xref: /openbmc/linux/fs/super.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 static int thaw_super_locked(struct super_block *sb);
41 
42 static LIST_HEAD(super_blocks);
43 static DEFINE_SPINLOCK(sb_lock);
44 
45 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
46 	"sb_writers",
47 	"sb_pagefaults",
48 	"sb_internal",
49 };
50 
51 /*
52  * One thing we have to be careful of with a per-sb shrinker is that we don't
53  * drop the last active reference to the superblock from within the shrinker.
54  * If that happens we could trigger unregistering the shrinker from within the
55  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
56  * take a passive reference to the superblock to avoid this from occurring.
57  */
58 static unsigned long super_cache_scan(struct shrinker *shrink,
59 				      struct shrink_control *sc)
60 {
61 	struct super_block *sb;
62 	long	fs_objects = 0;
63 	long	total_objects;
64 	long	freed = 0;
65 	long	dentries;
66 	long	inodes;
67 
68 	sb = container_of(shrink, struct super_block, s_shrink);
69 
70 	/*
71 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
72 	 * to recurse into the FS that called us in clear_inode() and friends..
73 	 */
74 	if (!(sc->gfp_mask & __GFP_FS))
75 		return SHRINK_STOP;
76 
77 	if (!trylock_super(sb))
78 		return SHRINK_STOP;
79 
80 	if (sb->s_op->nr_cached_objects)
81 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
82 
83 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
84 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
85 	total_objects = dentries + inodes + fs_objects + 1;
86 	if (!total_objects)
87 		total_objects = 1;
88 
89 	/* proportion the scan between the caches */
90 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
91 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
93 
94 	/*
95 	 * prune the dcache first as the icache is pinned by it, then
96 	 * prune the icache, followed by the filesystem specific caches
97 	 *
98 	 * Ensure that we always scan at least one object - memcg kmem
99 	 * accounting uses this to fully empty the caches.
100 	 */
101 	sc->nr_to_scan = dentries + 1;
102 	freed = prune_dcache_sb(sb, sc);
103 	sc->nr_to_scan = inodes + 1;
104 	freed += prune_icache_sb(sb, sc);
105 
106 	if (fs_objects) {
107 		sc->nr_to_scan = fs_objects + 1;
108 		freed += sb->s_op->free_cached_objects(sb, sc);
109 	}
110 
111 	up_read(&sb->s_umount);
112 	return freed;
113 }
114 
115 static unsigned long super_cache_count(struct shrinker *shrink,
116 				       struct shrink_control *sc)
117 {
118 	struct super_block *sb;
119 	long	total_objects = 0;
120 
121 	sb = container_of(shrink, struct super_block, s_shrink);
122 
123 	/*
124 	 * Don't call trylock_super as it is a potential
125 	 * scalability bottleneck. The counts could get updated
126 	 * between super_cache_count and super_cache_scan anyway.
127 	 * Call to super_cache_count with shrinker_rwsem held
128 	 * ensures the safety of call to list_lru_shrink_count() and
129 	 * s_op->nr_cached_objects().
130 	 */
131 	if (sb->s_op && sb->s_op->nr_cached_objects)
132 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
133 
134 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
135 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
136 
137 	total_objects = vfs_pressure_ratio(total_objects);
138 	return total_objects;
139 }
140 
141 static void destroy_super_work(struct work_struct *work)
142 {
143 	struct super_block *s = container_of(work, struct super_block,
144 							destroy_work);
145 	int i;
146 
147 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
149 	kfree(s);
150 }
151 
152 static void destroy_super_rcu(struct rcu_head *head)
153 {
154 	struct super_block *s = container_of(head, struct super_block, rcu);
155 	INIT_WORK(&s->destroy_work, destroy_super_work);
156 	schedule_work(&s->destroy_work);
157 }
158 
159 /* Free a superblock that has never been seen by anyone */
160 static void destroy_unused_super(struct super_block *s)
161 {
162 	if (!s)
163 		return;
164 	up_write(&s->s_umount);
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	put_user_ns(s->s_user_ns);
169 	kfree(s->s_subtype);
170 	free_prealloced_shrinker(&s->s_shrink);
171 	/* no delays needed */
172 	destroy_super_work(&s->destroy_work);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 	init_rwsem(&s->s_umount);
197 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
198 	/*
199 	 * sget() can have s_umount recursion.
