xref: /openbmc/linux/fs/super.c (revision dd1431e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_sb_free(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
310 void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* evict all inodes with zero refcount */
454 		evict_inodes(sb);
455 		/* only nonzero refcount inodes can have marks */
456 		fsnotify_sb_delete(sb);
457 		security_sb_delete(sb);
458 
459 		if (sb->s_dio_done_wq) {
460 			destroy_workqueue(sb->s_dio_done_wq);
461 			sb->s_dio_done_wq = NULL;
462 		}
463 
464 		if (sop->put_super)
465 			sop->put_super(sb);
466 
467 		if (!list_empty(&sb->s_inodes)) {
468 			printk("VFS: Busy inodes after unmount of %s. "
469 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
470 			   sb->s_id);
471 		}
472 	}
473 	spin_lock(&sb_lock);
474 	/* should be initialized for __put_super_and_need_restart() */
475 	hlist_del_init(&sb->s_instances);
476 	spin_unlock(&sb_lock);
477 	up_write(&sb->s_umount);
478 	if (sb->s_bdi != &noop_backing_dev_info) {
479 		bdi_put(sb->s_bdi);
480 		sb->s_bdi = &noop_backing_dev_info;
481 	}
482 }
483 
484 EXPORT_SYMBOL(generic_shutdown_super);
485 
486 bool mount_capable(struct fs_context *fc)
487 {
488 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
489 		return capable(CAP_SYS_ADMIN);
490 	else
491 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
492 }
493 
494 /**
495  * sget_fc - Find or create a superblock
496  * @fc:	Filesystem context.
497  * @test: Comparison callback
498  * @set: Setup callback
499  *
500  * Find or create a superblock using the parameters stored in the filesystem
501  * context and the two callback functions.
502  *
503  * If an extant superblock is matched, then that will be returned with an
504  * elevated reference count that the caller must transfer or discard.
505  *
506  * If no match is made, a new superblock will be allocated and basic
507  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
508  * the set() callback will be invoked), the superblock will be published and it
509  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
510  * as yet unset.
511  */
512 struct super_block *sget_fc(struct fs_context *fc,
513 			    int (*test)(struct super_block *, struct fs_context *),
514 			    int (*set)(struct super_block *, struct fs_context *))
515 {
516 	struct super_block *s = NULL;
517 	struct super_block *old;
518 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
519 	int err;
520 
521 retry:
522 	spin_lock(&sb_lock);
523 	if (test) {
524 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
525 			if (test(old, fc))
526 				goto share_extant_sb;
527 		}
528 	}
529 	if (!s) {
530 		spin_unlock(&sb_lock);
531 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
532 		if (!s)
533 			return ERR_PTR(-ENOMEM);
534 		goto retry;
535 	}
536 
537 	s->s_fs_info = fc->s_fs_info;
538 	err = set(s, fc);
539 	if (err) {
540 		s->s_fs_info = NULL;
541 		spin_unlock(&sb_lock);
542 		destroy_unused_super(s);
543 		return ERR_PTR(err);
544 	}
545 	fc->s_fs_info = NULL;
546 	s->s_type = fc->fs_type;
547 	s->s_iflags |= fc->s_iflags;
548 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
549 	list_add_tail(&s->s_list, &super_blocks);
550 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
551 	spin_unlock(&sb_lock);
552 	get_filesystem(s->s_type);
553 	register_shrinker_prepared(&s->s_shrink);
554 	return s;
555 
556 share_extant_sb:
557 	if (user_ns != old->s_user_ns) {
558 		spin_unlock(&sb_lock);
559 		destroy_unused_super(s);
560 		return ERR_PTR(-EBUSY);
561 	}
562 	if (!grab_super(old))
563 		goto retry;
564 	destroy_unused_super(s);
565 	return old;
566 }
567 EXPORT_SYMBOL(sget_fc);
568 
569 /**
570  *	sget	-	find or create a superblock
571  *	@type:	  filesystem type superblock should belong to
572  *	@test:	  comparison callback
573  *	@set:	  setup callback
574  *	@flags:	  mount flags
575  *	@data:	  argument to each of them
576  */
577 struct super_block *sget(struct file_system_type *type,
578 			int (*test)(struct super_block *,void *),
579 			int (*set)(struct super_block *,void *),
580 			int flags,
581 			void *data)
582 {
583 	struct user_namespace *user_ns = current_user_ns();
584 	struct super_block *s = NULL;
585 	struct super_block *old;
586 	int err;
587 
588 	/* We don't yet pass the user namespace of the parent
589 	 * mount through to here so always use &init_user_ns
590 	 * until that changes.
