon);
76 		INIT_LIST_HEAD(&s->s_inodes);
77 		INIT_LIST_HEAD(&s->s_dentry_lru);
78 		init_rwsem(&s->s_umount);
79 		mutex_init(&s->s_lock);
80 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
81 		/*
82 		 * The locking rules for s_lock are up to the
83 		 * filesystem. For example ext3fs has different
84 		 * lock ordering than usbfs:
85 		 */
86 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
87 		/*
88 		 * sget() can have s_umount recursion.
89 		 *
90 		 * When it cannot find a suitable sb, it allocates a new
91 		 * one (this one), and tries again to find a suitable old
92 		 * one.
93 		 *
94 		 * In case that succeeds, it will acquire the s_umount
95 		 * lock of the old one. Since these are clearly distrinct
96 		 * locks, and this object isn't exposed yet, there's no
97 		 * risk of deadlocks.
98 		 *
99 		 * Annotate this by putting this lock in a different
100 		 * subclass.
101 		 */
102 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
103 		s->s_count = 1;
104 		atomic_set(&s->s_active, 1);
105 		mutex_init(&s->s_vfs_rename_mutex);
106 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
107 		mutex_init(&s->s_dquot.dqio_mutex);
108 		mutex_init(&s->s_dquot.dqonoff_mutex);
109 		init_rwsem(&s->s_dquot.dqptr_sem);
110 		init_waitqueue_head(&s->s_wait_unfrozen);
111 		s->s_maxbytes = MAX_NON_LFS;
112 		s->s_op = &default_op;
113 		s->s_time_gran = 1000000000;
114 	}
115 out:
116 	return s;
117 }
118 
119 /**
120  *	destroy_super	-	frees a superblock
121  *	@s: superblock to free
122  *
123  *	Frees a superblock.
124  */
125 static inline void destroy_super(struct super_block *s)
126 {
127 #ifdef CONFIG_SMP
128 	free_percpu(s->s_files);
129 #endif
130 	security_sb_free(s);
131 	kfree(s->s_subtype);
132 	kfree(s->s_options);
133 	kfree(s);
134 }
135 
136 /* Superblock refcounting  */
137 
138 /*
139  * Drop a superblock's refcount.  The caller must hold sb_lock.
140  */
141 void __put_super(struct super_block *sb)
142 {
143 	if (!--sb->s_count) {
144 		list_del_init(&sb->s_list);
145 		destroy_super(sb);
146 	}
147 }
148 
149 /**
150  *	put_super	-	drop a temporary reference to superblock
151  *	@sb: superblock in question
152  *
153  *	Drops a temporary reference, frees superblock if there's no
154  *	references left.
155  */
156 void put_super(struct super_block *sb)
157 {
158 	spin_lock(&sb_lock);
159 	__put_super(sb);
160 	spin_unlock(&sb_lock);
161 }
162 
163 
164 /**
165  *	deactivate_locked_super	-	drop an active reference to superblock
166  *	@s: superblock to deactivate
167  *
168  *	Drops an active reference to superblock, converting it into a temprory
169  *	one if there is no other active references left.  In that case we
170  *	tell fs driver to shut it down and drop the temporary reference we
171  *	had just acquired.
172  *
173  *	Caller holds exclusive lock on superblock; that lock is released.
174  */
175 void deactivate_locked_super(struct super_block *s)
176 {
177 	struct file_system_type *fs = s->s_type;
178 	if (atomic_dec_and_test(&s->s_active)) {
179 		fs->kill_sb(s);
180 		/*
181 		 * We need to call rcu_barrier so all the delayed rcu free
182 		 * inodes are flushed before we release the fs module.
183 		 */
184 		rcu_barrier();
185 		put_filesystem(fs);
186 		put_super(s);
187 	} else {
188 		up_write(&s->s_umount);
189 	}
190 }
191 
192 EXPORT_SYMBOL(deactivate_locked_super);
193 
194 /**
195  *	deactivate_super	-	drop an active reference to superblock
196  *	@s: superblock to deactivate
197  *
198  *	Variant of deactivate_locked_super(), except that superblock is *not*
199  *	locked by caller.  If we are going to drop the final active reference,
200  *	lock will be acquired prior to that.
