1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <uapi/linux/mount.h> 39 #include "internal.h" 40 41 static int thaw_super_locked(struct super_block *sb); 42 43 static LIST_HEAD(super_blocks); 44 static DEFINE_SPINLOCK(sb_lock); 45 46 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 47 "sb_writers", 48 "sb_pagefaults", 49 "sb_internal", 50 }; 51 52 /* 53 * One thing we have to be careful of with a per-sb shrinker is that we don't 54 * drop the last active reference to the superblock from within the shrinker. 55 * If that happens we could trigger unregistering the shrinker from within the 56 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 57 * take a passive reference to the superblock to avoid this from occurring. 58 */ 59 static unsigned long super_cache_scan(struct shrinker *shrink, 60 struct shrink_control *sc) 61 { 62 struct super_block *sb; 63 long fs_objects = 0; 64 long total_objects; 65 long freed = 0; 66 long dentries; 67 long inodes; 68 69 sb = container_of(shrink, struct super_block, s_shrink); 70 71 /* 72 * Deadlock avoidance. We may hold various FS locks, and we don't want 73 * to recurse into the FS that called us in clear_inode() and friends.. 74 */ 75 if (!(sc->gfp_mask & __GFP_FS)) 76 return SHRINK_STOP; 77 78 if (!trylock_super(sb)) 79 return SHRINK_STOP; 80 81 if (sb->s_op->nr_cached_objects) 82 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 83 84 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 85 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 86 total_objects = dentries + inodes + fs_objects + 1; 87 if (!total_objects) 88 total_objects = 1; 89 90 /* proportion the scan between the caches */ 91 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 92 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 93 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 94 95 /* 96 * prune the dcache first as the icache is pinned by it, then 97 * prune the icache, followed by the filesystem specific caches 98 * 99 * Ensure that we always scan at least one object - memcg kmem 100 * accounting uses this to fully empty the caches. 101 */ 102 sc->nr_to_scan = dentries + 1; 103 freed = prune_dcache_sb(sb, sc); 104 sc->nr_to_scan = inodes + 1; 105 freed += prune_icache_sb(sb, sc); 106 107 if (fs_objects) { 108 sc->nr_to_scan = fs_objects + 1; 109 freed += sb->s_op->free_cached_objects(sb, sc); 110 } 111 112 up_read(&sb->s_umount); 113 return freed; 114 } 115 116 static unsigned long super_cache_count(struct shrinker *shrink, 117 struct shrink_control *sc) 118 { 119 struct super_block *sb; 120 long total_objects = 0; 121 122 sb = container_of(shrink, struct super_block, s_shrink); 123 124 /* 125 * We don't call trylock_super() here as it is a scalability bottleneck, 126 * so we're exposed to partial setup state. The shrinker rwsem does not 127 * protect filesystem operations backing list_lru_shrink_count() or 128 * s_op->nr_cached_objects(). Counts can change between 129 * super_cache_count and super_cache_scan, so we really don't need locks 130 * here. 131 * 132 * However, if we are currently mounting the superblock, the underlying 133 * filesystem might be in a state of partial construction and hence it 134 * is dangerous to access it. trylock_super() uses a SB_BORN check to 135 * avoid this situation, so do the same here. The memory barrier is 136 * matched with the one in mount_fs() as we don't hold locks here. 137 */ 138 if (!(sb->s_flags & SB_BORN)) 139 return 0; 140 smp_rmb(); 141 142 if (sb->s_op && sb->s_op->nr_cached_objects) 143 total_objects = sb->s_op->nr_cached_objects(sb, sc); 144 145 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 146 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 147 148 if (!total_objects) 149 return SHRINK_EMPTY; 150 151 total_objects = vfs_pressure_ratio(total_objects); 152 return total_objects; 153 } 154 155 static void destroy_super_work(struct work_struct *work) 156 { 157 struct super_block *s = container_of(work, struct super_block, 158 destroy_work); 159 int i; 160 161 for (i = 0; i < SB_FREEZE_LEVELS; i++) 162 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 163 kfree(s); 164 } 165 166 static void destroy_super_rcu(struct rcu_head *head) 167 { 168 struct super_block *s = container_of(head, struct super_block, rcu); 169 INIT_WORK(&s->destroy_work, destroy_super_work); 170 schedule_work(&s->destroy_work); 171 } 172 173 /* Free a superblock that has never been seen by anyone */ 174 static void destroy_unused_super(struct super_block *s) 175 { 176 if (!s) 177 return; 178 up_write(&s->s_umount); 179 list_lru_destroy(&s->s_dentry_lru); 180 list_lru_destroy(&s->s_inode_lru); 181 security_sb_free(s); 182 put_user_ns(s->s_user_ns); 183 kfree(s->s_subtype); 184 free_prealloced_shrinker(&s->s_shrink); 185 /* no delays needed */ 186 destroy_super_work(&s->destroy_work); 187 } 188 189 /** 190 * alloc_super - create new superblock 191 * @type: filesystem type superblock should belong to 192 * @flags: the mount flags 193 * @user_ns: User namespace for the super_block 194 * 195 * Allocates and initializes a new &struct super_block. alloc_super() 196 * returns a pointer new superblock or %NULL if allocation had failed. 197 */ 198 static struct super_block *alloc_super(struct file_system_type *type, int flags, 199 struct user_namespace *user_ns) 200 { 201 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 202 static const struct super_operations default_op; 203 int i; 204 205 if (!s) 206 return NULL; 207 208 INIT_LIST_HEAD(&s->s_mounts); 209 s->s_user_ns = get_user_ns(user_ns); 210 init_rwsem(&s->s_umount); 211 lockdep_set_class(&s->s_umount, &type->s_umount_key); 212 /* 213 * sget() can have s_umount recursion. 