1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 static int thaw_super_locked(struct super_block *sb); 41 42 static LIST_HEAD(super_blocks); 43 static DEFINE_SPINLOCK(sb_lock); 44 45 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 46 "sb_writers", 47 "sb_pagefaults", 48 "sb_internal", 49 }; 50 51 /* 52 * One thing we have to be careful of with a per-sb shrinker is that we don't 53 * drop the last active reference to the superblock from within the shrinker. 54 * If that happens we could trigger unregistering the shrinker from within the 55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 56 * take a passive reference to the superblock to avoid this from occurring. 57 */ 58 static unsigned long super_cache_scan(struct shrinker *shrink, 59 struct shrink_control *sc) 60 { 61 struct super_block *sb; 62 long fs_objects = 0; 63 long total_objects; 64 long freed = 0; 65 long dentries; 66 long inodes; 67 68 sb = container_of(shrink, struct super_block, s_shrink); 69 70 /* 71 * Deadlock avoidance. We may hold various FS locks, and we don't want 72 * to recurse into the FS that called us in clear_inode() and friends.. 73 */ 74 if (!(sc->gfp_mask & __GFP_FS)) 75 return SHRINK_STOP; 76 77 if (!trylock_super(sb)) 78 return SHRINK_STOP; 79 80 if (sb->s_op->nr_cached_objects) 81 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 82 83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 85 total_objects = dentries + inodes + fs_objects + 1; 86 if (!total_objects) 87 total_objects = 1; 88 89 /* proportion the scan between the caches */ 90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 93 94 /* 95 * prune the dcache first as the icache is pinned by it, then 96 * prune the icache, followed by the filesystem specific caches 97 * 98 * Ensure that we always scan at least one object - memcg kmem 99 * accounting uses this to fully empty the caches. 100 */ 101 sc->nr_to_scan = dentries + 1; 102 freed = prune_dcache_sb(sb, sc); 103 sc->nr_to_scan = inodes + 1; 104 freed += prune_icache_sb(sb, sc); 105 106 if (fs_objects) { 107 sc->nr_to_scan = fs_objects + 1; 108 freed += sb->s_op->free_cached_objects(sb, sc); 109 } 110 111 up_read(&sb->s_umount); 112 return freed; 113 } 114 115 static unsigned long super_cache_count(struct shrinker *shrink, 116 struct shrink_control *sc) 117 { 118 struct super_block *sb; 119 long total_objects = 0; 120 121 sb = container_of(shrink, struct super_block, s_shrink); 122 123 /* 124 * Don't call trylock_super as it is a potential 125 * scalability bottleneck. The counts could get updated 126 * between super_cache_count and super_cache_scan anyway. 127 * Call to super_cache_count with shrinker_rwsem held 128 * ensures the safety of call to list_lru_shrink_count() and 129 * s_op->nr_cached_objects(). 130 */ 131 if (sb->s_op && sb->s_op->nr_cached_objects) 132 total_objects = sb->s_op->nr_cached_objects(sb, sc); 133 134 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 135 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 136 137 total_objects = vfs_pressure_ratio(total_objects); 138 return total_objects; 139 } 140 141 static void destroy_super_work(struct work_struct *work) 142 { 143 struct super_block *s = container_of(work, struct super_block, 144 destroy_work); 145 int i; 146 147 for (i = 0; i < SB_FREEZE_LEVELS; i++) 148 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 149 kfree(s); 150 } 151 152 static void destroy_super_rcu(struct rcu_head *head) 153 { 154 struct super_block *s = container_of(head, struct super_block, rcu); 155 INIT_WORK(&s->destroy_work, destroy_super_work); 156 schedule_work(&s->destroy_work); 157 } 158 159 /* Free a superblock that has never been seen by anyone */ 160 static void destroy_unused_super(struct super_block *s) 161 { 162 if (!s) 163 return; 164 up_write(&s->s_umount); 165 list_lru_destroy(&s->s_dentry_lru); 166 list_lru_destroy(&s->s_inode_lru); 167 security_sb_free(s); 168 put_user_ns(s->s_user_ns); 169 kfree(s->s_subtype); 170 free_prealloced_shrinker(&s->s_shrink); 171 /* no delays needed */ 172 destroy_super_work(&s->destroy_work); 173 } 174 175 /** 176 * alloc_super - create new superblock 177 * @type: filesystem type superblock should belong to 178 * @flags: the mount flags 179 * @user_ns: User namespace for the super_block 180 * 181 * Allocates and initializes a new &struct super_block. alloc_super() 182 * returns a pointer new superblock or %NULL if allocation had failed. 183 */ 184 static struct super_block *alloc_super(struct file_system_type *type, int flags, 185 struct user_namespace *user_ns) 186 { 187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 188 static const struct super_operations default_op; 189 int i; 190 191 if (!s) 192 return NULL; 193 194 INIT_LIST_HEAD(&s->s_mounts); 195 s->s_user_ns = get_user_ns(user_ns); 196 init_rwsem(&s->s_umount); 197 lockdep_set_class(&s->s_umount, &type->s_umount_key); 198 /* 199 * sget() can have s_umount recursion. 200 * 201 * When it cannot find a suitable sb, it allocates a new 202 * one (this one), and tries again to find a suitable old 203 * one. 204 * 205 * In case that succeeds, it will acquire the s_umount 206 * lock of the old one. Since these are clearly distrinct 207 * locks, and this object isn't exposed yet, there's no 208 * risk of deadlocks. 209 * 210 * Annotate this by putting this lock in a different 211 * subclass. 