201  */
202 void deactivate_super(struct super_block *s)
203 {
204         if (!atomic_add_unless(&s->s_active, -1, 1)) {
205 		down_write(&s->s_umount);
206 		deactivate_locked_super(s);
207 	}
208 }
209 
210 EXPORT_SYMBOL(deactivate_super);
211 
212 /**
213  *	grab_super - acquire an active reference
214  *	@s: reference we are trying to make active
215  *
216  *	Tries to acquire an active reference.  grab_super() is used when we
217  * 	had just found a superblock in super_blocks or fs_type->fs_supers
218  *	and want to turn it into a full-blown active reference.  grab_super()
219  *	is called with sb_lock held and drops it.  Returns 1 in case of
220  *	success, 0 if we had failed (superblock contents was already dead or
221  *	dying when grab_super() had been called).
222  */
223 static int grab_super(struct super_block *s) __releases(sb_lock)
224 {
225 	if (atomic_inc_not_zero(&s->s_active)) {
226 		spin_unlock(&sb_lock);
227 		return 1;
228 	}
229 	/* it's going away */
230 	s->s_count++;
231 	spin_unlock(&sb_lock);
232 	/* wait for it to die */
233 	down_write(&s->s_umount);
234 	up_write(&s->s_umount);
235 	put_super(s);
236 	return 0;
237 }
238 
239 /*
240  * Superblock locking.  We really ought to get rid of these two.
241  */
242 void lock_super(struct super_block * sb)
243 {
244 	get_fs_excl();
245 	mutex_lock(&sb->s_lock);
246 }
247 
248 void unlock_super(struct super_block * sb)
249 {
250 	put_fs_excl();
251 	mutex_unlock(&sb->s_lock);
252 }
253 
254 EXPORT_SYMBOL(lock_super);
255 EXPORT_SYMBOL(unlock_super);
256 
257 /**
258  *	generic_shutdown_super	-	common helper for ->kill_sb()
259  *	@sb: superblock to kill
260  *
261  *	generic_shutdown_super() does all fs-independent work on superblock
262  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
263  *	that need destruction out of superblock, call generic_shutdown_super()
264  *	and release aforementioned objects.  Note: dentries and inodes _are_
265  *	taken care of and do not need specific handling.
266  *
267  *	Upon calling this function, the filesystem may no longer alter or
268  *	rearrange the set of dentries belonging to this super_block, nor may it
269  *	change the attachments of dentries to inodes.
270  */
271 void generic_shutdown_super(struct super_block *sb)
272 {
273 	const struct super_operations *sop = sb->s_op;
274 
275 
276 	if (sb->s_root) {
277 		shrink_dcache_for_umount(sb);
278 		sync_filesystem(sb);
279 		get_fs_excl();
280 		sb->s_flags &= ~MS_ACTIVE;
281 
282 		fsnotify_unmount_inodes(&sb->s_inodes);
283 
284 		evict_inodes(sb);
285 
286 		if (sop->put_super)
287 			sop->put_super(sb);
288 
289 		if (!list_empty(&sb->s_inodes)) {
290 			printk("VFS: Busy inodes after unmount of %s. "
291 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
292 			   sb->s_id);
293 		}
294 		put_fs_excl();
295 	}
296 	spin_lock(&sb_lock);
297 	/* should be initialized for __put_super_and_need_restart() */
298 	list_del_init(&sb->s_instances);
299 	spin_unlock(&sb_lock);
300 	up_write(&sb->s_umount);
301 }
302 
303 EXPORT_SYMBOL(generic_shutdown_super);
304 
305 /**
306  *	sget	-	find or create a superblock
307  *	@type:	filesystem type superblock should belong to
308  *	@test:	comparison callback
309  *	@set:	setup callback
310  *	@data:	argument to each of them
311  */
312 struct super_block *sget(struct file_system_type *type,
313 			int (*test)(struct super_block *,void *),
314 			int (*set)(struct super_block *,void *),
315 			void *data)
316 {
317 	struct super_block *s = NULL;