200 	 *
201 	 * When it cannot find a suitable sb, it allocates a new
202 	 * one (this one), and tries again to find a suitable old
203 	 * one.
204 	 *
205 	 * In case that succeeds, it will acquire the s_umount
206 	 * lock of the old one. Since these are clearly distrinct
207 	 * locks, and this object isn't exposed yet, there's no
208 	 * risk of deadlocks.
209 	 *
210 	 * Annotate this by putting this lock in a different
211 	 * subclass.
212 	 */
213 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
214 
215 	if (security_sb_alloc(s))
216 		goto fail;
217 
218 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
219 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
220 					sb_writers_name[i],
221 					&type->s_writers_key[i]))
222 			goto fail;
223 	}
224 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
225 	s->s_bdi = &noop_backing_dev_info;
226 	s->s_flags = flags;
227 	if (s->s_user_ns != &init_user_ns)
228 		s->s_iflags |= SB_I_NODEV;
229 	INIT_HLIST_NODE(&s->s_instances);
230 	INIT_HLIST_BL_HEAD(&s->s_roots);
231 	mutex_init(&s->s_sync_lock);
232 	INIT_LIST_HEAD(&s->s_inodes);
233 	spin_lock_init(&s->s_inode_list_lock);
234 	INIT_LIST_HEAD(&s->s_inodes_wb);
235 	spin_lock_init(&s->s_inode_wblist_lock);
236 
237 	if (list_lru_init_memcg(&s->s_dentry_lru))
238 		goto fail;
239 	if (list_lru_init_memcg(&s->s_inode_lru))
240 		goto fail;
241 	s->s_count = 1;
242 	atomic_set(&s->s_active, 1);
243 	mutex_init(&s->s_vfs_rename_mutex);
244 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
245 	init_rwsem(&s->s_dquot.dqio_sem);
246 	s->s_maxbytes = MAX_NON_LFS;
247 	s->s_op = &default_op;
248 	s->s_time_gran = 1000000000;
249 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
250 
251 	s->s_shrink.seeks = DEFAULT_SEEKS;
252 	s->s_shrink.scan_objects = super_cache_scan;
253 	s->s_shrink.count_objects = super_cache_count;
254 	s->s_shrink.batch = 1024;
255 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
256 	if (prealloc_shrinker(&s->s_shrink))
257 		goto fail;
258 	return s;
259 
260 fail:
261 	destroy_unused_super(s);
262 	return NULL;
263 }
264 
265 /* Superblock refcounting  */
266 
267 /*
268  * Drop a superblock's refcount.  The caller must hold sb_lock.
269  */
270 static void __put_super(struct super_block *s)
271 {
272 	if (!--s->s_count) {
273 		list_del_init(&s->s_list);
274 		WARN_ON(s->s_dentry_lru.node);
275 		WARN_ON(s->s_inode_lru.node);
276 		WARN_ON(!list_empty(&s->s_mounts));
277 		security_sb_free(s);
278 		put_user_ns(s->s_user_ns);
279 		kfree(s->s_subtype);
280 		call_rcu(&s->rcu, destroy_super_rcu);
281 	}
282 }
283 
284 /**
285  *	put_super	-	drop a temporary reference to superblock
286  *	@sb: superblock in question
287  *
288  *	Drops a temporary reference, frees superblock if there's no
289  *	references left.
290  */
291 static void put_super(struct super_block *sb)
292 {
293 	spin_lock(&sb_lock);
294 	__put_super(sb);
295 	spin_unlock(&sb_lock);
296 }
297 
298 
299 /**
300  *	deactivate_locked_super	-	drop an active reference to superblock
301  *	@s: superblock to deactivate
302  *
303  *	Drops an active reference to superblock, converting it into a temporary
304  *	one if there is no other active references left.  In that case we
305  *	tell fs driver to shut it down and drop the temporary reference we
306  *	had just acquired.
307  *
308  *	Caller holds exclusive lock on superblock; that lock is released.
309  */
310 void deactivate_locked_super(struct super_block *s)
311 {
312 	struct file_system_type *fs = s->s_type;
313 	if (atomic_dec_and_test(&s->s_active)) {
314 		cleancache_invalidate_fs(s);
315 		unregister_shrinker(&s->s_shrink);
316 		fs->kill_sb(s);
317 
318 		/*
319 		 * Since list_lru_destroy() may sleep, we cannot call it from
320 		 * put_super(), where we hold the sb_lock. Therefore we destroy
321 		 * the lru lists right now.