214 * 215 * When it cannot find a suitable sb, it allocates a new 216 * one (this one), and tries again to find a suitable old 217 * one. 218 * 219 * In case that succeeds, it will acquire the s_umount 220 * lock of the old one. Since these are clearly distrinct 221 * locks, and this object isn't exposed yet, there's no 222 * risk of deadlocks. 223 * 224 * Annotate this by putting this lock in a different 225 * subclass. 226 */ 227 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 228 229 if (security_sb_alloc(s)) 230 goto fail; 231 232 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 233 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 234 sb_writers_name[i], 235 &type->s_writers_key[i])) 236 goto fail; 237 } 238 init_waitqueue_head(&s->s_writers.wait_unfrozen); 239 s->s_bdi = &noop_backing_dev_info; 240 s->s_flags = flags; 241 if (s->s_user_ns != &init_user_ns) 242 s->s_iflags |= SB_I_NODEV; 243 INIT_HLIST_NODE(&s->s_instances); 244 INIT_HLIST_BL_HEAD(&s->s_roots); 245 mutex_init(&s->s_sync_lock); 246 INIT_LIST_HEAD(&s->s_inodes); 247 spin_lock_init(&s->s_inode_list_lock); 248 INIT_LIST_HEAD(&s->s_inodes_wb); 249 spin_lock_init(&s->s_inode_wblist_lock); 250 251 s->s_count = 1; 252 atomic_set(&s->s_active, 1); 253 mutex_init(&s->s_vfs_rename_mutex); 254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 255 init_rwsem(&s->s_dquot.dqio_sem); 256 s->s_maxbytes = MAX_NON_LFS; 257 s->s_op = &default_op; 258 s->s_time_gran = 1000000000; 259 s->cleancache_poolid = CLEANCACHE_NO_POOL; 260 261 s->s_shrink.seeks = DEFAULT_SEEKS; 262 s->s_shrink.scan_objects = super_cache_scan; 263 s->s_shrink.count_objects = super_cache_count; 264 s->s_shrink.batch = 1024; 265 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 266 if (prealloc_shrinker(&s->s_shrink)) 267 goto fail; 268 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 269 goto fail; 270 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 271 goto fail; 272 return s; 273 274 fail: 275 destroy_unused_super(s); 276 return NULL; 277 } 278 279 /* Superblock refcounting */ 280 281 /* 282 * Drop a superblock's refcount. The caller must hold sb_lock. 283 */ 284 static void __put_super(struct super_block *s) 285 { 286 if (!--s->s_count) { 287 list_del_init(&s->s_list); 288 WARN_ON(s->s_dentry_lru.node); 289 WARN_ON(s->s_inode_lru.node); 290 WARN_ON(!list_empty(&s->s_mounts)); 291 security_sb_free(s); 292 put_user_ns(s->s_user_ns); 293 kfree(s->s_subtype); 294 call_rcu(&s->rcu, destroy_super_rcu); 295 } 296 } 297 298 /** 299 * put_super - drop a temporary reference to superblock 300 * @sb: superblock in question 301 * 302 * Drops a temporary reference, frees superblock if there's no 303 * references left. 304 */ 305 static void put_super(struct super_block *sb) 306 { 307 spin_lock(&sb_lock); 308 __put_super(sb); 309 spin_unlock(&sb_lock); 310 } 311 312 313 /** 314 * deactivate_locked_super - drop an active reference to superblock 315 * @s: superblock to deactivate 316 * 317 * Drops an active reference to superblock, converting it into a temporary 318 * one if there is no other active references left. In that case we 319 * tell fs driver to shut it down and drop the temporary reference we 320 * had just acquired. 321 * 322 * Caller holds exclusive lock on superblock; that lock is released. 323 */ 324 void deactivate_locked_super(struct super_block *s) 325 { 326 struct file_system_type *fs = s->s_type; 327 if (atomic_dec_and_test(&s->s_active)) { 328 cleancache_invalidate_fs(s); 329 unregister_shrinker(&s->s_shrink); 330 fs->kill_sb(s); 331 332 /* 333 * Since list_lru_destroy() may sleep, we cannot call it from 334 * put_super(), where we hold the sb_lock. Therefore we destroy 335 * the lru lists right now. 336 */ 337 list_lru_destroy(&s->s_dentry_lru); 338 list_lru_destroy(&s->s_inode_lru); 339 340 put_filesystem(fs); 341 put_super(s); 342 } else { 343 up_write(&s->s_umount); 344 } 345 } 346 347 EXPORT_SYMBOL(deactivate_locked_super); 348 349 /** 350 * deactivate_super - drop an active reference to superblock 351 * @s: superblock to deactivate 352 * 353 * Variant of deactivate_locked_super(), except that superblock is *not* 354 * locked by caller. If we are going to drop the final active reference, 355 * lock will be acquired prior to that. 356 */ 357 void deactivate_super(struct super_block *s) 358 { 359 if (!atomic_add_unless(&s->s_active, -1, 1)) { 360 down_write(&s->s_umount); 361 deactivate_locked_super(s); 362 } 363 } 364 365 EXPORT_SYMBOL(deactivate_super); 366 367 /** 368 * grab_super - acquire an active reference 369 * @s: reference we are trying to make active 370 * 371 * Tries to acquire an active reference. grab_super() is used when we 372 * had just found a superblock in super_blocks or fs_type->fs_supers 373 * and want to turn it into a full-blown active reference. grab_super() 374 * is called with sb_lock held and drops it. Returns 1 in case of 375 * success, 0 if we had failed (superblock contents was already dead or 376 * dying when grab_super() had been called). Note that this is only 377 * called for superblocks not in rundown mode (== ones still on ->fs_supers 378 * of their type), so increment of ->s_count is OK here. 379 */ 380 static int grab_super(struct super_block *s) __releases(sb_lock) 381 { 382 s->s_count++; 383 spin_unlock(&sb_lock); 384 down_write(&s->s_umount); 385 