318 	struct super_block *old;
319 	int err;
320 
321 retry:
322 	spin_lock(&sb_lock);
323 	if (test) {
324 		list_for_each_entry(old, &type->fs_supers, s_instances) {
325 			if (!test(old, data))
326 				continue;
327 			if (!grab_super(old))
328 				goto retry;
329 			if (s) {
330 				up_write(&s->s_umount);
331 				destroy_super(s);
332 				s = NULL;
333 			}
334 			down_write(&old->s_umount);
335 			if (unlikely(!(old->s_flags & MS_BORN))) {
336 				deactivate_locked_super(old);
337 				goto retry;
338 			}
339 			return old;
340 		}
341 	}
342 	if (!s) {
343 		spin_unlock(&sb_lock);
344 		s = alloc_super(type);
345 		if (!s)
346 			return ERR_PTR(-ENOMEM);
347 		goto retry;
348 	}
349 
350 	err = set(s, data);
351 	if (err) {
352 		spin_unlock(&sb_lock);
353 		up_write(&s->s_umount);
354 		destroy_super(s);
355 		return ERR_PTR(err);
356 	}
357 	s->s_type = type;
358 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
359 	list_add_tail(&s->s_list, &super_blocks);
360 	list_add(&s->s_instances, &type->fs_supers);
361 	spin_unlock(&sb_lock);
362 	get_filesystem(type);
363 	return s;
364 }
365 
366 EXPORT_SYMBOL(sget);
367 
368 void drop_super(struct super_block *sb)
369 {
370 	up_read(&sb->s_umount);
371 	put_super(sb);
372 }
373 
374 EXPORT_SYMBOL(drop_super);
375 
376 /**
377  * sync_supers - helper for periodic superblock writeback
378  *
379  * Call the write_super method if present on all dirty superblocks in
380  * the system.  This is for the periodic writeback used by most older
381  * filesystems.  For data integrity superblock writeback use
382  * sync_filesystems() instead.
383  *
384  * Note: check the dirty flag before waiting, so we don't
385  * hold up the sync while mounting a device. (The newly
386  * mounted device won't need syncing.)
387  */
388 void sync_supers(void)
389 {
390 	struct super_block *sb, *p = NULL;
391 
392 	spin_lock(&sb_lock);
393 	list_for_each_entry(sb, &super_blocks, s_list) {
394 		if (list_empty(&sb->s_instances))
395 			continue;
396 		if (sb->s_op->write_super && sb->s_dirt) {
397 			sb->s_count++;
398 			spin_unlock(&sb_lock);
399 
400 			down_read(&sb->s_umount);
401 			if (sb->s_root && sb->s_dirt)
402 				sb->s_op->write_super(sb);
403 			up_read(&sb->s_umount);
404 
405 			spin_lock(&sb_lock);
406 			if (p)
407 				__put_super(p);
408 			p = sb;
409 		}
410 	}
411 	if (p)
412 		__put_super(p);
413 	spin_unlock(&sb_lock);
414 }
415 
416 /**
417  *	iterate_supers - call function for all active superblocks
418  *	@f: function to call
419  *	@arg: argument to pass to it
420  *
421  *	Scans the superblock list and calls given function, passing it
422  *	locked superblock and given argument.
423  */
424 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
425 {
426 	struct super_block *sb, *p = NULL;
427 
428 	spin_lock(&sb_lock);
429 	list_for_each_entry(sb, &super_blocks, s_list) {
430 		if (list_empty(&sb->s_instances))
431 			continue;
432 		sb->s_count++;
433 		spin_unlock(&sb_lock);
434 
435 		down_read(&sb->s_umount);
436 		if (sb->s_root)
437 			f(sb, arg);
438 		up_read(&sb->s_umount);
439 
440 		spin_lock(&sb_lock);
441 		if (p)
442 			__put_super(p);
443 		p = sb;
444 	}
445 	if (p)
446 		__put_super(p);
447 	spin_unlock(&sb_lock);
448 }
449 
450 /**
451  *	get_super - get the superblock of a device
452  *	@bdev: device to get the superblock for
453  *
454  *	Scans the superblock list and finds the superblock of the file system
455  *	mounted on the device given. %NULL is returned if no match is found.