212 */ 213 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 214 215 if (security_sb_alloc(s)) 216 goto fail; 217 218 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 219 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 220 sb_writers_name[i], 221 &type->s_writers_key[i])) 222 goto fail; 223 } 224 init_waitqueue_head(&s->s_writers.wait_unfrozen); 225 s->s_bdi = &noop_backing_dev_info; 226 s->s_flags = flags; 227 if (s->s_user_ns != &init_user_ns) 228 s->s_iflags |= SB_I_NODEV; 229 INIT_HLIST_NODE(&s->s_instances); 230 INIT_HLIST_BL_HEAD(&s->s_roots); 231 mutex_init(&s->s_sync_lock); 232 INIT_LIST_HEAD(&s->s_inodes); 233 spin_lock_init(&s->s_inode_list_lock); 234 INIT_LIST_HEAD(&s->s_inodes_wb); 235 spin_lock_init(&s->s_inode_wblist_lock); 236 237 if (list_lru_init_memcg(&s->s_dentry_lru)) 238 goto fail; 239 if (list_lru_init_memcg(&s->s_inode_lru)) 240 goto fail; 241 s->s_count = 1; 242 atomic_set(&s->s_active, 1); 243 mutex_init(&s->s_vfs_rename_mutex); 244 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 245 init_rwsem(&s->s_dquot.dqio_sem); 246 s->s_maxbytes = MAX_NON_LFS; 247 s->s_op = &default_op; 248 s->s_time_gran = 1000000000; 249 s->cleancache_poolid = CLEANCACHE_NO_POOL; 250 251 s->s_shrink.seeks = DEFAULT_SEEKS; 252 s->s_shrink.scan_objects = super_cache_scan; 253 s->s_shrink.count_objects = super_cache_count; 254 s->s_shrink.batch = 1024; 255 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 256 if (prealloc_shrinker(&s->s_shrink)) 257 goto fail; 258 return s; 259 260 fail: 261 destroy_unused_super(s); 262 return NULL; 263 } 264 265 /* Superblock refcounting */ 266 267 /* 268 * Drop a superblock's refcount. The caller must hold sb_lock. 269 */ 270 static void __put_super(struct super_block *s) 271 { 272 if (!--s->s_count) { 273 list_del_init(&s->s_list); 274 WARN_ON(s->s_dentry_lru.node); 275 WARN_ON(s->s_inode_lru.node); 276 WARN_ON(!list_empty(&s->s_mounts)); 277 security_sb_free(s); 278 put_user_ns(s->s_user_ns); 279 kfree(s->s_subtype); 280 call_rcu(&s->rcu, destroy_super_rcu); 281 } 282 } 283 284 /** 285 * put_super - drop a temporary reference to superblock 286 * @sb: superblock in question 287 * 288 * Drops a temporary reference, frees superblock if there's no 289 * references left. 290 */ 291 static void put_super(struct super_block *sb) 292 { 293 spin_lock(&sb_lock); 294 __put_super(sb); 295 spin_unlock(&sb_lock); 296 } 297 298 299 /** 300 * deactivate_locked_super - drop an active reference to superblock 301 * @s: superblock to deactivate 302 * 303 * Drops an active reference to superblock, converting it into a temporary 304 * one if there is no other active references left. In that case we 305 * tell fs driver to shut it down and drop the temporary reference we 306 * had just acquired. 307 * 308 * Caller holds exclusive lock on superblock; that lock is released. 309 */ 310 void deactivate_locked_super(struct super_block *s) 311 { 312 struct file_system_type *fs = s->s_type; 313 if (atomic_dec_and_test(&s->s_active)) { 314 cleancache_invalidate_fs(s); 315 unregister_shrinker(&s->s_shrink); 316 fs->kill_sb(s); 317 318 /* 319 * Since list_lru_destroy() may sleep, we cannot call it from 320 * put_super(), where we hold the sb_lock. Therefore we destroy 321 * the lru lists right now. 322 */ 323 list_lru_destroy(&s->s_dentry_lru); 324 list_lru_destroy(&s->s_inode_lru); 325 326 put_filesystem(fs); 327 put_super(s); 328 } else { 329 up_write(&s->s_umount); 330 } 331 } 332 333 EXPORT_SYMBOL(deactivate_locked_super); 334 335 /** 336 * deactivate_super - drop an active reference to superblock 337 * @s: superblock to deactivate 338 * 339 * Variant of deactivate_locked_super(), except that superblock is *not* 340 * locked by caller. If we are going to drop the final active reference, 341 * lock will be acquired prior to that. 342 */ 343 void deactivate_super(struct super_block *s) 344 { 345 if (!atomic_add_unless(&s->s_active, -1, 1)) { 346 down_write(&s->s_umount); 347 deactivate_locked_super(s); 348 } 349 } 350 351 EXPORT_SYMBOL(deactivate_super); 352 353 /** 354 * grab_super - acquire an active reference 355 * @s: reference we are trying to make active 356 * 357 * Tries to acquire an active reference. grab_super() is used when we 358 * had just found a superblock in super_blocks or fs_type->fs_supers 359 * and want to turn it into a full-blown active reference. grab_super() 360 * is called with sb_lock held and drops it. Returns 1 in case of 361 * success, 0 if we had failed (superblock contents was already dead or 362 * dying when grab_super() had been called). Note that this is only 363 * called for superblocks not in rundown mode (== ones still on ->fs_supers 364 * of their type), so increment of ->s_count is OK here. 365 */ 366 static int grab_super(struct super_block *s) __releases(sb_lock) 367 { 368 s->s_count++; 369 spin_unlock(&sb_lock); 370 down_write(&s->s_umount); 371 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 372 put_super(s); 373 return 1; 374 } 375 up_write(&s->s_umount); 376 put_super(s); 377 return 0; 378 } 379 380 /* 381 * trylock_super - try to grab ->s_umount shared 382 * @sb: reference we are trying to grab 383 * 384 * Try to prevent fs shutdown. This is used in places where we 385 * cannot take an active reference but we need to ensure that the 386 * filesystem is not shut down while we are working on it. It returns 387 * false if we cannot acquire s_umount or if we lose the race and 388 * filesystem already got into shutdown, and returns true with the s_umount 389 * lock held in read mode in case of success. On successful return, 390 * the caller must drop the s_umount lock when done. 391 * 392 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 393 * The reason why it's safe is that we are OK with doing trylock instead 394 * of down_read(). There's a couple of places that are OK with that, but 395 * it's very much not a general-purpose interface. 