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 386 put_super(s); 387 return 1; 388 } 389 up_write(&s->s_umount); 390 put_super(s); 391 return 0; 392 } 393 394 /* 395 * trylock_super - try to grab ->s_umount shared 396 * @sb: reference we are trying to grab 397 * 398 * Try to prevent fs shutdown. This is used in places where we 399 * cannot take an active reference but we need to ensure that the 400 * filesystem is not shut down while we are working on it. It returns 401 * false if we cannot acquire s_umount or if we lose the race and 402 * filesystem already got into shutdown, and returns true with the s_umount 403 * lock held in read mode in case of success. On successful return, 404 * the caller must drop the s_umount lock when done. 405 * 406 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 407 * The reason why it's safe is that we are OK with doing trylock instead 408 * of down_read(). There's a couple of places that are OK with that, but 409 * it's very much not a general-purpose interface. 410 */ 411 bool trylock_super(struct super_block *sb) 412 { 413 if (down_read_trylock(&sb->s_umount)) { 414 if (!hlist_unhashed(&sb->s_instances) && 415 sb->s_root && (sb->s_flags & SB_BORN)) 416 return true; 417 up_read(&sb->s_umount); 418 } 419 420 return false; 421 } 422 423 /** 424 * generic_shutdown_super - common helper for ->kill_sb() 425 * @sb: superblock to kill 426 * 427 * generic_shutdown_super() does all fs-independent work on superblock 428 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 429 * that need destruction out of superblock, call generic_shutdown_super() 430 * and release aforementioned objects. Note: dentries and inodes _are_ 431 * taken care of and do not need specific handling. 432 * 433 * Upon calling this function, the filesystem may no longer alter or 434 * rearrange the set of dentries belonging to this super_block, nor may it 435 * change the attachments of dentries to inodes. 436 */ 437 void generic_shutdown_super(struct super_block *sb) 438 { 439 const struct super_operations *sop = sb->s_op; 440 441 if (sb->s_root) { 442 shrink_dcache_for_umount(sb); 443 sync_filesystem(sb); 444 sb->s_flags &= ~SB_ACTIVE; 445 446 fsnotify_sb_delete(sb); 447 cgroup_writeback_umount(); 448 449 evict_inodes(sb); 450 451 if (sb->s_dio_done_wq) { 452 destroy_workqueue(sb->s_dio_done_wq); 453 sb->s_dio_done_wq = NULL; 454 } 455 456 if (sop->put_super) 457 sop->put_super(sb); 458 459 if (!list_empty(&sb->s_inodes)) { 460 printk("VFS: Busy inodes after unmount of %s. " 461 "Self-destruct in 5 seconds. Have a nice day...\n", 462 sb->s_id); 463 } 464 } 465 spin_lock(&sb_lock); 466 /* should be initialized for __put_super_and_need_restart() */ 467 hlist_del_init(&sb->s_instances); 468 spin_unlock(&sb_lock); 469 up_write(&sb->s_umount); 470 if (sb->s_bdi != &noop_backing_dev_info) { 471 bdi_put(sb->s_bdi); 472 sb->s_bdi = &noop_backing_dev_info; 473 } 474 } 475 476 EXPORT_SYMBOL(generic_shutdown_super); 477 478 /** 479 * sget_userns - find or create a superblock 480 * @type: filesystem type superblock should belong to 481 * @test: comparison callback 482 * @set: setup callback 483 * @flags: mount flags 484 * @user_ns: User namespace for the super_block 485 * @data: argument to each of them 486 */ 487 struct super_block *sget_userns(struct file_system_type *type, 488 int (*test)(struct super_block *,void *), 489 int (*set)(struct super_block *,void *), 490 int flags, struct user_namespace *user_ns, 491 void *data) 492 { 493 struct super_block *s = NULL; 494 struct super_block *old; 495 int err; 496 497 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 498 !(type->fs_flags & FS_USERNS_MOUNT) && 499 !capable(CAP_SYS_ADMIN)) 500 return ERR_PTR(-EPERM); 501 retry: 502 spin_lock(&sb_lock); 503 if (test) { 504 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 505 if (!test(old, data)) 506 continue; 507 if (user_ns != old->s_user_ns) { 508 spin_unlock(&sb_lock); 509 destroy_unused_super(s); 510 return ERR_PTR(-EBUSY); 511 } 512 if (!grab_super(old)) 513 goto retry; 514 destroy_unused_super(s); 515 return old; 516 } 517 } 518 if (!s) { 519 spin_unlock(&sb_lock); 520 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 521 if (!s) 522 return ERR_PTR(-ENOMEM); 523 goto retry; 524 } 525 526 err = set(s, data); 527 if (err) { 528 spin_unlock(&sb_lock); 529 destroy_unused_super(s); 530 return ERR_PTR(err); 531 } 532 s->s_type = type; 533 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 534 list_add_tail(&s->s_list, &super_blocks); 535 hlist_add_head(&s->s_instances, &type->fs_supers); 536 spin_unlock(&sb_lock); 537 get_filesystem(type); 538 register_shrinker_prepared(&s->s_shrink); 539 return s; 540 } 541 542 EXPORT_SYMBOL(sget_userns); 543 544 /** 545 * sget - find or create a superblock 546 * @type: filesystem type superblock should belong to 547 * @test: comparison callback 548 * @set: setup callback 549 * @flags: mount flags 550 * @data: argument to each of them 551 */ 552 struct super_block *sget(struct file_system_type *type, 553 int (*test)(struct super_block *,void *), 554 int (*set)(struct super_block *,void *), 555 int flags, 556 void *data) 557 { 558 struct user_namespace *user_ns = current_user_ns(); 559 560 /* We don't yet pass the user namespace of the parent 561 * mount through to here so always use &init_user_ns 562 * until that changes. 