322 		 */
323 		list_lru_destroy(&s->s_dentry_lru);
324 		list_lru_destroy(&s->s_inode_lru);
325 
326 		put_filesystem(fs);
327 		put_super(s);
328 	} else {
329 		up_write(&s->s_umount);
330 	}
331 }
332 
333 EXPORT_SYMBOL(deactivate_locked_super);
334 
335 /**
336  *	deactivate_super	-	drop an active reference to superblock
337  *	@s: superblock to deactivate
338  *
339  *	Variant of deactivate_locked_super(), except that superblock is *not*
340  *	locked by caller.  If we are going to drop the final active reference,
341  *	lock will be acquired prior to that.
342  */
343 void deactivate_super(struct super_block *s)
344 {
345         if (!atomic_add_unless(&s->s_active, -1, 1)) {
346 		down_write(&s->s_umount);
347 		deactivate_locked_super(s);
348 	}
349 }
350 
351 EXPORT_SYMBOL(deactivate_super);
352 
353 /**
354  *	grab_super - acquire an active reference
355  *	@s: reference we are trying to make active
356  *
357  *	Tries to acquire an active reference.  grab_super() is used when we
358  * 	had just found a superblock in super_blocks or fs_type->fs_supers
359  *	and want to turn it into a full-blown active reference.  grab_super()
360  *	is called with sb_lock held and drops it.  Returns 1 in case of
361  *	success, 0 if we had failed (superblock contents was already dead or
362  *	dying when grab_super() had been called).  Note that this is only
363  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
364  *	of their type), so increment of ->s_count is OK here.
365  */
366 static int grab_super(struct super_block *s) __releases(sb_lock)
367 {
368 	s->s_count++;
369 	spin_unlock(&sb_lock);
370 	down_write(&s->s_umount);
371 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
372 		put_super(s);
373 		return 1;
374 	}
375 	up_write(&s->s_umount);
376 	put_super(s);
377 	return 0;
378 }
379 
380 /*
381  *	trylock_super - try to grab ->s_umount shared
382  *	@sb: reference we are trying to grab
383  *
384  *	Try to prevent fs shutdown.  This is used in places where we
385  *	cannot take an active reference but we need to ensure that the
386  *	filesystem is not shut down while we are working on it. It returns
387  *	false if we cannot acquire s_umount or if we lose the race and
388  *	filesystem already got into shutdown, and returns true with the s_umount
389  *	lock held in read mode in case of success. On successful return,
390  *	the caller must drop the s_umount lock when done.
391  *
392  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
393  *	The reason why it's safe is that we are OK with doing trylock instead
394  *	of down_read().  There's a couple of places that are OK with that, but
395  *	it's very much not a general-purpose interface.
396  */
397 bool trylock_super(struct super_block *sb)
398 {
399 	if (down_read_trylock(&sb->s_umount)) {
400 		if (!hlist_unhashed(&sb->s_instances) &&
401 		    sb->s_root && (sb->s_flags & SB_BORN))
402 			return true;
403 		up_read(&sb->s_umount);
404 	}
405 
406 	return false;
407 }
408 
409 /**
410  *	generic_shutdown_super	-	common helper for ->kill_sb()
411  *	@sb: superblock to kill
412  *
413  *	generic_shutdown_super() does all fs-independent work on superblock
414  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
415  *	that need destruction out of superblock, call generic_shutdown_super()
416  *	and release aforementioned objects.  Note: dentries and inodes _are_
417  *	taken care of and do not need specific handling.
418  *
419  *	Upon calling this function, the filesystem may no longer alter or
420  *	rearrange the set of dentries belonging to this super_block, nor may it
421  *	change the attachments of dentries to inodes.