591 	 */
592 	if (flags & SB_SUBMOUNT)
593 		user_ns = &init_user_ns;
594 
595 retry:
596 	spin_lock(&sb_lock);
597 	if (test) {
598 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
599 			if (!test(old, data))
600 				continue;
601 			if (user_ns != old->s_user_ns) {
602 				spin_unlock(&sb_lock);
603 				destroy_unused_super(s);
604 				return ERR_PTR(-EBUSY);
605 			}
606 			if (!grab_super(old))
607 				goto retry;
608 			destroy_unused_super(s);
609 			return old;
610 		}
611 	}
612 	if (!s) {
613 		spin_unlock(&sb_lock);
614 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
615 		if (!s)
616 			return ERR_PTR(-ENOMEM);
617 		goto retry;
618 	}
619 
620 	err = set(s, data);
621 	if (err) {
622 		spin_unlock(&sb_lock);
623 		destroy_unused_super(s);
624 		return ERR_PTR(err);
625 	}
626 	s->s_type = type;
627 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
628 	list_add_tail(&s->s_list, &super_blocks);
629 	hlist_add_head(&s->s_instances, &type->fs_supers);
630 	spin_unlock(&sb_lock);
631 	get_filesystem(type);
632 	register_shrinker_prepared(&s->s_shrink);
633 	return s;
634 }
635 EXPORT_SYMBOL(sget);
636 
637 void drop_super(struct super_block *sb)
638 {
639 	up_read(&sb->s_umount);
640 	put_super(sb);
641 }
642 
643 EXPORT_SYMBOL(drop_super);
644 
645 void drop_super_exclusive(struct super_block *sb)
646 {
647 	up_write(&sb->s_umount);
648 	put_super(sb);
649 }
650 EXPORT_SYMBOL(drop_super_exclusive);
651 
652 static void __iterate_supers(void (*f)(struct super_block *))
653 {
654 	struct super_block *sb, *p = NULL;
655 
656 	spin_lock(&sb_lock);
657 	list_for_each_entry(sb, &super_blocks, s_list) {
658 		if (hlist_unhashed(&sb->s_instances))
659 			continue;
660 		sb->s_count++;
661 		spin_unlock(&sb_lock);
662 
663 		f(sb);
664 
665 		spin_lock(&sb_lock);
666 		if (p)
667 			__put_super(p);
668 		p = sb;
669 	}
670 	if (p)
671 		__put_super(p);
672 	spin_unlock(&sb_lock);
673 }
674 /**
675  *	iterate_supers - call function for all active superblocks
676  *	@f: function to call
677  *	@arg: argument to pass to it
678  *
679  *	Scans the superblock list and calls given function, passing it
680  *	locked superblock and given argument.
681  */
682 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
683 {
684 	struct super_block *sb, *p = NULL;
685 
686 	spin_lock(&sb_lock);
687 	list_for_each_entry(sb, &super_blocks, s_list) {
688 		if (hlist_unhashed(&sb->s_instances))
689 			continue;
690 		sb->s_count++;
691 		spin_unlock(&sb_lock);
692 
693 		down_read(&sb->s_umount);
694 		if (sb->s_root && (sb->s_flags & SB_BORN))
695 			f(sb, arg);
696 		up_read(&sb->s_umount);
697 
698 		spin_lock(&sb_lock);
699 		if (p)
700 			__put_super(p);
701 		p = sb;
702 	}
703 	if (p)
704 		__put_super(p);
705 	spin_unlock(&sb_lock);
706 }
707 
708 /**
709  *	iterate_supers_type - call function for superblocks of given type
710  *	@type: fs type
711  *	@f: function to call
712  *	@arg: argument to pass to it
713  *
714  *	Scans the superblock list and calls given function, passing it
715  *	locked superblock and given argument.
716  */
717 void iterate_supers_type(struct file_system_type *type,
718 	void (*f)(struct super_block *, void *), void *arg)
719 {
720 	struct super_block *sb, *p = NULL;
721 
722 	spin_lock(&sb_lock);
723 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
724 		sb->s_count++;
725 		spin_unlock(&sb_lock);
726 
727 		down_read(&sb->s_umount);
728 		if (sb->s_root && (sb->s_flags & SB_BORN))
729 			f(sb, arg);
730 		up_read(&sb->s_umount);
731 
732 		spin_lock(&sb_lock);
733 		if (p)
734 			__put_super(p);
735 		p = sb;
736 	}
737 	if (p)
738 		__put_super(p);
739 	spin_unlock(&sb_lock);
740 }
741 
742 EXPORT_SYMBOL(iterate_supers_type);
743 
744 /**
745  * get_super - get the superblock of a device
746  * @bdev: device to get the superblock for
747  *
748  * Scans the superblock list and finds the superblock of the file system
749  * mounted on the device given. %NULL is returned if no match is found.
750  */
751 struct super_block *get_super(struct block_device *bdev)
752 {
753 	struct super_block *sb;
754 
755 	if (!bdev)
756 		return NULL;
757 
758 	spin_lock(&sb_lock);
759 rescan:
760 	list_for_each_entry(sb, &super_blocks, s_list) {
761 		if (hlist_unhashed(&sb->s_instances))
762 			continue;
763 		if (sb->s_bdev == bdev) {
764 			sb->s_count++;
765 			spin_unlock(&sb_lock);
766 			down_read(&sb->s_umount);
767 			/* still alive? */
768 			if (sb->s_root && (sb->s_flags & SB_BORN))
769 				return sb;
770 			up_read(&sb->s_umount);
771 			/* nope, got unmounted */
772 			spin_lock(&sb_lock);
773 			__put_super(sb);
774 			goto rescan;
775 		}
776 	}
777 	spin_unlock(&sb_lock);
778 	return NULL;
779 }
780 
781 /**
782  * get_active_super - get an active reference to the superblock of a device
783  * @bdev: device to get the superblock for
784  *
785  * Scans the superblock list and finds the superblock of the file system
786  * mounted on the device given.  Returns the superblock with an active
787  * reference or %NULL if none was found.