563 */ 564 if (flags & SB_SUBMOUNT) 565 user_ns = &init_user_ns; 566 567 /* Ensure the requestor has permissions over the target filesystem */ 568 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 569 return ERR_PTR(-EPERM); 570 571 return sget_userns(type, test, set, flags, user_ns, data); 572 } 573 574 EXPORT_SYMBOL(sget); 575 576 void drop_super(struct super_block *sb) 577 { 578 up_read(&sb->s_umount); 579 put_super(sb); 580 } 581 582 EXPORT_SYMBOL(drop_super); 583 584 void drop_super_exclusive(struct super_block *sb) 585 { 586 up_write(&sb->s_umount); 587 put_super(sb); 588 } 589 EXPORT_SYMBOL(drop_super_exclusive); 590 591 static void __iterate_supers(void (*f)(struct super_block *)) 592 { 593 struct super_block *sb, *p = NULL; 594 595 spin_lock(&sb_lock); 596 list_for_each_entry(sb, &super_blocks, s_list) { 597 if (hlist_unhashed(&sb->s_instances)) 598 continue; 599 sb->s_count++; 600 spin_unlock(&sb_lock); 601 602 f(sb); 603 604 spin_lock(&sb_lock); 605 if (p) 606 __put_super(p); 607 p = sb; 608 } 609 if (p) 610 __put_super(p); 611 spin_unlock(&sb_lock); 612 } 613 /** 614 * iterate_supers - call function for all active superblocks 615 * @f: function to call 616 * @arg: argument to pass to it 617 * 618 * Scans the superblock list and calls given function, passing it 619 * locked superblock and given argument. 620 */ 621 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 622 { 623 struct super_block *sb, *p = NULL; 624 625 spin_lock(&sb_lock); 626 list_for_each_entry(sb, &super_blocks, s_list) { 627 if (hlist_unhashed(&sb->s_instances)) 628 continue; 629 sb->s_count++; 630 spin_unlock(&sb_lock); 631 632 down_read(&sb->s_umount); 633 if (sb->s_root && (sb->s_flags & SB_BORN)) 634 f(sb, arg); 635 up_read(&sb->s_umount); 636 637 spin_lock(&sb_lock); 638 if (p) 639 __put_super(p); 640 p = sb; 641 } 642 if (p) 643 __put_super(p); 644 spin_unlock(&sb_lock); 645 } 646 647 /** 648 * iterate_supers_type - call function for superblocks of given type 649 * @type: fs type 650 * @f: function to call 651 * @arg: argument to pass to it 652 * 653 * Scans the superblock list and calls given function, passing it 654 * locked superblock and given argument. 655 */ 656 void iterate_supers_type(struct file_system_type *type, 657 void (*f)(struct super_block *, void *), void *arg) 658 { 659 struct super_block *sb, *p = NULL; 660 661 spin_lock(&sb_lock); 662 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 663 sb->s_count++; 664 spin_unlock(&sb_lock); 665 666 down_read(&sb->s_umount); 667 if (sb->s_root && (sb->s_flags & SB_BORN)) 668 f(sb, arg); 669 up_read(&sb->s_umount); 670 671 spin_lock(&sb_lock); 672 if (p) 673 __put_super(p); 674 p = sb; 675 } 676 if (p) 677 __put_super(p); 678 spin_unlock(&sb_lock); 679 } 680 681 EXPORT_SYMBOL(iterate_supers_type); 682 683 static struct super_block *__get_super(struct block_device *bdev, bool excl) 684 { 685 struct super_block *sb; 686 687 if (!bdev) 688 return NULL; 689 690 spin_lock(&sb_lock); 691 rescan: 692 list_for_each_entry(sb, &super_blocks, s_list) { 693 if (hlist_unhashed(&sb->s_instances)) 694 continue; 695 if (sb->s_bdev == bdev) { 696 sb->s_count++; 697 spin_unlock(&sb_lock); 698 if (!excl) 699 down_read(&sb->s_umount); 700 else 701 down_write(&sb->s_umount); 702 /* still alive? */ 703 if (sb->s_root && (sb->s_flags & SB_BORN)) 704 return sb; 705 if (!excl) 706 up_read(&sb->s_umount); 707 else 708 up_write(&sb->s_umount); 709 /* nope, got unmounted */ 710 spin_lock(&sb_lock); 711 __put_super(sb); 712 goto rescan; 713 } 714 } 715 spin_unlock(&sb_lock); 716 return NULL; 717 } 718 719 /** 720 * get_super - get the superblock of a device 721 * @bdev: device to get the superblock for 722 * 723 * Scans the superblock list and finds the superblock of the file system 724 * mounted on the device given. %NULL is returned if no match is found. 725 */ 726 struct super_block *get_super(struct block_device *bdev) 727 { 728 return __get_super(bdev, false); 729 } 730 EXPORT_SYMBOL(get_super); 731 732 static struct super_block *__get_super_thawed(struct block_device *bdev, 733 bool excl) 734 { 735 while (1) { 736 struct super_block *s = __get_super(bdev, excl); 737 if (!s || s->s_writers.frozen == SB_UNFROZEN) 738 return s; 739 if (!excl) 740 up_read(&s->s_umount); 741 else 742 up_write(&s->s_umount); 743 wait_event(s->s_writers.wait_unfrozen, 744 s->s_writers.frozen == SB_UNFROZEN); 745 put_super(s); 746 } 747 } 748 749 /** 750 * get_super_thawed - get thawed superblock of a device 751 * @bdev: device to get the superblock for 752 * 753 * Scans the superblock list and finds the superblock of the file system 754 * mounted on the device. The superblock is returned once it is thawed 755 * (or immediately if it was not frozen). %NULL is returned if no match 756 * is found. 757 */ 758 struct super_block *get_super_thawed(struct block_device *bdev) 759 { 760 return __get_super_thawed(bdev, false); 761 } 762 EXPORT_SYMBOL(get_super_thawed); 763 764 /** 765 * get_super_exclusive_thawed - get thawed superblock of a device 766 * @bdev: device to get the superblock for 767 * 768 * Scans the superblock list and finds the superblock of the file system 769 * mounted on the device. The superblock is returned once it is thawed 770 * (or immediately if it was not frozen) and s_umount semaphore is held 771 * in exclusive mode. %NULL is returned if no match is found. 772 */ 773 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 774 { 775 return __get_super_thawed(bdev, true); 776 } 777 EXPORT_SYMBOL(get_super_exclusive_thawed); 778 779 /** 780 * get_active_super - get an active reference to the superblock of a device 781 * @bdev: device to get the superblock for 782 * 783 * Scans the superblock list and finds the superblock of the file system 784 * mounted on the device given. Returns the superblock with an active 785 * reference or %NULL if none was found. 