422  */
423 void generic_shutdown_super(struct super_block *sb)
424 {
425 	const struct super_operations *sop = sb->s_op;
426 
427 	if (sb->s_root) {
428 		shrink_dcache_for_umount(sb);
429 		sync_filesystem(sb);
430 		sb->s_flags &= ~SB_ACTIVE;
431 
432 		fsnotify_unmount_inodes(sb);
433 		cgroup_writeback_umount();
434 
435 		evict_inodes(sb);
436 
437 		if (sb->s_dio_done_wq) {
438 			destroy_workqueue(sb->s_dio_done_wq);
439 			sb->s_dio_done_wq = NULL;
440 		}
441 
442 		if (sop->put_super)
443 			sop->put_super(sb);
444 
445 		if (!list_empty(&sb->s_inodes)) {
446 			printk("VFS: Busy inodes after unmount of %s. "
447 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
448 			   sb->s_id);
449 		}
450 	}
451 	spin_lock(&sb_lock);
452 	/* should be initialized for __put_super_and_need_restart() */
453 	hlist_del_init(&sb->s_instances);
454 	spin_unlock(&sb_lock);
455 	up_write(&sb->s_umount);
456 	if (sb->s_bdi != &noop_backing_dev_info) {
457 		bdi_put(sb->s_bdi);
458 		sb->s_bdi = &noop_backing_dev_info;
459 	}
460 }
461 
462 EXPORT_SYMBOL(generic_shutdown_super);
463 
464 /**
465  *	sget_userns -	find or create a superblock
466  *	@type:	filesystem type superblock should belong to
467  *	@test:	comparison callback
468  *	@set:	setup callback
469  *	@flags:	mount flags
470  *	@user_ns: User namespace for the super_block
471  *	@data:	argument to each of them
472  */
473 struct super_block *sget_userns(struct file_system_type *type,
474 			int (*test)(struct super_block *,void *),
475 			int (*set)(struct super_block *,void *),
476 			int flags, struct user_namespace *user_ns,
477 			void *data)
478 {
479 	struct super_block *s = NULL;
480 	struct super_block *old;
481 	int err;
482 
483 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
484 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
485 	    !capable(CAP_SYS_ADMIN))
486 		return ERR_PTR(-EPERM);
487 retry:
488 	spin_lock(&sb_lock);
489 	if (test) {
490 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
491 			if (!test(old, data))
492 				continue;
493 			if (user_ns != old->s_user_ns) {
494 				spin_unlock(&sb_lock);
495 				destroy_unused_super(s);
496 				return ERR_PTR(-EBUSY);
497 			}
498 			if (!grab_super(old))
499 				goto retry;
500 			destroy_unused_super(s);
501 			return old;
502 		}
503 	}
504 	if (!s) {
505 		spin_unlock(&sb_lock);
506 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
507 		if (!s)
508 			return ERR_PTR(-ENOMEM);
509 		goto retry;
510 	}
511 
512 	err = set(s, data);
513 	if (err) {
514 		spin_unlock(&sb_lock);
515 		destroy_unused_super(s);
516 		return ERR_PTR(err);
517 	}
518 	s->s_type = type;
519 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
520 	list_add_tail(&s->s_list, &super_blocks);
521 	hlist_add_head(&s->s_instances, &type->fs_supers);
522 	spin_unlock(&sb_lock);
523 	get_filesystem(type);
524 	register_shrinker_prepared(&s->s_shrink);
525 	return s;
526 }
527 
528 EXPORT_SYMBOL(sget_userns);
529 
530 /**
531  *	sget	-	find or create a superblock
532  *	@type:	  filesystem type superblock should belong to
533  *	@test:	  comparison callback
534  *	@set:	  setup callback
535  *	@flags:	  mount flags
536  *	@data:	  argument to each of them
537  */
538 struct super_block *sget(struct file_system_type *type,
539 			int (*test)(struct super_block *,void *),
540 			int (*set)(struct super_block *,void *),
541 			int flags,
542 			void *data)
543 {
544 	struct user_namespace *user_ns = current_user_ns();
545 
546 	/* We don't yet pass the user namespace of the parent
547 	 * mount through to here so always use &init_user_ns
548 	 * until that changes.