788  */
789 struct super_block *get_active_super(struct block_device *bdev)
790 {
791 	struct super_block *sb;
792 
793 	if (!bdev)
794 		return NULL;
795 
796 restart:
797 	spin_lock(&sb_lock);
798 	list_for_each_entry(sb, &super_blocks, s_list) {
799 		if (hlist_unhashed(&sb->s_instances))
800 			continue;
801 		if (sb->s_bdev == bdev) {
802 			if (!grab_super(sb))
803 				goto restart;
804 			up_write(&sb->s_umount);
805 			return sb;
806 		}
807 	}
808 	spin_unlock(&sb_lock);
809 	return NULL;
810 }
811 
812 struct super_block *user_get_super(dev_t dev, bool excl)
813 {
814 	struct super_block *sb;
815 
816 	spin_lock(&sb_lock);
817 rescan:
818 	list_for_each_entry(sb, &super_blocks, s_list) {
819 		if (hlist_unhashed(&sb->s_instances))
820 			continue;
821 		if (sb->s_dev ==  dev) {
822 			sb->s_count++;
823 			spin_unlock(&sb_lock);
824 			if (excl)
825 				down_write(&sb->s_umount);
826 			else
827 				down_read(&sb->s_umount);
828 			/* still alive? */
829 			if (sb->s_root && (sb->s_flags & SB_BORN))
830 				return sb;
831 			if (excl)
832 				up_write(&sb->s_umount);
833 			else
834 				up_read(&sb->s_umount);
835 			/* nope, got unmounted */
836 			spin_lock(&sb_lock);
837 			__put_super(sb);
838 			goto rescan;
839 		}
840 	}
841 	spin_unlock(&sb_lock);
842 	return NULL;
843 }
844 
845 /**
846  * reconfigure_super - asks filesystem to change superblock parameters
847  * @fc: The superblock and configuration
848  *
849  * Alters the configuration parameters of a live superblock.
850  */
851 int reconfigure_super(struct fs_context *fc)
852 {
853 	struct super_block *sb = fc->root->d_sb;
854 	int retval;
855 	bool remount_ro = false;
856 	bool force = fc->sb_flags & SB_FORCE;
857 
858 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
859 		return -EINVAL;
860 	if (sb->s_writers.frozen != SB_UNFROZEN)
861 		return -EBUSY;
862 
863 	retval = security_sb_remount(sb, fc->security);
864 	if (retval)
865 		return retval;
866 
867 	if (fc->sb_flags_mask & SB_RDONLY) {
868 #ifdef CONFIG_BLOCK
869 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
870 		    bdev_read_only(sb->s_bdev))
871 			return -EACCES;
872 #endif
873 
874 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
875 	}
876 
877 	if (remount_ro) {
878 		if (!hlist_empty(&sb->s_pins)) {
879 			up_write(&sb->s_umount);
880 			group_pin_kill(&sb->s_pins);
881 			down_write(&sb->s_umount);
882 			if (!sb->s_root)
883 				return 0;
884 			if (sb->s_writers.frozen != SB_UNFROZEN)
885 				return -EBUSY;
886 			remount_ro = !sb_rdonly(sb);
887 		}
888 	}
889 	shrink_dcache_sb(sb);
890 
891 	/* If we are reconfiguring to RDONLY and current sb is read/write,
892 	 * make sure there are no files open for writing.
893 	 */
894 	if (remount_ro) {
895 		if (force) {
896 			sb->s_readonly_remount = 1;
897 			smp_wmb();
898 		} else {
899 			retval = sb_prepare_remount_readonly(sb);
900 			if (retval)
901 				return retval;
902 		}
903 	}
904 
905 	if (fc->ops->reconfigure) {
906 		retval = fc->ops->reconfigure(fc);
907 		if (retval) {
908 			if (!force)
909 				goto cancel_readonly;
910 			/* If forced remount, go ahead despite any errors */
911 			WARN(1, "forced remount of a %s fs returned %i\n",
912 			     sb->s_type->name, retval);
913 		}
914 	}
915 
916 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
917 				 (fc->sb_flags & fc->sb_flags_mask)));
918 	/* Needs to be ordered wrt mnt_is_readonly() */
919 	smp_wmb();
920 	sb->s_readonly_remount = 0;
921 
922 	/*
923 	 * Some filesystems modify their metadata via some other path than the
924 	 * bdev buffer cache (eg. use a private mapping, or directories in
925 	 * pagecache, etc). Also file data modifications go via their own
926 	 * mappings. So If we try to mount readonly then copy the filesystem
927 	 * from bdev, we could get stale data, so invalidate it to give a best
928 	 * effort at coherency.