396 */ 397 bool trylock_super(struct super_block *sb) 398 { 399 if (down_read_trylock(&sb->s_umount)) { 400 if (!hlist_unhashed(&sb->s_instances) && 401 sb->s_root && (sb->s_flags & SB_BORN)) 402 return true; 403 up_read(&sb->s_umount); 404 } 405 406 return false; 407 } 408 409 /** 410 * generic_shutdown_super - common helper for ->kill_sb() 411 * @sb: superblock to kill 412 * 413 * generic_shutdown_super() does all fs-independent work on superblock 414 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 415 * that need destruction out of superblock, call generic_shutdown_super() 416 * and release aforementioned objects. Note: dentries and inodes _are_ 417 * taken care of and do not need specific handling. 418 * 419 * Upon calling this function, the filesystem may no longer alter or 420 * rearrange the set of dentries belonging to this super_block, nor may it 421 * change the attachments of dentries to inodes. 422 */ 423 void generic_shutdown_super(struct super_block *sb) 424 { 425 const struct super_operations *sop = sb->s_op; 426 427 if (sb->s_root) { 428 shrink_dcache_for_umount(sb); 429 sync_filesystem(sb); 430 sb->s_flags &= ~SB_ACTIVE; 431 432 fsnotify_unmount_inodes(sb); 433 cgroup_writeback_umount(); 434 435 evict_inodes(sb); 436 437 if (sb->s_dio_done_wq) { 438 destroy_workqueue(sb->s_dio_done_wq); 439 sb->s_dio_done_wq = NULL; 440 } 441 442 if (sop->put_super) 443 sop->put_super(sb); 444 445 if (!list_empty(&sb->s_inodes)) { 446 printk("VFS: Busy inodes after unmount of %s. " 447 "Self-destruct in 5 seconds. Have a nice day...\n", 448 sb->s_id); 449 } 450 } 451 spin_lock(&sb_lock); 452 /* should be initialized for __put_super_and_need_restart() */ 453 hlist_del_init(&sb->s_instances); 454 spin_unlock(&sb_lock); 455 up_write(&sb->s_umount); 456 if (sb->s_bdi != &noop_backing_dev_info) { 457 bdi_put(sb->s_bdi); 458 sb->s_bdi = &noop_backing_dev_info; 459 } 460 } 461 462 EXPORT_SYMBOL(generic_shutdown_super); 463 464 /** 465 * sget_userns - find or create a superblock 466 * @type: filesystem type superblock should belong to 467 * @test: comparison callback 468 * @set: setup callback 469 * @flags: mount flags 470 * @user_ns: User namespace for the super_block 471 * @data: argument to each of them 472 */ 473 struct super_block *sget_userns(struct file_system_type *type, 474 int (*test)(struct super_block *,void *), 475 int (*set)(struct super_block *,void *), 476 int flags, struct user_namespace *user_ns, 477 void *data) 478 { 479 struct super_block *s = NULL; 480 struct super_block *old; 481 int err; 482 483 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 484 !(type->fs_flags & FS_USERNS_MOUNT) && 485 !capable(CAP_SYS_ADMIN)) 486 return ERR_PTR(-EPERM); 487 retry: 488 spin_lock(&sb_lock); 489 if (test) { 490 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 491 if (!test(old, data)) 492 continue; 493 if (user_ns != old->s_user_ns) { 494 spin_unlock(&sb_lock); 495 destroy_unused_super(s); 496 return ERR_PTR(-EBUSY); 497 } 498 if (!grab_super(old)) 499 goto retry; 500 destroy_unused_super(s); 501 return old; 502 } 503 } 504 if (!s) { 505 spin_unlock(&sb_lock); 506 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 507 if (!s) 508 return ERR_PTR(-ENOMEM); 509 goto retry; 510 } 511 512 err = set(s, data); 513 if (err) { 514 spin_unlock(&sb_lock); 515 destroy_unused_super(s); 516 return ERR_PTR(err); 517 } 518 s->s_type = type; 519 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 520 list_add_tail(&s->s_list, &super_blocks); 521 hlist_add_head(&s->s_instances, &type->fs_supers); 522 spin_unlock(&sb_lock); 523 get_filesystem(type); 524 register_shrinker_prepared(&s->s_shrink); 525 return s; 526 } 527 528 EXPORT_SYMBOL(sget_userns); 529 530 /** 531 * sget - find or create a superblock 532 * @type: filesystem type superblock should belong to 533 * @test: comparison callback 534 * @set: setup callback 535 * @flags: mount flags 536 * @data: argument to each of them 537 */ 538 struct super_block *sget(struct file_system_type *type, 539 int (*test)(struct super_block *,void *), 540 int (*set)(struct super_block *,void *), 541 int flags, 542 void *data) 543 { 544 struct user_namespace *user_ns = current_user_ns(); 545 546 /* We don't yet pass the user namespace of the parent 547 * mount through to here so always use &init_user_ns 548 * until that changes. 549 */ 550 if (flags & SB_SUBMOUNT) 551 user_ns = &init_user_ns; 552 553 /* Ensure the requestor has permissions over the target filesystem */ 554 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 555 return ERR_PTR(-EPERM); 556 557 return sget_userns(type, test, set, flags, user_ns, data); 558 } 559 560 EXPORT_SYMBOL(sget); 561 562 void drop_super(struct super_block *sb) 563 { 564 up_read(&sb->s_umount); 565 put_super(sb); 566 } 567 568 EXPORT_SYMBOL(drop_super); 569 570 void drop_super_exclusive(struct super_block *sb) 571 { 572 up_write(&sb->s_umount); 573 put_super(sb); 574 } 575 EXPORT_SYMBOL(drop_super_exclusive); 576 577 static void __iterate_supers(void (*f)(struct super_block *)) 578 { 579 struct super_block *sb, *p = NULL; 580 581 spin_lock(&sb_lock); 582 list_for_each_entry(sb, &super_blocks, s_list) { 583 if (hlist_unhashed(&sb->s_instances)) 584 continue; 585 sb->s_count++; 586 spin_unlock(&sb_lock); 587 588 f(sb); 589 590 spin_lock(&sb_lock); 591 if (p) 592 __put_super(p); 593 p = sb; 594 } 595 if (p) 596 __put_super(p); 597 spin_unlock(&sb_lock); 598 } 599 /** 600 * iterate_supers - call function for all active superblocks 601 * @f: function to call 602 * @arg: argument to pass to it 603 * 604 * Scans the superblock list and calls given function, passing it 605 * locked superblock and given argument. 