549 	 */
550 	if (flags & SB_SUBMOUNT)
551 		user_ns = &init_user_ns;
552 
553 	/* Ensure the requestor has permissions over the target filesystem */
554 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 		return ERR_PTR(-EPERM);
556 
557 	return sget_userns(type, test, set, flags, user_ns, data);
558 }
559 
560 EXPORT_SYMBOL(sget);
561 
562 void drop_super(struct super_block *sb)
563 {
564 	up_read(&sb->s_umount);
565 	put_super(sb);
566 }
567 
568 EXPORT_SYMBOL(drop_super);
569 
570 void drop_super_exclusive(struct super_block *sb)
571 {
572 	up_write(&sb->s_umount);
573 	put_super(sb);
574 }
575 EXPORT_SYMBOL(drop_super_exclusive);
576 
577 static void __iterate_supers(void (*f)(struct super_block *))
578 {
579 	struct super_block *sb, *p = NULL;
580 
581 	spin_lock(&sb_lock);
582 	list_for_each_entry(sb, &super_blocks, s_list) {
583 		if (hlist_unhashed(&sb->s_instances))
584 			continue;
585 		sb->s_count++;
586 		spin_unlock(&sb_lock);
587 
588 		f(sb);
589 
590 		spin_lock(&sb_lock);
591 		if (p)
592 			__put_super(p);
593 		p = sb;
594 	}
595 	if (p)
596 		__put_super(p);
597 	spin_unlock(&sb_lock);
598 }
599 /**
600  *	iterate_supers - call function for all active superblocks
601  *	@f: function to call
602  *	@arg: argument to pass to it
603  *
604  *	Scans the superblock list and calls given function, passing it
605  *	locked superblock and given argument.
606  */
607 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
608 {
609 	struct super_block *sb, *p = NULL;
610 
611 	spin_lock(&sb_lock);
612 	list_for_each_entry(sb, &super_blocks, s_list) {
613 		if (hlist_unhashed(&sb->s_instances))
614 			continue;
615 		sb->s_count++;
616 		spin_unlock(&sb_lock);
617 
618 		down_read(&sb->s_umount);
619 		if (sb->s_root && (sb->s_flags & SB_BORN))
620 			f(sb, arg);
621 		up_read(&sb->s_umount);
622 
623 		spin_lock(&sb_lock);
624 		if (p)
625 			__put_super(p);
626 		p = sb;
627 	}
628 	if (p)
629 		__put_super(p);
630 	spin_unlock(&sb_lock);
631 }
632 
633 /**
634  *	iterate_supers_type - call function for superblocks of given type
635  *	@type: fs type
636  *	@f: function to call
637  *	@arg: argument to pass to it
638  *
639  *	Scans the superblock list and calls given function, passing it
640  *	locked superblock and given argument.
641  */
642 void iterate_supers_type(struct file_system_type *type,
643 	void (*f)(struct super_block *, void *), void *arg)
644 {
645 	struct super_block *sb, *p = NULL;
646 
647 	spin_lock(&sb_lock);
648 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
649 		sb->s_count++;
650 		spin_unlock(&sb_lock);
651 
652 		down_read(&sb->s_umount);
653 		if (sb->s_root && (sb->s_flags & SB_BORN))
654 			f(sb, arg);
655 		up_read(&sb->s_umount);
656 
657 		spin_lock(&sb_lock);
658 		if (p)
659 			__put_super(p);
660 		p = sb;
661 	}
662 	if (p)
663 		__put_super(p);
664 	spin_unlock(&sb_lock);
665 }
666 
667 EXPORT_SYMBOL(iterate_supers_type);
668 
669 static struct super_block *__get_super(struct block_device *bdev, bool excl)
670 {
671 	struct super_block *sb;
672 
673 	if (!bdev)
674 		return NULL;
675 
676 	spin_lock(&sb_lock);
677 rescan:
678 	list_for_each_entry(sb, &super_blocks, s_list) {
679 		if (hlist_unhashed(&sb->s_instances))
680 			continue;
681 		if (sb->s_bdev == bdev) {
682 			sb->s_count++;
683 			spin_unlock(&sb_lock);
684 			if (!excl)
685 				down_read(&sb->s_umount);
686 			else
687 				down_write(&sb->s_umount);
688 			/* still alive? */
689 			if (sb->s_root && (sb->s_flags & SB_BORN))
690 				return sb;
691 			if (!excl)
692 				up_read(&sb->s_umount);
693 			else
694 				up_write(&sb->s_umount);
695 			/* nope, got unmounted */
696 			spin_lock(&sb_lock);
697 			__put_super(sb);
698 			goto rescan;
699 		}
700 	}
701 	spin_unlock(&sb_lock);
702 	return NULL;
703 }
704 
705 /**
706  *	get_super - get the superblock of a device
707  *	@bdev: device to get the superblock for
708  *
709  *	Scans the superblock list and finds the superblock of the file system
710  *	mounted on the device given. %NULL is returned if no match is found.