786 */ 787 struct super_block *get_active_super(struct block_device *bdev) 788 { 789 struct super_block *sb; 790 791 if (!bdev) 792 return NULL; 793 794 restart: 795 spin_lock(&sb_lock); 796 list_for_each_entry(sb, &super_blocks, s_list) { 797 if (hlist_unhashed(&sb->s_instances)) 798 continue; 799 if (sb->s_bdev == bdev) { 800 if (!grab_super(sb)) 801 goto restart; 802 up_write(&sb->s_umount); 803 return sb; 804 } 805 } 806 spin_unlock(&sb_lock); 807 return NULL; 808 } 809 810 struct super_block *user_get_super(dev_t dev) 811 { 812 struct super_block *sb; 813 814 spin_lock(&sb_lock); 815 rescan: 816 list_for_each_entry(sb, &super_blocks, s_list) { 817 if (hlist_unhashed(&sb->s_instances)) 818 continue; 819 if (sb->s_dev == dev) { 820 sb->s_count++; 821 spin_unlock(&sb_lock); 822 down_read(&sb->s_umount); 823 /* still alive? */ 824 if (sb->s_root && (sb->s_flags & SB_BORN)) 825 return sb; 826 up_read(&sb->s_umount); 827 /* nope, got unmounted */ 828 spin_lock(&sb_lock); 829 __put_super(sb); 830 goto rescan; 831 } 832 } 833 spin_unlock(&sb_lock); 834 return NULL; 835 } 836 837 /** 838 * do_remount_sb - asks filesystem to change mount options. 839 * @sb: superblock in question 840 * @sb_flags: revised superblock flags 841 * @data: the rest of options 842 * @force: whether or not to force the change 843 * 844 * Alters the mount options of a mounted file system. 845 */ 846 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 847 { 848 int retval; 849 int remount_ro; 850 851 if (sb->s_writers.frozen != SB_UNFROZEN) 852 return -EBUSY; 853 854 #ifdef CONFIG_BLOCK 855 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 856 return -EACCES; 857 #endif 858 859 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 860 861 if (remount_ro) { 862 if (!hlist_empty(&sb->s_pins)) { 863 up_write(&sb->s_umount); 864 group_pin_kill(&sb->s_pins); 865 down_write(&sb->s_umount); 866 if (!sb->s_root) 867 return 0; 868 if (sb->s_writers.frozen != SB_UNFROZEN) 869 return -EBUSY; 870 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 871 } 872 } 873 shrink_dcache_sb(sb); 874 875 /* If we are remounting RDONLY and current sb is read/write, 876 make sure there are no rw files opened */ 877 if (remount_ro) { 878 if (force) { 879 sb->s_readonly_remount = 1; 880 smp_wmb(); 881 } else { 882 retval = sb_prepare_remount_readonly(sb); 883 if (retval) 884 return retval; 885 } 886 } 887 888 if (sb->s_op->remount_fs) { 889 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 890 if (retval) { 891 if (!force) 892 goto cancel_readonly; 893 /* If forced remount, go ahead despite any errors */ 894 WARN(1, "forced remount of a %s fs returned %i\n", 895 sb->s_type->name, retval); 896 } 897 } 898 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 899 /* Needs to be ordered wrt mnt_is_readonly() */ 900 smp_wmb(); 901 sb->s_readonly_remount = 0; 902 903 /* 904 * Some filesystems modify their metadata via some other path than the 905 * bdev buffer cache (eg. use a private mapping, or directories in 906 * pagecache, etc). Also file data modifications go via their own 907 * mappings. So If we try to mount readonly then copy the filesystem 908 * from bdev, we could get stale data, so invalidate it to give a best 909 * effort at coherency. 910 */ 911 if (remount_ro && sb->s_bdev) 912 invalidate_bdev(sb->s_bdev); 913 return 0; 914 915 cancel_readonly: 916 sb->s_readonly_remount = 0; 917 return retval; 918 } 919 920 static void do_emergency_remount_callback(struct super_block *sb) 921 { 922 down_write(&sb->s_umount); 923 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 924 !sb_rdonly(sb)) { 925 /* 926 * What lock protects sb->s_flags?? 927 */ 928 do_remount_sb(sb, SB_RDONLY, NULL, 1); 929 } 930 up_write(&sb->s_umount); 931 } 932 933 static void do_emergency_remount(struct work_struct *work) 934 { 935 __iterate_supers(do_emergency_remount_callback); 936 kfree(work); 937 printk("Emergency Remount complete\n"); 938 } 939 940 void emergency_remount(void) 941 { 942 struct work_struct *work; 943 944 work = kmalloc(sizeof(*work), GFP_ATOMIC); 945 if (work) { 946 INIT_WORK(work, do_emergency_remount); 947 schedule_work(work); 948 } 949 } 950 951 static void do_thaw_all_callback(struct super_block *sb) 952 { 953 down_write(&sb->s_umount); 954 if (sb->s_root && sb->s_flags & SB_BORN) { 955 emergency_thaw_bdev(sb); 956 thaw_super_locked(sb); 957 } else { 958 up_write(&sb->s_umount); 959 } 960 } 961 962 static void do_thaw_all(struct work_struct *work) 963 { 964 __iterate_supers(do_thaw_all_callback); 965 kfree(work); 966 printk(KERN_WARNING "Emergency Thaw complete\n"); 967 } 968 969 /** 970 * emergency_thaw_all -- forcibly thaw every frozen filesystem 971 * 972 * Used for emergency unfreeze of all filesystems via SysRq 973 */ 974 void emergency_thaw_all(void) 975 { 976 struct work_struct *work; 977 978 work = kmalloc(sizeof(*work), GFP_ATOMIC); 979 if (work) { 980 INIT_WORK(work, do_thaw_all); 981 schedule_work(work); 982 } 983 } 984 985 static DEFINE_IDA(unnamed_dev_ida); 986 987 /** 988 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 989 * @p: Pointer to a dev_t. 990 * 991 * Filesystems which don't use real block devices can call this function 992 * to allocate a virtual block device. 993 * 994 * Context: Any context. Frequently called while holding sb_lock. 995 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 996 * or -ENOMEM if memory allocation failed. 