456  */
457 
458 struct super_block *get_super(struct block_device *bdev)
459 {
460 	struct super_block *sb;
461 
462 	if (!bdev)
463 		return NULL;
464 
465 	spin_lock(&sb_lock);
466 rescan:
467 	list_for_each_entry(sb, &super_blocks, s_list) {
468 		if (list_empty(&sb->s_instances))
469 			continue;
470 		if (sb->s_bdev == bdev) {
471 			sb->s_count++;
472 			spin_unlock(&sb_lock);
473 			down_read(&sb->s_umount);
474 			/* still alive? */
475 			if (sb->s_root)
476 				return sb;
477 			up_read(&sb->s_umount);
478 			/* nope, got unmounted */
479 			spin_lock(&sb_lock);
480 			__put_super(sb);
481 			goto rescan;
482 		}
483 	}
484 	spin_unlock(&sb_lock);
485 	return NULL;
486 }
487 
488 EXPORT_SYMBOL(get_super);
489 
490 /**
491  * get_active_super - get an active reference to the superblock of a device
492  * @bdev: device to get the superblock for
493  *
494  * Scans the superblock list and finds the superblock of the file system
495  * mounted on the device given.  Returns the superblock with an active
496  * reference or %NULL if none was found.
497  */
498 struct super_block *get_active_super(struct block_device *bdev)
499 {
500 	struct super_block *sb;
501 
502 	if (!bdev)
503 		return NULL;
504 
505 restart:
506 	spin_lock(&sb_lock);
507 	list_for_each_entry(sb, &super_blocks, s_list) {
508 		if (list_empty(&sb->s_instances))
509 			continue;
510 		if (sb->s_bdev == bdev) {
511 			if (grab_super(sb)) /* drops sb_lock */
512 				return sb;
513 			else
514 				goto restart;
515 		}
516 	}
517 	spin_unlock(&sb_lock);
518 	return NULL;
519 }
520 
521 struct super_block *user_get_super(dev_t dev)
522 {
523 	struct super_block *sb;
524 
525 	spin_lock(&sb_lock);
526 rescan:
527 	list_for_each_entry(sb, &super_blocks, s_list) {
528 		if (list_empty(&sb->s_instances))
529 			continue;
530 		if (sb->s_dev ==  dev) {
531 			sb->s_count++;
532 			spin_unlock(&sb_lock);
533 			down_read(&sb->s_umount);
534 			/* still alive? */
535 			if (sb->s_root)
536 				return sb;
537 			up_read(&sb->s_umount);
538 			/* nope, got unmounted */
539 			spin_lock(&sb_lock);
540 			__put_super(sb);
541 			goto rescan;
542 		}
543 	}
544 	spin_unlock(&sb_lock);
545 	return NULL;
546 }
547 
548 /**
549  *	do_remount_sb - asks filesystem to change mount options.
550  *	@sb:	superblock in question
551  *	@flags:	numeric part of options
552  *	@data:	the rest of options
553  *      @force: whether or not to force the change
554  *
555  *	Alters the mount options of a mounted file system.
556  */
557 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
558 {
559 	int retval;
560 	int remount_ro;
561 
562 	if (sb->s_frozen != SB_UNFROZEN)
563 		return -EBUSY;
564 
565 #ifdef CONFIG_BLOCK
566 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
567 		return -EACCES;
568 #endif
569 
570 	if (flags & MS_RDONLY)
571 		acct_auto_close(sb);
572 	shrink_dcache_sb(sb);
573 	sync_filesystem(sb);
574 
575 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
576 
577 	/* If we are remounting RDONLY and current sb is read/write,
578 	   make sure there are no rw files opened */
579 	if (remount_ro) {
580 		if (force)
581 			mark_files_ro(sb);
582 		else if (!fs_may_remount_ro(sb))
583 			return -EBUSY;
584 	}
585 
586 	if (sb->s_op->remount_fs) {
587 		retval = sb->s_op->remount_fs(sb, &flags, data);
588 		if (retval)
589 			return retval;
590 	}
591 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
592 
593 	/*
594 	 * Some filesystems modify their metadata via some other path than the
595 	 * bdev buffer cache (eg. use a private mapping, or directories in
596 	 * pagecache, etc). Also file data modifications go via their own
597 	 * mappings. So If we try to mount readonly then copy the filesystem
598 	 * from bdev, we could get stale data, so invalidate it to give a best
599 	 * effort at coherency.
600 	 */
601 	if (remount_ro && sb->s_bdev)
602 		invalidate_bdev(sb->s_bdev);
603 	return 0;
604 }
605 
606 static void do_emergency_remount(struct work_struct *work)
607 {
608 	struct super_block *sb, *p = NULL;
609 
610 	spin_lock(&sb_lock);
611 	list_for_each_entry(sb, &super_blocks, s_list) {
612 		if (list_empty(&sb->s_instances))
613 			continue;
614 		sb->s_count++;
615 		spin_unlock(&sb_lock);
616 		down_write(&sb->s_umount);
617 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
618 			/*
619 			 * What lock protects sb->s_flags??