711  */
712 struct super_block *get_super(struct block_device *bdev)
713 {
714 	return __get_super(bdev, false);
715 }
716 EXPORT_SYMBOL(get_super);
717 
718 static struct super_block *__get_super_thawed(struct block_device *bdev,
719 					      bool excl)
720 {
721 	while (1) {
722 		struct super_block *s = __get_super(bdev, excl);
723 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
724 			return s;
725 		if (!excl)
726 			up_read(&s->s_umount);
727 		else
728 			up_write(&s->s_umount);
729 		wait_event(s->s_writers.wait_unfrozen,
730 			   s->s_writers.frozen == SB_UNFROZEN);
731 		put_super(s);
732 	}
733 }
734 
735 /**
736  *	get_super_thawed - get thawed superblock of a device
737  *	@bdev: device to get the superblock for
738  *
739  *	Scans the superblock list and finds the superblock of the file system
740  *	mounted on the device. The superblock is returned once it is thawed
741  *	(or immediately if it was not frozen). %NULL is returned if no match
742  *	is found.
743  */
744 struct super_block *get_super_thawed(struct block_device *bdev)
745 {
746 	return __get_super_thawed(bdev, false);
747 }
748 EXPORT_SYMBOL(get_super_thawed);
749 
750 /**
751  *	get_super_exclusive_thawed - get thawed superblock of a device
752  *	@bdev: device to get the superblock for
753  *
754  *	Scans the superblock list and finds the superblock of the file system
755  *	mounted on the device. The superblock is returned once it is thawed
756  *	(or immediately if it was not frozen) and s_umount semaphore is held
757  *	in exclusive mode. %NULL is returned if no match is found.
758  */
759 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
760 {
761 	return __get_super_thawed(bdev, true);
762 }
763 EXPORT_SYMBOL(get_super_exclusive_thawed);
764 
765 /**
766  * get_active_super - get an active reference to the superblock of a device
767  * @bdev: device to get the superblock for
768  *
769  * Scans the superblock list and finds the superblock of the file system
770  * mounted on the device given.  Returns the superblock with an active
771  * reference or %NULL if none was found.
772  */
773 struct super_block *get_active_super(struct block_device *bdev)
774 {
775 	struct super_block *sb;
776 
777 	if (!bdev)
778 		return NULL;
779 
780 restart:
781 	spin_lock(&sb_lock);
782 	list_for_each_entry(sb, &super_blocks, s_list) {
783 		if (hlist_unhashed(&sb->s_instances))
784 			continue;
785 		if (sb->s_bdev == bdev) {
786 			if (!grab_super(sb))
787 				goto restart;
788 			up_write(&sb->s_umount);
789 			return sb;
790 		}
791 	}
792 	spin_unlock(&sb_lock);
793 	return NULL;
794 }
795 
796 struct super_block *user_get_super(dev_t dev)
797 {
798 	struct super_block *sb;
799 
800 	spin_lock(&sb_lock);
801 rescan:
802 	list_for_each_entry(sb, &super_blocks, s_list) {
803 		if (hlist_unhashed(&sb->s_instances))
804 			continue;
805 		if (sb->s_dev ==  dev) {
806 			sb->s_count++;
807 			spin_unlock(&sb_lock);
808 			down_read(&sb->s_umount);
809 			/* still alive? */
810 			if (sb->s_root && (sb->s_flags & SB_BORN))
811 				return sb;
812 			up_read(&sb->s_umount);
813 			/* nope, got unmounted */
814 			spin_lock(&sb_lock);
815 			__put_super(sb);
816 			goto rescan;
817 		}
818 	}
819 	spin_unlock(&sb_lock);
820 	return NULL;
821 }
822 
823 /**
824  *	do_remount_sb - asks filesystem to change mount options.
825  *	@sb:	superblock in question
826  *	@sb_flags: revised superblock flags
827  *	@data:	the rest of options
828  *      @force: whether or not to force the change
829  *
830  *	Alters the mount options of a mounted file system.