606 */ 607 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 608 { 609 struct super_block *sb, *p = NULL; 610 611 spin_lock(&sb_lock); 612 list_for_each_entry(sb, &super_blocks, s_list) { 613 if (hlist_unhashed(&sb->s_instances)) 614 continue; 615 sb->s_count++; 616 spin_unlock(&sb_lock); 617 618 down_read(&sb->s_umount); 619 if (sb->s_root && (sb->s_flags & SB_BORN)) 620 f(sb, arg); 621 up_read(&sb->s_umount); 622 623 spin_lock(&sb_lock); 624 if (p) 625 __put_super(p); 626 p = sb; 627 } 628 if (p) 629 __put_super(p); 630 spin_unlock(&sb_lock); 631 } 632 633 /** 634 * iterate_supers_type - call function for superblocks of given type 635 * @type: fs type 636 * @f: function to call 637 * @arg: argument to pass to it 638 * 639 * Scans the superblock list and calls given function, passing it 640 * locked superblock and given argument. 641 */ 642 void iterate_supers_type(struct file_system_type *type, 643 void (*f)(struct super_block *, void *), void *arg) 644 { 645 struct super_block *sb, *p = NULL; 646 647 spin_lock(&sb_lock); 648 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 649 sb->s_count++; 650 spin_unlock(&sb_lock); 651 652 down_read(&sb->s_umount); 653 if (sb->s_root && (sb->s_flags & SB_BORN)) 654 f(sb, arg); 655 up_read(&sb->s_umount); 656 657 spin_lock(&sb_lock); 658 if (p) 659 __put_super(p); 660 p = sb; 661 } 662 if (p) 663 __put_super(p); 664 spin_unlock(&sb_lock); 665 } 666 667 EXPORT_SYMBOL(iterate_supers_type); 668 669 static struct super_block *__get_super(struct block_device *bdev, bool excl) 670 { 671 struct super_block *sb; 672 673 if (!bdev) 674 return NULL; 675 676 spin_lock(&sb_lock); 677 rescan: 678 list_for_each_entry(sb, &super_blocks, s_list) { 679 if (hlist_unhashed(&sb->s_instances)) 680 continue; 681 if (sb->s_bdev == bdev) { 682 sb->s_count++; 683 spin_unlock(&sb_lock); 684 if (!excl) 685 down_read(&sb->s_umount); 686 else 687 down_write(&sb->s_umount); 688 /* still alive? */ 689 if (sb->s_root && (sb->s_flags & SB_BORN)) 690 return sb; 691 if (!excl) 692 up_read(&sb->s_umount); 693 else 694 up_write(&sb->s_umount); 695 /* nope, got unmounted */ 696 spin_lock(&sb_lock); 697 __put_super(sb); 698 goto rescan; 699 } 700 } 701 spin_unlock(&sb_lock); 702 return NULL; 703 } 704 705 /** 706 * get_super - get the superblock of a device 707 * @bdev: device to get the superblock for 708 * 709 * Scans the superblock list and finds the superblock of the file system 710 * mounted on the device given. %NULL is returned if no match is found. 711 */ 712 struct super_block *get_super(struct block_device *bdev) 713 { 714 return __get_super(bdev, false); 715 } 716 EXPORT_SYMBOL(get_super); 717 718 static struct super_block *__get_super_thawed(struct block_device *bdev, 719 bool excl) 720 { 721 while (1) { 722 struct super_block *s = __get_super(bdev, excl); 723 if (!s || s->s_writers.frozen == SB_UNFROZEN) 724 return s; 725 if (!excl) 726 up_read(&s->s_umount); 727 else 728 up_write(&s->s_umount); 729 wait_event(s->s_writers.wait_unfrozen, 730 s->s_writers.frozen == SB_UNFROZEN); 731 put_super(s); 732 } 733 } 734 735 /** 736 * get_super_thawed - get thawed superblock of a device 737 * @bdev: device to get the superblock for 738 * 739 * Scans the superblock list and finds the superblock of the file system 740 * mounted on the device. The superblock is returned once it is thawed 741 * (or immediately if it was not frozen). %NULL is returned if no match 742 * is found. 743 */ 744 struct super_block *get_super_thawed(struct block_device *bdev) 745 { 746 return __get_super_thawed(bdev, false); 747 } 748 EXPORT_SYMBOL(get_super_thawed); 749 750 /** 751 * get_super_exclusive_thawed - get thawed superblock of a device 752 * @bdev: device to get the superblock for 753 * 754 * Scans the superblock list and finds the superblock of the file system 755 * mounted on the device. The superblock is returned once it is thawed 756 * (or immediately if it was not frozen) and s_umount semaphore is held 757 * in exclusive mode. %NULL is returned if no match is found. 758 */ 759 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 760 { 761 return __get_super_thawed(bdev, true); 762 } 763 EXPORT_SYMBOL(get_super_exclusive_thawed); 764 765 /** 766 * get_active_super - get an active reference to the superblock of a device 767 * @bdev: device to get the superblock for 768 * 769 * Scans the superblock list and finds the superblock of the file system 770 * mounted on the device given. Returns the superblock with an active 771 * reference or %NULL if none was found. 