620 			 */
621 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
622 		}
623 		up_write(&sb->s_umount);
624 		spin_lock(&sb_lock);
625 		if (p)
626 			__put_super(p);
627 		p = sb;
628 	}
629 	if (p)
630 		__put_super(p);
631 	spin_unlock(&sb_lock);
632 	kfree(work);
633 	printk("Emergency Remount complete\n");
634 }
635 
636 void emergency_remount(void)
637 {
638 	struct work_struct *work;
639 
640 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
641 	if (work) {
642 		INIT_WORK(work, do_emergency_remount);
643 		schedule_work(work);
644 	}
645 }
646 
647 /*
648  * Unnamed block devices are dummy devices used by virtual
649  * filesystems which don't use real block-devices.  -- jrs
650  */
651 
652 static DEFINE_IDA(unnamed_dev_ida);
653 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
654 static int unnamed_dev_start = 0; /* don't bother trying below it */
655 
656 int set_anon_super(struct super_block *s, void *data)
657 {
658 	int dev;
659 	int error;
660 
661  retry:
662 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
663 		return -ENOMEM;
664 	spin_lock(&unnamed_dev_lock);
665 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
666 	if (!error)
667 		unnamed_dev_start = dev + 1;
668 	spin_unlock(&unnamed_dev_lock);
669 	if (error == -EAGAIN)
670 		/* We raced and lost with another CPU. */
671 		goto retry;
672 	else if (error)
673 		return -EAGAIN;
674 
675 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
676 		spin_lock(&unnamed_dev_lock);
677 		ida_remove(&unnamed_dev_ida, dev);
678 		if (unnamed_dev_start > dev)
679 			unnamed_dev_start = dev;
680 		spin_unlock(&unnamed_dev_lock);
681 		return -EMFILE;
682 	}
683 	s->s_dev = MKDEV(0, dev & MINORMASK);
684 	s->s_bdi = &noop_backing_dev_info;
685 	return 0;
686 }
687 
688 EXPORT_SYMBOL(set_anon_super);
689 
690 void kill_anon_super(struct super_block *sb)
691 {
692 	int slot = MINOR(sb->s_dev);
693 
694 	generic_shutdown_super(sb);
695 	spin_lock(&unnamed_dev_lock);
696 	ida_remove(&unnamed_dev_ida, slot);
697 	if (slot < unnamed_dev_start)
698 		unnamed_dev_start = slot;
699 	spin_unlock(&unnamed_dev_lock);
700 }
701 
702 EXPORT_SYMBOL(kill_anon_super);
703 
704 void kill_litter_super(struct super_block *sb)
705 {
706 	if (sb->s_root)
707 		d_genocide(sb->s_root);
708 	kill_anon_super(sb);
709 }
710 
711 EXPORT_SYMBOL(kill_litter_super);
712 
713 static int ns_test_super(struct super_block *sb, void *data)
714 {
715 	return sb->s_fs_info == data;
716 }
717 
718 static int ns_set_super(struct super_block *sb, void *data)
719 {
720 	sb->s_fs_info = data;
721 	return set_anon_super(sb, NULL);
722 }
723 
724 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
725 	void *data, int (*fill_super)(struct super_block *, void *, int))
726 {
727 	struct super_block *sb;
728 
729 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
730 	if (IS_ERR(sb))
731 		return ERR_CAST(sb);
732 
733 	if (!sb->s_root) {
734 		int err;
735 		sb->s_flags = flags;
736 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
737 		if (err) {
738 			deactivate_locked_super(sb);
739 			return ERR_PTR(err);
740 		}
741 
742 		sb->s_flags |= MS_ACTIVE;
743 	}
744 
745 	return dget(sb->s_root);
746 }
747 
748 EXPORT_SYMBOL(mount_ns);
749 
750 #ifdef CONFIG_BLOCK
751 static int set_bdev_super(struct super_block *s, void *data)
752 {
753 	s->s_bdev = data;
754 	s->s_dev = s->s_bdev->bd_dev;
755 
756 	/*
757 	 * We set the bdi here to the queue backing, file systems can
758 	 * overwrite this in ->fill_super()
759 	 */
760 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
761 	return 0;
762 }
763 
764 static int test_bdev_super(struct super_block *s, void *data)
765 {
766 	return (void *)s->s_bdev == data;
767 }
768 
769 struct dentry *mount_bdev(struct file_system_type *fs_type,