831  */
832 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
833 {
834 	int retval;
835 	int remount_ro;
836 
837 	if (sb->s_writers.frozen != SB_UNFROZEN)
838 		return -EBUSY;
839 
840 #ifdef CONFIG_BLOCK
841 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
842 		return -EACCES;
843 #endif
844 
845 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
846 
847 	if (remount_ro) {
848 		if (!hlist_empty(&sb->s_pins)) {
849 			up_write(&sb->s_umount);
850 			group_pin_kill(&sb->s_pins);
851 			down_write(&sb->s_umount);
852 			if (!sb->s_root)
853 				return 0;
854 			if (sb->s_writers.frozen != SB_UNFROZEN)
855 				return -EBUSY;
856 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
857 		}
858 	}
859 	shrink_dcache_sb(sb);
860 
861 	/* If we are remounting RDONLY and current sb is read/write,
862 	   make sure there are no rw files opened */
863 	if (remount_ro) {
864 		if (force) {
865 			sb->s_readonly_remount = 1;
866 			smp_wmb();
867 		} else {
868 			retval = sb_prepare_remount_readonly(sb);
869 			if (retval)
870 				return retval;
871 		}
872 	}
873 
874 	if (sb->s_op->remount_fs) {
875 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
876 		if (retval) {
877 			if (!force)
878 				goto cancel_readonly;
879 			/* If forced remount, go ahead despite any errors */
880 			WARN(1, "forced remount of a %s fs returned %i\n",
881 			     sb->s_type->name, retval);
882 		}
883 	}
884 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
885 	/* Needs to be ordered wrt mnt_is_readonly() */
886 	smp_wmb();
887 	sb->s_readonly_remount = 0;
888 
889 	/*
890 	 * Some filesystems modify their metadata via some other path than the
891 	 * bdev buffer cache (eg. use a private mapping, or directories in
892 	 * pagecache, etc). Also file data modifications go via their own
893 	 * mappings. So If we try to mount readonly then copy the filesystem
894 	 * from bdev, we could get stale data, so invalidate it to give a best
895 	 * effort at coherency.
896 	 */
897 	if (remount_ro && sb->s_bdev)
898 		invalidate_bdev(sb->s_bdev);
899 	return 0;
900 
901 cancel_readonly:
902 	sb->s_readonly_remount = 0;
903 	return retval;
904 }
905 
906 static void do_emergency_remount_callback(struct super_block *sb)
907 {
908 	down_write(&sb->s_umount);
909 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
910 	    !sb_rdonly(sb)) {
911 		/*
912 		 * What lock protects sb->s_flags??
913 		 */
914 		do_remount_sb(sb, SB_RDONLY, NULL, 1);
915 	}
916 	up_write(&sb->s_umount);
917 }
918 
919 static void do_emergency_remount(struct work_struct *work)
920 {
921 	__iterate_supers(do_emergency_remount_callback);
922 	kfree(work);
923 	printk("Emergency Remount complete\n");
924 }
925 
926 void emergency_remount(void)
927 {
928 	struct work_struct *work;
929 
930 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
931 	if (work) {
932 		INIT_WORK(work, do_emergency_remount);
933 		schedule_work(work);
934 	}
935 }
936 
937 static void do_thaw_all_callback(struct super_block *sb)
938 {
939 	down_write(&sb->s_umount);
940 	if (sb->s_root && sb->s_flags & MS_BORN) {
941 		emergency_thaw_bdev(sb);
942 		thaw_super_locked(sb);
943 	} else {
944 		up_write(&sb->s_umount);
945 	}
946 }
947 
948 static void do_thaw_all(struct work_struct *work)
949 {
950 	__iterate_supers(do_thaw_all_callback);
951 	kfree(work);
952 	printk(KERN_WARNING "Emergency Thaw complete\n");
953 }
954 
955 /**
956  * emergency_thaw_all -- forcibly thaw every frozen filesystem
957  *
958  * Used for emergency unfreeze of all filesystems via SysRq
959  */
960 void emergency_thaw_all(void)
961 {
962 	struct work_struct *work;
963 
964 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
965 	if (work) {
966 		INIT_WORK(work, do_thaw_all);
967 		schedule_work(work);
968 	}
969 }
970 
971 /*
972  * Unnamed block devices are dummy devices used by virtual
973  * filesystems which don't use real block-devices.  -- jrs
974  */
975 
976 static DEFINE_IDA(unnamed_dev_ida);
977 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
978 /* Many userspace utilities consider an FSID of 0 invalid.
979  * Always return at least 1 from get_anon_bdev.