997 */ 998 int get_anon_bdev(dev_t *p) 999 { 1000 int dev; 1001 1002 /* 1003 * Many userspace utilities consider an FSID of 0 invalid. 1004 * Always return at least 1 from get_anon_bdev. 1005 */ 1006 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1007 GFP_ATOMIC); 1008 if (dev == -ENOSPC) 1009 dev = -EMFILE; 1010 if (dev < 0) 1011 return dev; 1012 1013 *p = MKDEV(0, dev); 1014 return 0; 1015 } 1016 EXPORT_SYMBOL(get_anon_bdev); 1017 1018 void free_anon_bdev(dev_t dev) 1019 { 1020 ida_free(&unnamed_dev_ida, MINOR(dev)); 1021 } 1022 EXPORT_SYMBOL(free_anon_bdev); 1023 1024 int set_anon_super(struct super_block *s, void *data) 1025 { 1026 return get_anon_bdev(&s->s_dev); 1027 } 1028 EXPORT_SYMBOL(set_anon_super); 1029 1030 void kill_anon_super(struct super_block *sb) 1031 { 1032 dev_t dev = sb->s_dev; 1033 generic_shutdown_super(sb); 1034 free_anon_bdev(dev); 1035 } 1036 EXPORT_SYMBOL(kill_anon_super); 1037 1038 void kill_litter_super(struct super_block *sb) 1039 { 1040 if (sb->s_root) 1041 d_genocide(sb->s_root); 1042 kill_anon_super(sb); 1043 } 1044 EXPORT_SYMBOL(kill_litter_super); 1045 1046 static int ns_test_super(struct super_block *sb, void *data) 1047 { 1048 return sb->s_fs_info == data; 1049 } 1050 1051 static int ns_set_super(struct super_block *sb, void *data) 1052 { 1053 sb->s_fs_info = data; 1054 return set_anon_super(sb, NULL); 1055 } 1056 1057 struct dentry *mount_ns(struct file_system_type *fs_type, 1058 int flags, void *data, void *ns, struct user_namespace *user_ns, 1059 int (*fill_super)(struct super_block *, void *, int)) 1060 { 1061 struct super_block *sb; 1062 1063 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1064 * over the namespace. 1065 */ 1066 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1067 return ERR_PTR(-EPERM); 1068 1069 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1070 user_ns, ns); 1071 if (IS_ERR(sb)) 1072 return ERR_CAST(sb); 1073 1074 if (!sb->s_root) { 1075 int err; 1076 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1077 if (err) { 1078 deactivate_locked_super(sb); 1079 return ERR_PTR(err); 1080 } 1081 1082 sb->s_flags |= SB_ACTIVE; 1083 } 1084 1085 return dget(sb->s_root); 1086 } 1087 1088 EXPORT_SYMBOL(mount_ns); 1089 1090 #ifdef CONFIG_BLOCK 1091 static int set_bdev_super(struct super_block *s, void *data) 1092 { 1093 s->s_bdev = data; 1094 s->s_dev = s->s_bdev->bd_dev; 1095 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1096 1097 return 0; 1098 } 1099 1100 static int test_bdev_super(struct super_block *s, void *data) 1101 { 1102 return (void *)s->s_bdev == data; 1103 } 1104 1105 struct dentry *mount_bdev(struct file_system_type *fs_type, 1106 int flags, const char *dev_name, void *data, 1107 int (*fill_super)(struct super_block *, void *, int)) 1108 { 1109 struct block_device *bdev; 1110 struct super_block *s; 1111 fmode_t mode = FMODE_READ | FMODE_EXCL; 1112 int error = 0; 1113 1114 if (!(flags & SB_RDONLY)) 1115 mode |= FMODE_WRITE; 1116 1117 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1118 if (IS_ERR(bdev)) 1119 return ERR_CAST(bdev); 1120 1121 /* 1122 * once the super is inserted into the list by sget, s_umount 1123 * will protect the lockfs code from trying to start a snapshot 1124 * while we are mounting 1125 */ 1126 mutex_lock(&bdev->bd_fsfreeze_mutex); 1127 if (bdev->bd_fsfreeze_count > 0) { 1128 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1129 error = -EBUSY; 1130 goto error_bdev; 1131 } 1132 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1133 bdev); 1134 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1135 if (IS_ERR(s)) 1136 goto error_s; 1137 1138 if (s->s_root) { 1139 if ((flags ^ s->s_flags) & SB_RDONLY) { 1140 deactivate_locked_super(s); 1141 error = -EBUSY; 1142 goto error_bdev; 1143 } 1144 1145 /* 1146 * s_umount nests inside bd_mutex during 1147 * __invalidate_device(). blkdev_put() acquires 1148 * bd_mutex and can't be called under s_umount. Drop 1149 * s_umount temporarily. This is safe as we're 1150 * holding an active reference. 1151 */ 1152 up_write(&s->s_umount); 1153 blkdev_put(bdev, mode); 1154 down_write(&s->s_umount); 1155 } else { 1156 s->s_mode = mode; 1157 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1158 sb_set_blocksize(s, block_size(bdev)); 1159 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1160 if (error) { 1161 deactivate_locked_super(s); 1162 goto error; 1163 } 1164 1165 s->s_flags |= SB_ACTIVE; 1166 bdev->bd_super = s; 1167 } 1168 1169 return dget(s->s_root); 1170 1171 error_s: 1172 error = PTR_ERR(s); 1173 error_bdev: 1174 blkdev_put(bdev, mode); 1175 error: 1176 return ERR_PTR(error); 1177 } 1178 EXPORT_SYMBOL(mount_bdev); 1179 1180 void kill_block_super(struct super_block *sb) 1181 { 1182 struct block_device *bdev = sb->s_bdev; 1183 fmode_t mode = sb->s_mode; 1184 1185 bdev->bd_super = NULL; 1186 generic_shutdown_super(sb); 1187 sync_blockdev(bdev); 1188 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1189 blkdev_put(bdev, mode | FMODE_EXCL); 1190 } 1191 1192 EXPORT_SYMBOL(kill_block_super); 1193 #endif 1194 1195 struct dentry *mount_nodev(struct file_system_type *fs_type, 1196 int flags, void *data, 1197 int (*fill_super)(struct super_block *, void *, int)) 1198 { 1199 int error; 1200 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1201 1202 if (IS_ERR(s)) 1203 return ERR_CAST(s); 1204 1205 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1206 if (error) { 1207 deactivate_locked_super(s); 