772 */ 773 struct super_block *get_active_super(struct block_device *bdev) 774 { 775 struct super_block *sb; 776 777 if (!bdev) 778 return NULL; 779 780 restart: 781 spin_lock(&sb_lock); 782 list_for_each_entry(sb, &super_blocks, s_list) { 783 if (hlist_unhashed(&sb->s_instances)) 784 continue; 785 if (sb->s_bdev == bdev) { 786 if (!grab_super(sb)) 787 goto restart; 788 up_write(&sb->s_umount); 789 return sb; 790 } 791 } 792 spin_unlock(&sb_lock); 793 return NULL; 794 } 795 796 struct super_block *user_get_super(dev_t dev) 797 { 798 struct super_block *sb; 799 800 spin_lock(&sb_lock); 801 rescan: 802 list_for_each_entry(sb, &super_blocks, s_list) { 803 if (hlist_unhashed(&sb->s_instances)) 804 continue; 805 if (sb->s_dev == dev) { 806 sb->s_count++; 807 spin_unlock(&sb_lock); 808 down_read(&sb->s_umount); 809 /* still alive? */ 810 if (sb->s_root && (sb->s_flags & SB_BORN)) 811 return sb; 812 up_read(&sb->s_umount); 813 /* nope, got unmounted */ 814 spin_lock(&sb_lock); 815 __put_super(sb); 816 goto rescan; 817 } 818 } 819 spin_unlock(&sb_lock); 820 return NULL; 821 } 822 823 /** 824 * do_remount_sb - asks filesystem to change mount options. 825 * @sb: superblock in question 826 * @sb_flags: revised superblock flags 827 * @data: the rest of options 828 * @force: whether or not to force the change 829 * 830 * Alters the mount options of a mounted file system. 831 */ 832 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 833 { 834 int retval; 835 int remount_ro; 836 837 if (sb->s_writers.frozen != SB_UNFROZEN) 838 return -EBUSY; 839 840 #ifdef CONFIG_BLOCK 841 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 842 return -EACCES; 843 #endif 844 845 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 846 847 if (remount_ro) { 848 if (!hlist_empty(&sb->s_pins)) { 849 up_write(&sb->s_umount); 850 group_pin_kill(&sb->s_pins); 851 down_write(&sb->s_umount); 852 if (!sb->s_root) 853 return 0; 854 if (sb->s_writers.frozen != SB_UNFROZEN) 855 return -EBUSY; 856 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 857 } 858 } 859 shrink_dcache_sb(sb); 860 861 /* If we are remounting RDONLY and current sb is read/write, 862 make sure there are no rw files opened */ 863 if (remount_ro) { 864 if (force) { 865 sb->s_readonly_remount = 1; 866 smp_wmb(); 867 } else { 868 retval = sb_prepare_remount_readonly(sb); 869 if (retval) 870 return retval; 871 } 872 } 873 874 if (sb->s_op->remount_fs) { 875 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 876 if (retval) { 877 if (!force) 878 goto cancel_readonly; 879 /* If forced remount, go ahead despite any errors */ 880 WARN(1, "forced remount of a %s fs returned %i\n", 881 sb->s_type->name, retval); 882 } 883 } 884 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 885 /* Needs to be ordered wrt mnt_is_readonly() */ 886 smp_wmb(); 887 sb->s_readonly_remount = 0; 888 889 /* 890 * Some filesystems modify their metadata via some other path than the 891 * bdev buffer cache (eg. use a private mapping, or directories in 892 * pagecache, etc). Also file data modifications go via their own 893 * mappings. So If we try to mount readonly then copy the filesystem 894 * from bdev, we could get stale data, so invalidate it to give a best 895 * effort at coherency. 896 */ 897 if (remount_ro && sb->s_bdev) 898 invalidate_bdev(sb->s_bdev); 899 return 0; 900 901 cancel_readonly: 902 sb->s_readonly_remount = 0; 903 return retval; 904 } 905 906 static void do_emergency_remount_callback(struct super_block *sb) 907 { 908 down_write(&sb->s_umount); 909 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 910 !sb_rdonly(sb)) { 911 /* 912 * What lock protects sb->s_flags?? 913 */ 914 do_remount_sb(sb, SB_RDONLY, NULL, 1); 915 } 916 up_write(&sb->s_umount); 917 } 918 919 static void do_emergency_remount(struct work_struct *work) 920 { 921 __iterate_supers(do_emergency_remount_callback); 922 kfree(work); 923 printk("Emergency Remount complete\n"); 924 } 925 926 void emergency_remount(void) 927 { 928 struct work_struct *work; 929 930 work = kmalloc(sizeof(*work), GFP_ATOMIC); 931 if (work) { 932 INIT_WORK(work, do_emergency_remount); 933 schedule_work(work); 934 } 935 } 936 937 static void do_thaw_all_callback(struct super_block *sb) 938 { 939 down_write(&sb->s_umount); 940 if (sb->s_root && sb->s_flags & MS_BORN) { 941 emergency_thaw_bdev(sb); 942 thaw_super_locked(sb); 943 } else { 944 up_write(&sb->s_umount); 945 } 946 } 947 948 static void do_thaw_all(struct work_struct *work) 949 { 950 __iterate_supers(do_thaw_all_callback); 951 kfree(work); 952 printk(KERN_WARNING "Emergency Thaw complete\n"); 953 } 954 955 /** 956 * emergency_thaw_all -- forcibly thaw every frozen filesystem 957 * 958 * Used for emergency unfreeze of all filesystems via SysRq 959 */ 960 void emergency_thaw_all(void) 961 { 962 struct work_struct *work; 963 964 work = kmalloc(sizeof(*work), GFP_ATOMIC); 965 if (work) { 966 INIT_WORK(work, do_thaw_all); 967 schedule_work(work); 968 } 969 } 970 971 /* 972 * Unnamed block devices are dummy devices used by virtual 973 * filesystems which don't use real block-devices. -- jrs 974 */ 975 976 static DEFINE_IDA(unnamed_dev_ida); 977 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 978 /* Many userspace utilities consider an FSID of 0 invalid. 