929 	 */
930 	if (remount_ro && sb->s_bdev)
931 		invalidate_bdev(sb->s_bdev);
932 	return 0;
933 
934 cancel_readonly:
935 	sb->s_readonly_remount = 0;
936 	return retval;
937 }
938 
939 static void do_emergency_remount_callback(struct super_block *sb)
940 {
941 	down_write(&sb->s_umount);
942 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
943 	    !sb_rdonly(sb)) {
944 		struct fs_context *fc;
945 
946 		fc = fs_context_for_reconfigure(sb->s_root,
947 					SB_RDONLY | SB_FORCE, SB_RDONLY);
948 		if (!IS_ERR(fc)) {
949 			if (parse_monolithic_mount_data(fc, NULL) == 0)
950 				(void)reconfigure_super(fc);
951 			put_fs_context(fc);
952 		}
953 	}
954 	up_write(&sb->s_umount);
955 }
956 
957 static void do_emergency_remount(struct work_struct *work)
958 {
959 	__iterate_supers(do_emergency_remount_callback);
960 	kfree(work);
961 	printk("Emergency Remount complete\n");
962 }
963 
964 void emergency_remount(void)
965 {
966 	struct work_struct *work;
967 
968 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
969 	if (work) {
970 		INIT_WORK(work, do_emergency_remount);
971 		schedule_work(work);
972 	}
973 }
974 
975 static void do_thaw_all_callback(struct super_block *sb)
976 {
977 	down_write(&sb->s_umount);
978 	if (sb->s_root && sb->s_flags & SB_BORN) {
979 		emergency_thaw_bdev(sb);
980 		thaw_super_locked(sb);
981 	} else {
982 		up_write(&sb->s_umount);
983 	}
984 }
985 
986 static void do_thaw_all(struct work_struct *work)
987 {
988 	__iterate_supers(do_thaw_all_callback);
989 	kfree(work);
990 	printk(KERN_WARNING "Emergency Thaw complete\n");
991 }
992 
993 /**
994  * emergency_thaw_all -- forcibly thaw every frozen filesystem
995  *
996  * Used for emergency unfreeze of all filesystems via SysRq
997  */
998 void emergency_thaw_all(void)
999 {
1000 	struct work_struct *work;
1001 
1002 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003 	if (work) {
1004 		INIT_WORK(work, do_thaw_all);
1005 		schedule_work(work);
1006 	}
1007 }
1008 
1009 static DEFINE_IDA(unnamed_dev_ida);
1010 
1011 /**
1012  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1013  * @p: Pointer to a dev_t.
1014  *
1015  * Filesystems which don't use real block devices can call this function
1016  * to allocate a virtual block device.
1017  *
1018  * Context: Any context.  Frequently called while holding sb_lock.
1019  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1020  * or -ENOMEM if memory allocation failed.
1021  */
1022 int get_anon_bdev(dev_t *p)
1023 {
1024 	int dev;
1025 
1026 	/*
1027 	 * Many userspace utilities consider an FSID of 0 invalid.
1028 	 * Always return at least 1 from get_anon_bdev.
1029 	 */
1030 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1031 			GFP_ATOMIC);
1032 	if (dev == -ENOSPC)
1033 		dev = -EMFILE;
1034 	if (dev < 0)
1035 		return dev;
1036 
1037 	*p = MKDEV(0, dev);
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL(get_anon_bdev);
1041 
1042 void free_anon_bdev(dev_t dev)
1043 {
1044 	ida_free(&unnamed_dev_ida, MINOR(dev));
1045 }
1046 EXPORT_SYMBOL(free_anon_bdev);
1047 
1048 int set_anon_super(struct super_block *s, void *data)
1049 {
1050 	return get_anon_bdev(&s->s_dev);
1051 }
1052 EXPORT_SYMBOL(set_anon_super);
1053 
1054 void kill_anon_super(struct super_block *sb)
1055 {
1056 	dev_t dev = sb->s_dev;
1057 	generic_shutdown_super(sb);
1058 	free_anon_bdev(dev);
1059 }
1060 EXPORT_SYMBOL(kill_anon_super);
1061 
1062 void kill_litter_super(struct super_block *sb)
1063 {
1064 	if (sb->s_root)
1065 		d_genocide(sb->s_root);
1066 	kill_anon_super(sb);
1067 }
1068 EXPORT_SYMBOL(kill_litter_super);
1069 
1070 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1071 {
1072 	return set_anon_super(sb, NULL);
1073 }
1074 EXPORT_SYMBOL(set_anon_super_fc);
1075 
1076 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1077 {
1078 	return sb->s_fs_info == fc->s_fs_info;
1079 }
1080 
1081 static int test_single_super(struct super_block *s, struct fs_context *fc)
1082 {
1083 	return 1;
1084 }
1085 
1086 /**
1087  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1088  * @fc: The filesystem context holding the parameters
1089  * @keying: How to distinguish superblocks
1090  * @fill_super: Helper to initialise a new superblock
1091  *
1092  * Search for a superblock and create a new one if not found.  The search
1093  * criterion is controlled by @keying.  If the search fails, a new superblock
1094  * is created and @fill_super() is called to initialise it.
1095  *
1096  * @keying can take one of a number of values:
1097  *
1098  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1099  *     system.  This is typically used for special system filesystems.