770 	int flags, const char *dev_name, void *data,
771 	int (*fill_super)(struct super_block *, void *, int))
772 {
773 	struct block_device *bdev;
774 	struct super_block *s;
775 	fmode_t mode = FMODE_READ | FMODE_EXCL;
776 	int error = 0;
777 
778 	if (!(flags & MS_RDONLY))
779 		mode |= FMODE_WRITE;
780 
781 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
782 	if (IS_ERR(bdev))
783 		return ERR_CAST(bdev);
784 
785 	/*
786 	 * once the super is inserted into the list by sget, s_umount
787 	 * will protect the lockfs code from trying to start a snapshot
788 	 * while we are mounting
789 	 */
790 	mutex_lock(&bdev->bd_fsfreeze_mutex);
791 	if (bdev->bd_fsfreeze_count > 0) {
792 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
793 		error = -EBUSY;
794 		goto error_bdev;
795 	}
796 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
797 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
798 	if (IS_ERR(s))
799 		goto error_s;
800 
801 	if (s->s_root) {
802 		if ((flags ^ s->s_flags) & MS_RDONLY) {
803 			deactivate_locked_super(s);
804 			error = -EBUSY;
805 			goto error_bdev;
806 		}
807 
808 		/*
809 		 * s_umount nests inside bd_mutex during
810 		 * __invalidate_device().  blkdev_put() acquires
811 		 * bd_mutex and can't be called under s_umount.  Drop
812 		 * s_umount temporarily.  This is safe as we're
813 		 * holding an active reference.
814 		 */
815 		up_write(&s->s_umount);
816 		blkdev_put(bdev, mode);
817 		down_write(&s->s_umount);
818 	} else {
819 		char b[BDEVNAME_SIZE];
820 
821 		s->s_flags = flags;
822 		s->s_mode = mode;
823 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
824 		sb_set_blocksize(s, block_size(bdev));
825 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
826 		if (error) {
827 			deactivate_locked_super(s);
828 			goto error;
829 		}
830 
831 		s->s_flags |= MS_ACTIVE;
832 		bdev->bd_super = s;
833 	}
834 
835 	return dget(s->s_root);
836 
837 error_s:
838 	error = PTR_ERR(s);
839 error_bdev:
840 	blkdev_put(bdev, mode);
841 error:
842 	return ERR_PTR(error);
843 }
844 EXPORT_SYMBOL(mount_bdev);
845 
846 int get_sb_bdev(struct file_system_type *fs_type,
847 	int flags, const char *dev_name, void *data,
848 	int (*fill_super)(struct super_block *, void *, int),
849 	struct vfsmount *mnt)
850 {
851 	struct dentry *root;
852 
853 	root = mount_bdev(fs_type, flags, dev_name, data, fill_super);
854 	if (IS_ERR(root))
855 		return PTR_ERR(root);
856 	mnt->mnt_root = root;
857 	mnt->mnt_sb = root->d_sb;
858 	return 0;
859 }
860 
861 EXPORT_SYMBOL(get_sb_bdev);
862 
863 void kill_block_super(struct super_block *sb)
864 {
865 	struct block_device *bdev = sb->s_bdev;
866 	fmode_t mode = sb->s_mode;
867 
868 	bdev->bd_super = NULL;
869 	generic_shutdown_super(sb);
870 	sync_blockdev(bdev);
871 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
872 	blkdev_put(bdev, mode | FMODE_EXCL);
873 }
874 
875 EXPORT_SYMBOL(kill_block_super);
876 #endif
877 
878 struct dentry *mount_nodev(struct file_system_type *fs_type,
879 	int flags, void *data,
880 	int (*fill_super)(struct super_block *, void *, int))
881 {
882 	int error;
883 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
884 
885 	if (IS_ERR(s))
886 		return ERR_CAST(s);
887 
888 	s->s_flags = flags;
889 
890 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
891 	if (error) {
892 		deactivate_locked_super(s);
893 		return ERR_PTR(error);
894 	}
895 	s->s_flags |= MS_ACTIVE;
896 	return dget(s->s_root);
897 }
898 EXPORT_SYMBOL(mount_nodev);
899 
900 int get_sb_nodev(struct file_system_type *fs_type,
901 	int flags, void *data,
902 	int (*fill_super)(struct super_block *, void *, int),
903 	struct vfsmount *mnt)
904 {
905 	struct dentry *root;
906 
907 	root = mount_nodev(fs_type, flags, data, fill_super);