979 * Always return at least 1 from get_anon_bdev. 980 */ 981 static int unnamed_dev_start = 1; 982 983 int get_anon_bdev(dev_t *p) 984 { 985 int dev; 986 int error; 987 988 retry: 989 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 990 return -ENOMEM; 991 spin_lock(&unnamed_dev_lock); 992 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 993 if (!error) 994 unnamed_dev_start = dev + 1; 995 spin_unlock(&unnamed_dev_lock); 996 if (error == -EAGAIN) 997 /* We raced and lost with another CPU. */ 998 goto retry; 999 else if (error) 1000 return -EAGAIN; 1001 1002 if (dev >= (1 << MINORBITS)) { 1003 spin_lock(&unnamed_dev_lock); 1004 ida_remove(&unnamed_dev_ida, dev); 1005 if (unnamed_dev_start > dev) 1006 unnamed_dev_start = dev; 1007 spin_unlock(&unnamed_dev_lock); 1008 return -EMFILE; 1009 } 1010 *p = MKDEV(0, dev & MINORMASK); 1011 return 0; 1012 } 1013 EXPORT_SYMBOL(get_anon_bdev); 1014 1015 void free_anon_bdev(dev_t dev) 1016 { 1017 int slot = MINOR(dev); 1018 spin_lock(&unnamed_dev_lock); 1019 ida_remove(&unnamed_dev_ida, slot); 1020 if (slot < unnamed_dev_start) 1021 unnamed_dev_start = slot; 1022 spin_unlock(&unnamed_dev_lock); 1023 } 1024 EXPORT_SYMBOL(free_anon_bdev); 1025 1026 int set_anon_super(struct super_block *s, void *data) 1027 { 1028 return get_anon_bdev(&s->s_dev); 1029 } 1030 1031 EXPORT_SYMBOL(set_anon_super); 1032 1033 void kill_anon_super(struct super_block *sb) 1034 { 1035 dev_t dev = sb->s_dev; 1036 generic_shutdown_super(sb); 1037 free_anon_bdev(dev); 1038 } 1039 1040 EXPORT_SYMBOL(kill_anon_super); 1041 1042 void kill_litter_super(struct super_block *sb) 1043 { 1044 if (sb->s_root) 1045 d_genocide(sb->s_root); 1046 kill_anon_super(sb); 1047 } 1048 1049 EXPORT_SYMBOL(kill_litter_super); 1050 1051 static int ns_test_super(struct super_block *sb, void *data) 1052 { 1053 return sb->s_fs_info == data; 1054 } 1055 1056 static int ns_set_super(struct super_block *sb, void *data) 1057 { 1058 sb->s_fs_info = data; 1059 return set_anon_super(sb, NULL); 1060 } 1061 1062 struct dentry *mount_ns(struct file_system_type *fs_type, 1063 int flags, void *data, void *ns, struct user_namespace *user_ns, 1064 int (*fill_super)(struct super_block *, void *, int)) 1065 { 1066 struct super_block *sb; 1067 1068 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1069 * over the namespace. 1070 */ 1071 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1072 return ERR_PTR(-EPERM); 1073 1074 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1075 user_ns, ns); 1076 if (IS_ERR(sb)) 1077 return ERR_CAST(sb); 1078 1079 if (!sb->s_root) { 1080 int err; 1081 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1082 if (err) { 1083 deactivate_locked_super(sb); 1084 return ERR_PTR(err); 1085 } 1086 1087 sb->s_flags |= SB_ACTIVE; 1088 } 1089 1090 return dget(sb->s_root); 1091 } 1092 1093 EXPORT_SYMBOL(mount_ns); 1094 1095 #ifdef CONFIG_BLOCK 1096 static int set_bdev_super(struct super_block *s, void *data) 1097 { 1098 s->s_bdev = data; 1099 s->s_dev = s->s_bdev->bd_dev; 1100 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1101 1102 return 0; 1103 } 1104 1105 static int test_bdev_super(struct super_block *s, void *data) 1106 { 1107 return (void *)s->s_bdev == data; 1108 } 1109 1110 struct dentry *mount_bdev(struct file_system_type *fs_type, 1111 int flags, const char *dev_name, void *data, 1112 int (*fill_super)(struct super_block *, void *, int)) 1113 { 1114 struct block_device *bdev; 1115 struct super_block *s; 1116 fmode_t mode = FMODE_READ | FMODE_EXCL; 1117 int error = 0; 1118 1119 if (!(flags & SB_RDONLY)) 1120 mode |= FMODE_WRITE; 1121 1122 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1123 if (IS_ERR(bdev)) 1124 return ERR_CAST(bdev); 1125 1126 /* 1127 * once the super is inserted into the list by sget, s_umount 1128 * will protect the lockfs code from trying to start a snapshot 1129 * while we are mounting 1130 */ 1131 mutex_lock(&bdev->bd_fsfreeze_mutex); 1132 if (bdev->bd_fsfreeze_count > 0) { 1133 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1134 error = -EBUSY; 1135 goto error_bdev; 1136 } 1137 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1138 bdev); 1139 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1140 if (IS_ERR(s)) 1141 goto error_s; 1142 1143 if (s->s_root) { 1144 if ((flags ^ s->s_flags) & SB_RDONLY) { 1145 deactivate_locked_super(s); 1146 error = -EBUSY; 1147 goto error_bdev; 1148 } 1149 1150 /* 1151 * s_umount nests inside bd_mutex during 1152 * __invalidate_device(). blkdev_put() acquires 1153 * bd_mutex and can't be called under s_umount. Drop 1154 * s_umount temporarily. This is safe as we're 1155 * holding an active reference. 1156 */ 1157 up_write(&s->s_umount); 1158 blkdev_put(bdev, mode); 1159 down_write(&s->s_umount); 1160 } else { 1161 s->s_mode = mode; 1162 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1163 sb_set_blocksize(s, block_size(bdev)); 1164 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1165 if (error) { 1166 deactivate_locked_super(s); 1167 goto error; 1168 } 1169 1170 s->s_flags |= SB_ACTIVE; 1171 bdev->bd_super = s; 1172 } 1173 1174 return dget(s->s_root); 1175 1176 error_s: 1177 error = PTR_ERR(s); 1178 error_bdev: 1179 blkdev_put(bdev, mode); 1180 error: 1181 return ERR_PTR(error); 1182 } 1183 EXPORT_SYMBOL(mount_bdev); 1184 1185 void kill_block_super(struct super_block *sb) 1186 { 1187 struct block_device *bdev = sb->s_bdev; 1188 fmode_t mode = sb->s_mode; 1189 1190 bdev->bd_super = NULL; 1191 generic_shutdown_super(sb); 1192 sync_blockdev(bdev); 1193 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1194 blkdev_put(bdev, mode | FMODE_EXCL); 1195 } 1196 1197 EXPORT_SYMBOL(kill_block_super); 1198 #endif 1199 1200 struct dentry *mount_nodev(struct file_system_type *fs_type, 1201 int flags, void *data, 1202 int (*fill_super)(struct super_block *, void *, int)) 1203 { 1204 int error; 1205 