1100  *
1101  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1102  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1103  *     key again will turn up the superblock for that key.
1104  *
1105  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1106  *     unkeyed.  Each call will get a new superblock.
1107  *
1108  * A permissions check is made by sget_fc() unless we're getting a superblock
1109  * for a kernel-internal mount or a submount.
1110  */
1111 int vfs_get_super(struct fs_context *fc,
1112 		  enum vfs_get_super_keying keying,
1113 		  int (*fill_super)(struct super_block *sb,
1114 				    struct fs_context *fc))
1115 {
1116 	int (*test)(struct super_block *, struct fs_context *);
1117 	struct super_block *sb;
1118 	int err;
1119 
1120 	switch (keying) {
1121 	case vfs_get_single_super:
1122 	case vfs_get_single_reconf_super:
1123 		test = test_single_super;
1124 		break;
1125 	case vfs_get_keyed_super:
1126 		test = test_keyed_super;
1127 		break;
1128 	case vfs_get_independent_super:
1129 		test = NULL;
1130 		break;
1131 	default:
1132 		BUG();
1133 	}
1134 
1135 	sb = sget_fc(fc, test, set_anon_super_fc);
1136 	if (IS_ERR(sb))
1137 		return PTR_ERR(sb);
1138 
1139 	if (!sb->s_root) {
1140 		err = fill_super(sb, fc);
1141 		if (err)
1142 			goto error;
1143 
1144 		sb->s_flags |= SB_ACTIVE;
1145 		fc->root = dget(sb->s_root);
1146 	} else {
1147 		fc->root = dget(sb->s_root);
1148 		if (keying == vfs_get_single_reconf_super) {
1149 			err = reconfigure_super(fc);
1150 			if (err < 0) {
1151 				dput(fc->root);
1152 				fc->root = NULL;
1153 				goto error;
1154 			}
1155 		}
1156 	}
1157 
1158 	return 0;
1159 
1160 error:
1161 	deactivate_locked_super(sb);
1162 	return err;
1163 }
1164 EXPORT_SYMBOL(vfs_get_super);
1165 
1166 int get_tree_nodev(struct fs_context *fc,
1167 		  int (*fill_super)(struct super_block *sb,
1168 				    struct fs_context *fc))
1169 {
1170 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1171 }
1172 EXPORT_SYMBOL(get_tree_nodev);
1173 
1174 int get_tree_single(struct fs_context *fc,
1175 		  int (*fill_super)(struct super_block *sb,
1176 				    struct fs_context *fc))
1177 {
1178 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1179 }
1180 EXPORT_SYMBOL(get_tree_single);
1181 
1182 int get_tree_single_reconf(struct fs_context *fc,
1183 		  int (*fill_super)(struct super_block *sb,
1184 				    struct fs_context *fc))
1185 {
1186 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1187 }
1188 EXPORT_SYMBOL(get_tree_single_reconf);
1189 
1190 int get_tree_keyed(struct fs_context *fc,
1191 		  int (*fill_super)(struct super_block *sb,
1192 				    struct fs_context *fc),
1193 		void *key)
1194 {
1195 	fc->s_fs_info = key;
1196 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1197 }
1198 EXPORT_SYMBOL(get_tree_keyed);
1199 
1200 #ifdef CONFIG_BLOCK
1201 
1202 static int set_bdev_super(struct super_block *s, void *data)
1203 {
1204 	s->s_bdev = data;
1205 	s->s_dev = s->s_bdev->bd_dev;
1206 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1207 
1208 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1209 		s->s_iflags |= SB_I_STABLE_WRITES;
1210 	return 0;
1211 }
1212 
1213 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1214 {
1215 	return set_bdev_super(s, fc->sget_key);
1216 }
1217 
1218 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1219 {
1220 	return s->s_bdev == fc->sget_key;
1221 }
1222 
1223 /**
1224  * get_tree_bdev - Get a superblock based on a single block device
1225  * @fc: The filesystem context holding the parameters
1226  * @fill_super: Helper to initialise a new superblock
1227  */
1228 int get_tree_bdev(struct fs_context *fc,
1229 		int (*fill_super)(struct super_block *,
1230 				  struct fs_context *))
1231 {
1232 	struct block_device *bdev;
1233 	struct super_block *s;
1234 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1235 	int error = 0;
1236 
1237 	if (!(fc->sb_flags & SB_RDONLY))
1238 		mode |= FMODE_WRITE;
1239 
1240 	if (!fc->source)
1241 		return invalf(fc, "No source specified");
1242 
1243 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1244 	if (IS_ERR(bdev)) {
1245 		errorf(fc, "%s: Can't open blockdev", fc->source);
1246 		return PTR_ERR(bdev);
1247 	}
1248 
1249 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1250 	 * will protect the lockfs code from trying to start a snapshot while
1251 	 * we are mounting
1252 	 */
1253 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1254 	if (bdev->bd_fsfreeze_count > 0) {
1255 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1256 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1257 		blkdev_put(bdev, mode);
1258 		return -EBUSY;
1259 	}
1260 
1261 	fc->sb_flags |= SB_NOSEC;
1262 	fc->sget_key = bdev;
1263 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1264 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1265 	if (IS_ERR(s)) {
1266 		blkdev_put(bdev, mode);
1267 		return PTR_ERR(s);
1268 	}
1269 
1270 	if (s->s_root) {
1271 		/* Don't summarily change the RO/RW state. */
1272 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1273 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1274 			deactivate_locked_super(s);
1275 			blkdev_put(bdev, mode);
1276 			return -EBUSY;
1277 		}
1278 
1279 		/*
1280 		 * s_umount nests inside bd_mutex during
1281 		 * __invalidate_device().  blkdev_put() acquires
1282 		 * bd_mutex and can't be called under s_umount.  Drop
1283 		 * s_umount temporarily.  This is safe as we're
1284 		 * holding an active reference.