908 	if (IS_ERR(root))
909 		return PTR_ERR(root);
910 	mnt->mnt_root = root;
911 	mnt->mnt_sb = root->d_sb;
912 	return 0;
913 }
914 EXPORT_SYMBOL(get_sb_nodev);
915 
916 static int compare_single(struct super_block *s, void *p)
917 {
918 	return 1;
919 }
920 
921 struct dentry *mount_single(struct file_system_type *fs_type,
922 	int flags, void *data,
923 	int (*fill_super)(struct super_block *, void *, int))
924 {
925 	struct super_block *s;
926 	int error;
927 
928 	s = sget(fs_type, compare_single, set_anon_super, NULL);
929 	if (IS_ERR(s))
930 		return ERR_CAST(s);
931 	if (!s->s_root) {
932 		s->s_flags = flags;
933 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
934 		if (error) {
935 			deactivate_locked_super(s);
936 			return ERR_PTR(error);
937 		}
938 		s->s_flags |= MS_ACTIVE;
939 	} else {
940 		do_remount_sb(s, flags, data, 0);
941 	}
942 	return dget(s->s_root);
943 }
944 EXPORT_SYMBOL(mount_single);
945 
946 int get_sb_single(struct file_system_type *fs_type,
947 	int flags, void *data,
948 	int (*fill_super)(struct super_block *, void *, int),
949 	struct vfsmount *mnt)
950 {
951 	struct dentry *root;
952 	root = mount_single(fs_type, flags, data, fill_super);
953 	if (IS_ERR(root))
954 		return PTR_ERR(root);
955 	mnt->mnt_root = root;
956 	mnt->mnt_sb = root->d_sb;
957 	return 0;
958 }
959 
960 EXPORT_SYMBOL(get_sb_single);
961 
962 struct vfsmount *
963 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
964 {
965 	struct vfsmount *mnt;
966 	struct dentry *root;
967 	char *secdata = NULL;
968 	int error;
969 
970 	if (!type)
971 		return ERR_PTR(-ENODEV);
972 
973 	error = -ENOMEM;
974 	mnt = alloc_vfsmnt(name);
975 	if (!mnt)
976 		goto out;
977 
978 	if (flags & MS_KERNMOUNT)
979 		mnt->mnt_flags = MNT_INTERNAL;
980 
981 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
982 		secdata = alloc_secdata();
983 		if (!secdata)
984 			goto out_mnt;
985 
986 		error = security_sb_copy_data(data, secdata);
987 		if (error)
988 			goto out_free_secdata;
989 	}
990 
991 	if (type->mount) {
992 		root = type->mount(type, flags, name, data);
993 		if (IS_ERR(root)) {
994 			error = PTR_ERR(root);
995 			goto out_free_secdata;
996 		}
997 		mnt->mnt_root = root;
998 		mnt->mnt_sb = root->d_sb;
999 	} else {
1000 		error = type->get_sb(type, flags, name, data, mnt);
1001 		if (error < 0)
1002 			goto out_free_secdata;
1003 	}
1004 	BUG_ON(!mnt->mnt_sb);
1005 	WARN_ON(!mnt->mnt_sb->s_bdi);
1006 	mnt->mnt_sb->s_flags |= MS_BORN;
1007 
1008 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1009 	if (error)
1010 		goto out_sb;
1011 
1012 	/*
1013 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1014 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1015 	 * this warning for a little while to try and catch filesystems that
1016 	 * violate this rule. This warning should be either removed or
1017 	 * converted to a BUG() in 2.6.34.
1018 	 */
1019 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1020 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
1021 
1022 	mnt->mnt_mountpoint = mnt->mnt_root;
1023 	mnt->mnt_parent = mnt;
1024 	up_write(&mnt->mnt_sb->s_umount);
1025 	free_secdata(secdata);
1026 	return mnt;
1027 out_sb:
1028 	dput(mnt->mnt_root);
1029 	deactivate_locked_super(mnt->mnt_sb);
1030 out_free_secdata:
1031 	free_secdata(secdata);
1032 out_mnt:
1033 	free_vfsmnt(mnt);
1034 out:
1035 	return ERR_PTR(error);
1036 }
1037 
1038 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1039 
1040 /**
1041  * freeze_super - lock the filesystem and force it into a consistent state
1042  * @sb: the super to lock
1043  *
1044  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1045  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1046  * -EBUSY.