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1206 1207 if (IS_ERR(s)) 1208 return ERR_CAST(s); 1209 1210 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1211 if (error) { 1212 deactivate_locked_super(s); 1213 return ERR_PTR(error); 1214 } 1215 s->s_flags |= SB_ACTIVE; 1216 return dget(s->s_root); 1217 } 1218 EXPORT_SYMBOL(mount_nodev); 1219 1220 static int compare_single(struct super_block *s, void *p) 1221 { 1222 return 1; 1223 } 1224 1225 struct dentry *mount_single(struct file_system_type *fs_type, 1226 int flags, void *data, 1227 int (*fill_super)(struct super_block *, void *, int)) 1228 { 1229 struct super_block *s; 1230 int error; 1231 1232 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1233 if (IS_ERR(s)) 1234 return ERR_CAST(s); 1235 if (!s->s_root) { 1236 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1237 if (error) { 1238 deactivate_locked_super(s); 1239 return ERR_PTR(error); 1240 } 1241 s->s_flags |= SB_ACTIVE; 1242 } else { 1243 do_remount_sb(s, flags, data, 0); 1244 } 1245 return dget(s->s_root); 1246 } 1247 EXPORT_SYMBOL(mount_single); 1248 1249 struct dentry * 1250 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1251 { 1252 struct dentry *root; 1253 struct super_block *sb; 1254 char *secdata = NULL; 1255 int error = -ENOMEM; 1256 1257 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1258 secdata = alloc_secdata(); 1259 if (!secdata) 1260 goto out; 1261 1262 error = security_sb_copy_data(data, secdata); 1263 if (error) 1264 goto out_free_secdata; 1265 } 1266 1267 root = type->mount(type, flags, name, data); 1268 if (IS_ERR(root)) { 1269 error = PTR_ERR(root); 1270 goto out_free_secdata; 1271 } 1272 sb = root->d_sb; 1273 BUG_ON(!sb); 1274 WARN_ON(!sb->s_bdi); 1275 sb->s_flags |= SB_BORN; 1276 1277 error = security_sb_kern_mount(sb, flags, secdata); 1278 if (error) 1279 goto out_sb; 1280 1281 /* 1282 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1283 * but s_maxbytes was an unsigned long long for many releases. Throw 1284 * this warning for a little while to try and catch filesystems that 1285 * violate this rule. 1286 */ 1287 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1288 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1289 1290 up_write(&sb->s_umount); 1291 free_secdata(secdata); 1292 return root; 1293 out_sb: 1294 dput(root); 1295 deactivate_locked_super(sb); 1296 out_free_secdata: 1297 free_secdata(secdata); 1298 out: 1299 return ERR_PTR(error); 1300 } 1301 1302 /* 1303 * Setup private BDI for given superblock. It gets automatically cleaned up 1304 * in generic_shutdown_super(). 1305 */ 1306 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1307 { 1308 struct backing_dev_info *bdi; 1309 int err; 1310 va_list args; 1311 1312 bdi = bdi_alloc(GFP_KERNEL); 1313 if (!bdi) 1314 return -ENOMEM; 1315 1316 bdi->name = sb->s_type->name; 1317 1318 va_start(args, fmt); 1319 err = bdi_register_va(bdi, fmt, args); 1320 va_end(args); 1321 if (err) { 1322 bdi_put(bdi); 1323 return err; 1324 } 1325 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1326 sb->s_bdi = bdi; 1327 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(super_setup_bdi_name); 1331 1332 /* 1333 * Setup private BDI for given superblock. I gets automatically cleaned up 1334 * in generic_shutdown_super(). 1335 */ 1336 int super_setup_bdi(struct super_block *sb) 1337 { 1338 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1339 1340 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1341 atomic_long_inc_return(&bdi_seq)); 1342 } 1343 EXPORT_SYMBOL(super_setup_bdi); 1344 1345 /* 1346 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1347 * instead. 1348 */ 1349 void __sb_end_write(struct super_block *sb, int level) 1350 { 1351 percpu_up_read(sb->s_writers.rw_sem + level-1); 1352 } 1353 EXPORT_SYMBOL(__sb_end_write); 1354 1355 /* 1356 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1357 * instead. 1358 */ 1359 int __sb_start_write(struct super_block *sb, int level, bool wait) 1360 { 1361 bool force_trylock = false; 1362 int ret = 1; 1363 1364 #ifdef CONFIG_LOCKDEP 1365 /* 1366 * We want lockdep to tell us about possible deadlocks with freezing 1367 * but it's it bit tricky to properly instrument it. Getting a freeze 1368 * protection works as getting a read lock but there are subtle 1369 * problems. XFS for example gets freeze protection on internal level 1370 * twice in some cases, which is OK only because we already hold a 1371 * freeze protection also on higher level. Due to these cases we have 1372 * to use wait == F (trylock mode) which must not fail. 1373 */ 1374 if (wait) { 1375 int i; 1376 1377 for (i = 0; i < level - 1; i++) 1378 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1379 force_trylock = true; 1380 break; 1381 } 1382 } 1383 #endif 1384 if (wait && !force_trylock) 1385 percpu_down_read(sb->s_writers.rw_sem + level-1); 1386 else 1387 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1388 1389 WARN_ON(force_trylock && !ret); 1390 return ret; 1391 } 1392 EXPORT_SYMBOL(__sb_start_write); 1393 1394 /** 1395 * sb_wait_write - wait until all writers to given file system finish 1396 * @sb: the super for which we wait 1397 * @level: type of writers we wait for (normal vs page fault) 1398 * 1399 * This function waits until there are no writers of given type to given file 1400 * system. 