1208 return ERR_PTR(error); 1209 } 1210 s->s_flags |= SB_ACTIVE; 1211 return dget(s->s_root); 1212 } 1213 EXPORT_SYMBOL(mount_nodev); 1214 1215 static int compare_single(struct super_block *s, void *p) 1216 { 1217 return 1; 1218 } 1219 1220 struct dentry *mount_single(struct file_system_type *fs_type, 1221 int flags, void *data, 1222 int (*fill_super)(struct super_block *, void *, int)) 1223 { 1224 struct super_block *s; 1225 int error; 1226 1227 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1228 if (IS_ERR(s)) 1229 return ERR_CAST(s); 1230 if (!s->s_root) { 1231 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1232 if (error) { 1233 deactivate_locked_super(s); 1234 return ERR_PTR(error); 1235 } 1236 s->s_flags |= SB_ACTIVE; 1237 } else { 1238 do_remount_sb(s, flags, data, 0); 1239 } 1240 return dget(s->s_root); 1241 } 1242 EXPORT_SYMBOL(mount_single); 1243 1244 struct dentry * 1245 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1246 { 1247 struct dentry *root; 1248 struct super_block *sb; 1249 int error = -ENOMEM; 1250 void *sec_opts = NULL; 1251 1252 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1253 error = security_sb_eat_lsm_opts(data, &sec_opts); 1254 if (error) 1255 return ERR_PTR(error); 1256 } 1257 1258 root = type->mount(type, flags, name, data); 1259 if (IS_ERR(root)) { 1260 error = PTR_ERR(root); 1261 goto out_free_secdata; 1262 } 1263 sb = root->d_sb; 1264 BUG_ON(!sb); 1265 WARN_ON(!sb->s_bdi); 1266 1267 /* 1268 * Write barrier is for super_cache_count(). We place it before setting 1269 * SB_BORN as the data dependency between the two functions is the 1270 * superblock structure contents that we just set up, not the SB_BORN 1271 * flag. 1272 */ 1273 smp_wmb(); 1274 sb->s_flags |= SB_BORN; 1275 1276 error = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1277 if (error) 1278 goto out_sb; 1279 1280 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT))) { 1281 error = security_sb_kern_mount(sb); 1282 if (error) 1283 goto out_sb; 1284 } 1285 1286 /* 1287 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1288 * but s_maxbytes was an unsigned long long for many releases. Throw 1289 * this warning for a little while to try and catch filesystems that 1290 * violate this rule. 1291 */ 1292 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1293 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1294 1295 up_write(&sb->s_umount); 1296 security_free_mnt_opts(&sec_opts); 1297 return root; 1298 out_sb: 1299 dput(root); 1300 deactivate_locked_super(sb); 1301 out_free_secdata: 1302 security_free_mnt_opts(&sec_opts); 1303 return ERR_PTR(error); 1304 } 1305 1306 /* 1307 * Setup private BDI for given superblock. It gets automatically cleaned up 1308 * in generic_shutdown_super(). 1309 */ 1310 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1311 { 1312 struct backing_dev_info *bdi; 1313 int err; 1314 va_list args; 1315 1316 bdi = bdi_alloc(GFP_KERNEL); 1317 if (!bdi) 1318 return -ENOMEM; 1319 1320 bdi->name = sb->s_type->name; 1321 1322 va_start(args, fmt); 1323 err = bdi_register_va(bdi, fmt, args); 1324 va_end(args); 1325 if (err) { 1326 bdi_put(bdi); 1327 return err; 1328 } 1329 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1330 sb->s_bdi = bdi; 1331 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(super_setup_bdi_name); 1335 1336 /* 1337 * Setup private BDI for given superblock. I gets automatically cleaned up 1338 * in generic_shutdown_super(). 1339 */ 1340 int super_setup_bdi(struct super_block *sb) 1341 { 1342 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1343 1344 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1345 atomic_long_inc_return(&bdi_seq)); 1346 } 1347 EXPORT_SYMBOL(super_setup_bdi); 1348 1349 /* 1350 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1351 * instead. 1352 */ 1353 void __sb_end_write(struct super_block *sb, int level) 1354 { 1355 percpu_up_read(sb->s_writers.rw_sem + level-1); 1356 } 1357 EXPORT_SYMBOL(__sb_end_write); 1358 1359 /* 1360 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1361 * instead. 1362 */ 1363 int __sb_start_write(struct super_block *sb, int level, bool wait) 1364 { 1365 bool force_trylock = false; 1366 int ret = 1; 1367 1368 #ifdef CONFIG_LOCKDEP 1369 /* 1370 * We want lockdep to tell us about possible deadlocks with freezing 1371 * but it's it bit tricky to properly instrument it. Getting a freeze 1372 * protection works as getting a read lock but there are subtle 1373 * problems. XFS for example gets freeze protection on internal level 1374 * twice in some cases, which is OK only because we already hold a 1375 * freeze protection also on higher level. Due to these cases we have 1376 * to use wait == F (trylock mode) which must not fail. 1377 */ 1378 if (wait) { 1379 int i; 1380 1381 for (i = 0; i < level - 1; i++) 1382 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1383 force_trylock = true; 1384 break; 1385 } 1386 } 1387 #endif 1388 if (wait && !force_trylock) 1389 percpu_down_read(sb->s_writers.rw_sem + level-1); 1390 else 1391 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1392 1393 WARN_ON(force_trylock && !ret); 1394 return ret; 1395 } 1396 EXPORT_SYMBOL(__sb_start_write); 1397 1398 /** 1399 * sb_wait_write - wait until all writers to given file system finish 1400 * @sb: the super for which we wait 1401 * @level: type of writers we wait for (normal vs page fault) 1402 * 1403 * This function waits until there are no writers of given type to given file 1404 * system. 