1047  */
1048 int freeze_super(struct super_block *sb)
1049 {
1050 	int ret;
1051 
1052 	atomic_inc(&sb->s_active);
1053 	down_write(&sb->s_umount);
1054 	if (sb->s_frozen) {
1055 		deactivate_locked_super(sb);
1056 		return -EBUSY;
1057 	}
1058 
1059 	if (sb->s_flags & MS_RDONLY) {
1060 		sb->s_frozen = SB_FREEZE_TRANS;
1061 		smp_wmb();
1062 		up_write(&sb->s_umount);
1063 		return 0;
1064 	}
1065 
1066 	sb->s_frozen = SB_FREEZE_WRITE;
1067 	smp_wmb();
1068 
1069 	sync_filesystem(sb);
1070 
1071 	sb->s_frozen = SB_FREEZE_TRANS;
1072 	smp_wmb();
1073 
1074 	sync_blockdev(sb->s_bdev);
1075 	if (sb->s_op->freeze_fs) {
1076 		ret = sb->s_op->freeze_fs(sb);
1077 		if (ret) {
1078 			printk(KERN_ERR
1079 				"VFS:Filesystem freeze failed\n");
1080 			sb->s_frozen = SB_UNFROZEN;
1081 			deactivate_locked_super(sb);
1082 			return ret;
1083 		}
1084 	}
1085 	up_write(&sb->s_umount);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL(freeze_super);
1089 
1090 /**
1091  * thaw_super -- unlock filesystem
1092  * @sb: the super to thaw
1093  *
1094  * Unlocks the filesystem and marks it writeable again after freeze_super().
1095  */
1096 int thaw_super(struct super_block *sb)
1097 {
1098 	int error;
1099 
1100 	down_write(&sb->s_umount);
1101 	if (sb->s_frozen == SB_UNFROZEN) {
1102 		up_write(&sb->s_umount);
1103 		return -EINVAL;
1104 	}
1105 
1106 	if (sb->s_flags & MS_RDONLY)
1107 		goto out;
1108 
1109 	if (sb->s_op->unfreeze_fs) {
1110 		error = sb->s_op->unfreeze_fs(sb);
1111 		if (error) {
1112 			printk(KERN_ERR
1113 				"VFS:Filesystem thaw failed\n");
1114 			sb->s_frozen = SB_FREEZE_TRANS;
1115 			up_write(&sb->s_umount);
1116 			return error;
1117 		}
1118 	}
1119 
1120 out:
1121 	sb->s_frozen = SB_UNFROZEN;
1122 	smp_wmb();
1123 	wake_up(&sb->s_wait_unfrozen);
1124 	deactivate_locked_super(sb);
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL(thaw_super);
1129 
1130 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1131 {
1132 	int err;
1133 	const char *subtype = strchr(fstype, '.');
1134 	if (subtype) {
1135 		subtype++;
1136 		err = -EINVAL;
1137 		if (!subtype[0])
1138 			goto err;
1139 	} else
1140 		subtype = "";
1141 
1142 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1143 	err = -ENOMEM;
1144 	if (!mnt->mnt_sb->s_subtype)
1145 		goto err;
1146 	return mnt;
1147 
1148  err:
1149 	mntput(mnt);
1150 	return ERR_PTR(err);
1151 }
1152 
1153 struct vfsmount *
1154 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1155 {
1156 	struct file_system_type *type = get_fs_type(fstype);
1157 	struct vfsmount *mnt;
1158 	if (!type)
1159 		return ERR_PTR(-ENODEV);
1160 	mnt = vfs_kern_mount(type, flags, name, data);
1161 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1162 	    !mnt->mnt_sb->s_subtype)
1163 		mnt = fs_set_subtype(mnt, fstype);
1164 	put_filesystem(type);
1165 	return mnt;
1166 }
1167 EXPORT_SYMBOL_GPL(do_kern_mount);
1168 
1169 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1170 {
1171 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1172 }
1173 
1174 EXPORT_SYMBOL_GPL(kern_mount_data);
1175