1401 */ 1402 static void sb_wait_write(struct super_block *sb, int level) 1403 { 1404 percpu_down_write(sb->s_writers.rw_sem + level-1); 1405 } 1406 1407 /* 1408 * We are going to return to userspace and forget about these locks, the 1409 * ownership goes to the caller of thaw_super() which does unlock(). 1410 */ 1411 static void lockdep_sb_freeze_release(struct super_block *sb) 1412 { 1413 int level; 1414 1415 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1416 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1417 } 1418 1419 /* 1420 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1421 */ 1422 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1423 { 1424 int level; 1425 1426 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1427 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1428 } 1429 1430 static void sb_freeze_unlock(struct super_block *sb) 1431 { 1432 int level; 1433 1434 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1435 percpu_up_write(sb->s_writers.rw_sem + level); 1436 } 1437 1438 /** 1439 * freeze_super - lock the filesystem and force it into a consistent state 1440 * @sb: the super to lock 1441 * 1442 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1443 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1444 * -EBUSY. 1445 * 1446 * During this function, sb->s_writers.frozen goes through these values: 1447 * 1448 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1449 * 1450 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1451 * writes should be blocked, though page faults are still allowed. We wait for 1452 * all writes to complete and then proceed to the next stage. 1453 * 1454 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1455 * but internal fs threads can still modify the filesystem (although they 1456 * should not dirty new pages or inodes), writeback can run etc. After waiting 1457 * for all running page faults we sync the filesystem which will clean all 1458 * dirty pages and inodes (no new dirty pages or inodes can be created when 1459 * sync is running). 1460 * 1461 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1462 * modification are blocked (e.g. XFS preallocation truncation on inode 1463 * reclaim). This is usually implemented by blocking new transactions for 1464 * filesystems that have them and need this additional guard. After all 1465 * internal writers are finished we call ->freeze_fs() to finish filesystem 1466 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1467 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1468 * 1469 * sb->s_writers.frozen is protected by sb->s_umount. 1470 */ 1471 int freeze_super(struct super_block *sb) 1472 { 1473 int ret; 1474 1475 atomic_inc(&sb->s_active); 1476 down_write(&sb->s_umount); 1477 if (sb->s_writers.frozen != SB_UNFROZEN) { 1478 deactivate_locked_super(sb); 1479 return -EBUSY; 1480 } 1481 1482 if (!(sb->s_flags & SB_BORN)) { 1483 up_write(&sb->s_umount); 1484 return 0; /* sic - it's "nothing to do" */ 1485 } 1486 1487 if (sb_rdonly(sb)) { 1488 /* Nothing to do really... */ 1489 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1490 up_write(&sb->s_umount); 1491 return 0; 1492 } 1493 1494 sb->s_writers.frozen = SB_FREEZE_WRITE; 1495 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1496 up_write(&sb->s_umount); 1497 sb_wait_write(sb, SB_FREEZE_WRITE); 1498 down_write(&sb->s_umount); 1499 1500 /* Now we go and block page faults... */ 1501 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1502 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1503 1504 /* All writers are done so after syncing there won't be dirty data */ 1505 sync_filesystem(sb); 1506 1507 /* Now wait for internal filesystem counter */ 1508 sb->s_writers.frozen = SB_FREEZE_FS; 1509 sb_wait_write(sb, SB_FREEZE_FS); 1510 1511 if (sb->s_op->freeze_fs) { 1512 ret = sb->s_op->freeze_fs(sb); 1513 if (ret) { 1514 printk(KERN_ERR 1515 "VFS:Filesystem freeze failed\n"); 1516 sb->s_writers.frozen = SB_UNFROZEN; 1517 sb_freeze_unlock(sb); 1518 wake_up(&sb->s_writers.wait_unfrozen); 1519 deactivate_locked_super(sb); 1520 return ret; 1521 } 1522 } 1523 /* 1524 * For debugging purposes so that fs can warn if it sees write activity 1525 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1526 */ 1527 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1528 lockdep_sb_freeze_release(sb); 1529 up_write(&sb->s_umount); 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(freeze_super); 1533 1534 /** 1535 * thaw_super -- unlock filesystem 1536 * @sb: the super to thaw 1537 * 1538 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1539 */ 1540 static int thaw_super_locked(struct super_block *sb) 1541 { 1542 int error; 1543 1544 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1545 up_write(&sb->s_umount); 1546 return -EINVAL; 1547 } 1548 1549 if (sb_rdonly(sb)) { 1550 sb->s_writers.frozen = SB_UNFROZEN; 1551 goto out; 1552 } 1553 1554 lockdep_sb_freeze_acquire(sb); 1555 1556 if (sb->s_op->unfreeze_fs) { 1557 error = sb->s_op->unfreeze_fs(sb); 1558 if (error) { 1559 printk(KERN_ERR 1560 "VFS:Filesystem thaw failed\n"); 1561 lockdep_sb_freeze_release(sb); 1562 up_write(&sb->s_umount); 1563 return error; 1564 } 1565 } 1566 1567 sb->s_writers.frozen = SB_UNFROZEN; 1568 sb_freeze_unlock(sb); 1569 out: 1570 wake_up(&sb->s_writers.wait_unfrozen); 1571 deactivate_locked_super(sb); 1572 return 0; 1573 } 1574 1575 int thaw_super(struct super_block *sb) 1576 { 1577 down_write(&sb->s_umount); 1578 return thaw_super_locked(sb); 1579 } 1580 EXPORT_SYMBOL(thaw_super); 1581