1405 */ 1406 static void sb_wait_write(struct super_block *sb, int level) 1407 { 1408 percpu_down_write(sb->s_writers.rw_sem + level-1); 1409 } 1410 1411 /* 1412 * We are going to return to userspace and forget about these locks, the 1413 * ownership goes to the caller of thaw_super() which does unlock(). 1414 */ 1415 static void lockdep_sb_freeze_release(struct super_block *sb) 1416 { 1417 int level; 1418 1419 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1420 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1421 } 1422 1423 /* 1424 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1425 */ 1426 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1427 { 1428 int level; 1429 1430 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1431 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1432 } 1433 1434 static void sb_freeze_unlock(struct super_block *sb) 1435 { 1436 int level; 1437 1438 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1439 percpu_up_write(sb->s_writers.rw_sem + level); 1440 } 1441 1442 /** 1443 * freeze_super - lock the filesystem and force it into a consistent state 1444 * @sb: the super to lock 1445 * 1446 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1447 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1448 * -EBUSY. 1449 * 1450 * During this function, sb->s_writers.frozen goes through these values: 1451 * 1452 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1453 * 1454 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1455 * writes should be blocked, though page faults are still allowed. We wait for 1456 * all writes to complete and then proceed to the next stage. 1457 * 1458 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1459 * but internal fs threads can still modify the filesystem (although they 1460 * should not dirty new pages or inodes), writeback can run etc. After waiting 1461 * for all running page faults we sync the filesystem which will clean all 1462 * dirty pages and inodes (no new dirty pages or inodes can be created when 1463 * sync is running). 1464 * 1465 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1466 * modification are blocked (e.g. XFS preallocation truncation on inode 1467 * reclaim). This is usually implemented by blocking new transactions for 1468 * filesystems that have them and need this additional guard. After all 1469 * internal writers are finished we call ->freeze_fs() to finish filesystem 1470 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1471 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1472 * 1473 * sb->s_writers.frozen is protected by sb->s_umount. 1474 */ 1475 int freeze_super(struct super_block *sb) 1476 { 1477 int ret; 1478 1479 atomic_inc(&sb->s_active); 1480 down_write(&sb->s_umount); 1481 if (sb->s_writers.frozen != SB_UNFROZEN) { 1482 deactivate_locked_super(sb); 1483 return -EBUSY; 1484 } 1485 1486 if (!(sb->s_flags & SB_BORN)) { 1487 up_write(&sb->s_umount); 1488 return 0; /* sic - it's "nothing to do" */ 1489 } 1490 1491 if (sb_rdonly(sb)) { 1492 /* Nothing to do really... */ 1493 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1494 up_write(&sb->s_umount); 1495 return 0; 1496 } 1497 1498 sb->s_writers.frozen = SB_FREEZE_WRITE; 1499 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1500 up_write(&sb->s_umount); 1501 sb_wait_write(sb, SB_FREEZE_WRITE); 1502 down_write(&sb->s_umount); 1503 1504 /* Now we go and block page faults... */ 1505 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1506 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1507 1508 /* All writers are done so after syncing there won't be dirty data */ 1509 sync_filesystem(sb); 1510 1511 /* Now wait for internal filesystem counter */ 1512 sb->s_writers.frozen = SB_FREEZE_FS; 1513 sb_wait_write(sb, SB_FREEZE_FS); 1514 1515 if (sb->s_op->freeze_fs) { 1516 ret = sb->s_op->freeze_fs(sb); 1517 if (ret) { 1518 printk(KERN_ERR 1519 "VFS:Filesystem freeze failed\n"); 1520 sb->s_writers.frozen = SB_UNFROZEN; 1521 sb_freeze_unlock(sb); 1522 wake_up(&sb->s_writers.wait_unfrozen); 1523 deactivate_locked_super(sb); 1524 return ret; 1525 } 1526 } 1527 /* 1528 * For debugging purposes so that fs can warn if it sees write activity 1529 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1530 */ 1531 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1532 lockdep_sb_freeze_release(sb); 1533 up_write(&sb->s_umount); 1534 return 0; 1535 } 1536 EXPORT_SYMBOL(freeze_super); 1537 1538 /** 1539 * thaw_super -- unlock filesystem 1540 * @sb: the super to thaw 1541 * 1542 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1543 */ 1544 static int thaw_super_locked(struct super_block *sb) 1545 { 1546 int error; 1547 1548 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1549 up_write(&sb->s_umount); 1550 return -EINVAL; 1551 } 1552 1553 if (sb_rdonly(sb)) { 1554 sb->s_writers.frozen = SB_UNFROZEN; 1555 goto out; 1556 } 1557 1558 lockdep_sb_freeze_acquire(sb); 1559 1560 if (sb->s_op->unfreeze_fs) { 1561 error = sb->s_op->unfreeze_fs(sb); 1562 if (error) { 1563 printk(KERN_ERR 1564 "VFS:Filesystem thaw failed\n"); 1565 lockdep_sb_freeze_release(sb); 1566 up_write(&sb->s_umount); 1567 return error; 1568 } 1569 } 1570 1571 sb->s_writers.frozen = SB_UNFROZEN; 1572 sb_freeze_unlock(sb); 1573 out: 1574 wake_up(&sb->s_writers.wait_unfrozen); 1575 deactivate_locked_super(sb); 1576 return 0; 1577 } 1578 1579 int thaw_super(struct super_block *sb) 1580 { 1581 down_write(&sb->s_umount); 1582 return thaw_super_locked(sb); 1583 } 1584 EXPORT_SYMBOL(thaw_super); 1585