1285 		 */
1286 		up_write(&s->s_umount);
1287 		blkdev_put(bdev, mode);
1288 		down_write(&s->s_umount);
1289 	} else {
1290 		s->s_mode = mode;
1291 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1292 		sb_set_blocksize(s, block_size(bdev));
1293 		error = fill_super(s, fc);
1294 		if (error) {
1295 			deactivate_locked_super(s);
1296 			return error;
1297 		}
1298 
1299 		s->s_flags |= SB_ACTIVE;
1300 		bdev->bd_super = s;
1301 	}
1302 
1303 	BUG_ON(fc->root);
1304 	fc->root = dget(s->s_root);
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(get_tree_bdev);
1308 
1309 static int test_bdev_super(struct super_block *s, void *data)
1310 {
1311 	return (void *)s->s_bdev == data;
1312 }
1313 
1314 struct dentry *mount_bdev(struct file_system_type *fs_type,
1315 	int flags, const char *dev_name, void *data,
1316 	int (*fill_super)(struct super_block *, void *, int))
1317 {
1318 	struct block_device *bdev;
1319 	struct super_block *s;
1320 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1321 	int error = 0;
1322 
1323 	if (!(flags & SB_RDONLY))
1324 		mode |= FMODE_WRITE;
1325 
1326 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1327 	if (IS_ERR(bdev))
1328 		return ERR_CAST(bdev);
1329 
1330 	/*
1331 	 * once the super is inserted into the list by sget, s_umount
1332 	 * will protect the lockfs code from trying to start a snapshot
1333 	 * while we are mounting
1334 	 */
1335 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1336 	if (bdev->bd_fsfreeze_count > 0) {
1337 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1338 		error = -EBUSY;
1339 		goto error_bdev;
1340 	}
1341 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1342 		 bdev);
1343 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1344 	if (IS_ERR(s))
1345 		goto error_s;
1346 
1347 	if (s->s_root) {
1348 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1349 			deactivate_locked_super(s);
1350 			error = -EBUSY;
1351 			goto error_bdev;
1352 		}
1353 
1354 		/*
1355 		 * s_umount nests inside bd_mutex during
1356 		 * __invalidate_device().  blkdev_put() acquires
1357 		 * bd_mutex and can't be called under s_umount.  Drop
1358 		 * s_umount temporarily.  This is safe as we're
1359 		 * holding an active reference.
1360 		 */
1361 		up_write(&s->s_umount);
1362 		blkdev_put(bdev, mode);
1363 		down_write(&s->s_umount);
1364 	} else {
1365 		s->s_mode = mode;
1366 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1367 		sb_set_blocksize(s, block_size(bdev));
1368 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1369 		if (error) {
1370 			deactivate_locked_super(s);
1371 			goto error;
1372 		}
1373 
1374 		s->s_flags |= SB_ACTIVE;
1375 		bdev->bd_super = s;
1376 	}
1377 
1378 	return dget(s->s_root);
1379 
1380 error_s:
1381 	error = PTR_ERR(s);
1382 error_bdev:
1383 	blkdev_put(bdev, mode);
1384 error:
1385 	return ERR_PTR(error);
1386 }
1387 EXPORT_SYMBOL(mount_bdev);
1388 
1389 void kill_block_super(struct super_block *sb)
1390 {
1391 	struct block_device *bdev = sb->s_bdev;
1392 	fmode_t mode = sb->s_mode;
1393 
1394 	bdev->bd_super = NULL;
1395 	generic_shutdown_super(sb);
1396 	sync_blockdev(bdev);
1397 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1398 	blkdev_put(bdev, mode | FMODE_EXCL);
1399 }
1400 
1401 EXPORT_SYMBOL(kill_block_super);
1402 #endif
1403 
1404 struct dentry *mount_nodev(struct file_system_type *fs_type,
1405 	int flags, void *data,
1406 	int (*fill_super)(struct super_block *, void *, int))
1407 {
1408 	int error;
1409 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1410 
1411 	if (IS_ERR(s))
1412 		return ERR_CAST(s);
1413 
1414 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1415 	if (error) {
1416 		deactivate_locked_super(s);
1417 		return ERR_PTR(error);
1418 	}
1419 	s->s_flags |= SB_ACTIVE;
1420 	return dget(s->s_root);
1421 }
1422 EXPORT_SYMBOL(mount_nodev);
1423 
1424 static int reconfigure_single(struct super_block *s,
1425 			      int flags, void *data)
1426 {
1427 	struct fs_context *fc;
1428 	int ret;
1429 
1430 	/* The caller really need to be passing fc down into mount_single(),
1431 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1432 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1433 	 * mount should be rejected if the parameters are not compatible.
1434 	 */
1435 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1436 	if (IS_ERR(fc))
1437 		return PTR_ERR(fc);
1438 
1439 	ret = parse_monolithic_mount_data(fc, data);
1440 	if (ret < 0)
1441 		goto out;
1442 
1443 	ret = reconfigure_super(fc);
1444 out:
1445 	put_fs_context(fc);
1446 	return ret;
1447 }
1448 
1449 static int compare_single(struct super_block *s, void *p)
1450 {
1451 	return 1;
1452 }
1453 
1454 struct dentry *mount_single(struct file_system_type *fs_type,
1455 	int flags, void *data,
1456 	int (*fill_super)(struct super_block *, void *, int))
1457 {
1458 	struct super_block *s;
1459 	int error;
1460 
1461 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1462 	if (IS_ERR(s))
1463 		return ERR_CAST(s);
1464 	if (!s->s_root) {
1465 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1466 		if (!error)
1467 			s->s_flags |= SB_ACTIVE;
1468 	} else {
1469 		error = reconfigure_single(s, flags, data);
1470 	}
1471 	if (unlikely(error)) {
1472 		deactivate_locked_super(s);
1473 		return ERR_PTR(error);
1474 	}
1475 	return dget(s->s_root);
1476 }
1477 EXPORT_SYMBOL(mount_single);
1478 
1479 /**
1480  * vfs_get_tree - Get the mountable root
1481  * @fc: The superblock configuration context.
1482  *
1483  * The filesystem is invoked to get or create a superblock which can then later
1484  * be used for mounting.  The filesystem places a pointer to the root to be
1485  * used for mounting in @fc->root.
1486  */
1487 int vfs_get_tree(struct fs_context *fc)
1488 {
1489 	struct super_block *sb;
1490 	int error;
1491 
1492 	if (fc->root)
1493 		return -EBUSY;
1494 
1495 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1496 	 * on the superblock.
1497 	 */
1498 	error = fc->ops->get_tree(fc);
1499 	if (error < 0)
1500 		return error;
1501 
1502 	if (!fc->root) {
1503 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1504 		       fc->fs_type->name);
1505 		/* We don't know what the locking state of the superblock is -
1506 		 * if there is a superblock.
1507 		 */
1508 		BUG();
1509 	}
1510 
1511 	sb = fc->root->d_sb;
1512 	WARN_ON(!sb->s_bdi);
1513 
1514 	/*
1515 	 * Write barrier is for super_cache_count(). We place it before setting
1516 	 * SB_BORN as the data dependency between the two functions is the
1517 	 * superblock structure contents that we just set up, not the SB_BORN
1518 	 * flag.
1519 	 */
1520 	smp_wmb();
1521 	sb->s_flags |= SB_BORN;
1522 
1523 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1524 	if (unlikely(error)) {
1525 		fc_drop_locked(fc);
1526 		return error;
1527 	}
1528 
1529 	/*
1530 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1531 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1532 	 * this warning for a little while to try and catch filesystems that
1533 	 * violate this rule.
1534 	 */
1535 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1536 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL(vfs_get_tree);
1541 
1542 /*
1543  * Setup private BDI for given superblock. It gets automatically cleaned up
1544  * in generic_shutdown_super().
1545  */
1546 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1547 {
1548 	struct backing_dev_info *bdi;
1549 	int err;
1550 	va_list args;
1551 
1552 	bdi = bdi_alloc(NUMA_NO_NODE);
1553 	if (!bdi)
1554 		return -ENOMEM;
1555 
1556 	va_start(args, fmt);
1557 	err = bdi_register_va(bdi, fmt, args);
1558 	va_end(args);
1559 	if (err) {
1560 		bdi_put(bdi);
1561 		return err;
1562 	}
1563 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1564 	sb->s_bdi = bdi;
1565 
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL(super_setup_bdi_name);
1569 
1570 /*
1571  * Setup private BDI for given superblock. I gets automatically cleaned up
1572  * in generic_shutdown_super().
1573  */
1574 int super_setup_bdi(struct super_block *sb)
1575 {
1576 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1577 
1578 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1579 				    atomic_long_inc_return(&bdi_seq));
1580 }
1581 EXPORT_SYMBOL(super_setup_bdi);
1582 
1583 /**
1584  * sb_wait_write - wait until all writers to given file system finish
1585  * @sb: the super for which we wait
1586  * @level: type of writers we wait for (normal vs page fault)
1587  *
1588  * This function waits until there are no writers of given type to given file
1589  * system.
1590  */
1591 static void sb_wait_write(struct super_block *sb, int level)
1592 {
1593 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1594 }
1595 
1596 /*
1597  * We are going to return to userspace and forget about these locks, the
1598  * ownership goes to the caller of thaw_super() which does unlock().
1599  */
1600 static void lockdep_sb_freeze_release(struct super_block *sb)
1601 {
1602 	int level;
1603 
1604 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1605 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1606 }
1607 
1608 /*
1609  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1610  */
1611 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1612 {
1613 	int level;
1614 
1615 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1616 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1617 }
1618 
1619 static void sb_freeze_unlock(struct super_block *sb)
1620 {
1621 	int level;
1622 
1623 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1624 		percpu_up_write(sb->s_writers.rw_sem + level);
1625 }
1626 
1627 /**
1628  * freeze_super - lock the filesystem and force it into a consistent state
1629  * @sb: the super to lock
1630  *
1631  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1632  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1633  * -EBUSY.
1634  *
1635  * During this function, sb->s_writers.frozen goes through these values:
1636  *
1637  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1638  *
1639  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1640  * writes should be blocked, though page faults are still allowed. We wait for
1641  * all writes to complete and then proceed to the next stage.
1642  *
1643  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1644  * but internal fs threads can still modify the filesystem (although they
1645  * should not dirty new pages or inodes), writeback can run etc. After waiting
1646  * for all running page faults we sync the filesystem which will clean all
1647  * dirty pages and inodes (no new dirty pages or inodes can be created when
1648  * sync is running).
1649  *
1650  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1651  * modification are blocked (e.g. XFS preallocation truncation on inode
1652  * reclaim). This is usually implemented by blocking new transactions for
1653  * filesystems that have them and need this additional guard. After all
1654  * internal writers are finished we call ->freeze_fs() to finish filesystem
1655  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1656  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1657  *
1658  * sb->s_writers.frozen is protected by sb->s_umount.
1659  */
1660 int freeze_super(struct super_block *sb)
1661 {
1662 	int ret;
1663 
1664 	atomic_inc(&sb->s_active);
1665 	down_write(&sb->s_umount);
1666 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1667 		deactivate_locked_super(sb);
1668 		return -EBUSY;
1669 	}
1670 
1671 	if (!(sb->s_flags & SB_BORN)) {
1672 		up_write(&sb->s_umount);
1673 		return 0;	/* sic - it's "nothing to do" */
1674 	}
1675 
1676 	if (sb_rdonly(sb)) {
1677 		/* Nothing to do really... */
1678 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1679 		up_write(&sb->s_umount);
1680 		return 0;
1681 	}
1682 
1683 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1684 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1685 	up_write(&sb->s_umount);
1686 	sb_wait_write(sb, SB_FREEZE_WRITE);
1687 	down_write(&sb->s_umount);
1688 
1689 	/* Now we go and block page faults... */
1690 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1691 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1692 
1693 	/* All writers are done so after syncing there won't be dirty data */
1694 	sync_filesystem(sb);
1695 
1696 	/* Now wait for internal filesystem counter */
1697 	sb->s_writers.frozen = SB_FREEZE_FS;
1698 	sb_wait_write(sb, SB_FREEZE_FS);
1699 
1700 	if (sb->s_op->freeze_fs) {
1701 		ret = sb->s_op->freeze_fs(sb);
1702 		if (ret) {
1703 			printk(KERN_ERR
1704 				"VFS:Filesystem freeze failed\n");
1705 			sb->s_writers.frozen = SB_UNFROZEN;
1706 			sb_freeze_unlock(sb);
1707 			wake_up(&sb->s_writers.wait_unfrozen);
1708 			deactivate_locked_super(sb);
1709 			return ret;
1710 		}
1711 	}
1712 	/*
1713 	 * For debugging purposes so that fs can warn if it sees write activity
1714 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1715 	 */
1716 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1717 	lockdep_sb_freeze_release(sb);
1718 	up_write(&sb->s_umount);
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL(freeze_super);
1722 
1723 static int thaw_super_locked(struct super_block *sb)
1724 {
1725 	int error;
1726 
1727 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1728 		up_write(&sb->s_umount);
1729 		return -EINVAL;
1730 	}
1731 
1732 	if (sb_rdonly(sb)) {
1733 		sb->s_writers.frozen = SB_UNFROZEN;
1734 		goto out;
1735 	}
1736 
1737 	lockdep_sb_freeze_acquire(sb);
1738 
1739 	if (sb->s_op->unfreeze_fs) {
1740 		error = sb->s_op->unfreeze_fs(sb);
1741 		if (error) {
1742 			printk(KERN_ERR
1743 				"VFS:Filesystem thaw failed\n");
1744 			lockdep_sb_freeze_release(sb);
1745 			up_write(&sb->s_umount);
1746 			return error;
1747 		}
1748 	}
1749 
1750 	sb->s_writers.frozen = SB_UNFROZEN;
1751 	sb_freeze_unlock(sb);
1752 out:
1753 	wake_up(&sb->s_writers.wait_unfrozen);
1754 	deactivate_locked_super(sb);
1755 	return 0;
1756 }
1757 
1758 /**
1759  * thaw_super -- unlock filesystem
1760  * @sb: the super to thaw
1761  *
1762  * Unlocks the filesystem and marks it writeable again after freeze_super().
1763  */
1764 int thaw_super(struct super_block *sb)
1765 {
1766 	down_write(&sb->s_umount);
1767 	return thaw_super_locked(sb);
1768 }
1769 EXPORT_SYMBOL(thaw_super);
1770