980  */
981 static int unnamed_dev_start = 1;
982 
983 int get_anon_bdev(dev_t *p)
984 {
985 	int dev;
986 	int error;
987 
988  retry:
989 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
990 		return -ENOMEM;
991 	spin_lock(&unnamed_dev_lock);
992 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
993 	if (!error)
994 		unnamed_dev_start = dev + 1;
995 	spin_unlock(&unnamed_dev_lock);
996 	if (error == -EAGAIN)
997 		/* We raced and lost with another CPU. */
998 		goto retry;
999 	else if (error)
1000 		return -EAGAIN;
1001 
1002 	if (dev >= (1 << MINORBITS)) {
1003 		spin_lock(&unnamed_dev_lock);
1004 		ida_remove(&unnamed_dev_ida, dev);
1005 		if (unnamed_dev_start > dev)
1006 			unnamed_dev_start = dev;
1007 		spin_unlock(&unnamed_dev_lock);
1008 		return -EMFILE;
1009 	}
1010 	*p = MKDEV(0, dev & MINORMASK);
1011 	return 0;
1012 }
1013 EXPORT_SYMBOL(get_anon_bdev);
1014 
1015 void free_anon_bdev(dev_t dev)
1016 {
1017 	int slot = MINOR(dev);
1018 	spin_lock(&unnamed_dev_lock);
1019 	ida_remove(&unnamed_dev_ida, slot);
1020 	if (slot < unnamed_dev_start)
1021 		unnamed_dev_start = slot;
1022 	spin_unlock(&unnamed_dev_lock);
1023 }
1024 EXPORT_SYMBOL(free_anon_bdev);
1025 
1026 int set_anon_super(struct super_block *s, void *data)
1027 {
1028 	return get_anon_bdev(&s->s_dev);
1029 }
1030 
1031 EXPORT_SYMBOL(set_anon_super);
1032 
1033 void kill_anon_super(struct super_block *sb)
1034 {
1035 	dev_t dev = sb->s_dev;
1036 	generic_shutdown_super(sb);
1037 	free_anon_bdev(dev);
1038 }
1039 
1040 EXPORT_SYMBOL(kill_anon_super);
1041 
1042 void kill_litter_super(struct super_block *sb)
1043 {
1044 	if (sb->s_root)
1045 		d_genocide(sb->s_root);
1046 	kill_anon_super(sb);
1047 }
1048 
1049 EXPORT_SYMBOL(kill_litter_super);
1050 
1051 static int ns_test_super(struct super_block *sb, void *data)
1052 {
1053 	return sb->s_fs_info == data;
1054 }
1055 
1056 static int ns_set_super(struct super_block *sb, void *data)
1057 {
1058 	sb->s_fs_info = data;
1059 	return set_anon_super(sb, NULL);
1060 }
1061 
1062 struct dentry *mount_ns(struct file_system_type *fs_type,
1063 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1064 	int (*fill_super)(struct super_block *, void *, int))
1065 {
1066 	struct super_block *sb;
1067 
1068 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1069 	 * over the namespace.
1070 	 */
1071 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1072 		return ERR_PTR(-EPERM);
1073 
1074 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1075 			 user_ns, ns);
1076 	if (IS_ERR(sb))
1077 		return ERR_CAST(sb);
1078 
1079 	if (!sb->s_root) {
1080 		int err;
1081 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1082 		if (err) {
1083 			deactivate_locked_super(sb);
1084 			return ERR_PTR(err);
1085 		}
1086 
1087 		sb->s_flags |= SB_ACTIVE;
1088 	}
1089 
1090 	return dget(sb->s_root);
1091 }
1092 
1093 EXPORT_SYMBOL(mount_ns);
1094 
1095 #ifdef CONFIG_BLOCK
1096 static int set_bdev_super(struct super_block *s, void *data)
1097 {
1098 	s->s_bdev = data;
1099 	s->s_dev = s->s_bdev->bd_dev;
1100 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1101 
1102 	return 0;
1103 }
1104 
1105 static int test_bdev_super(struct super_block *s, void *data)
1106 {
1107 	return (void *)s->s_bdev == data;
1108 }
1109 
1110 struct dentry *mount_bdev(struct file_system_type *fs_type,
1111 	int flags, const char *dev_name, void *data,
1112 	int (*fill_super)(struct super_block *, void *, int))
1113 {
1114 	struct block_device *bdev;
1115 	struct super_block *s;
1116 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1117 	int error = 0;
1118 
1119 	if (!(flags & SB_RDONLY))
1120 		mode |= FMODE_WRITE;
1121 
1122 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1123 	if (IS_ERR(bdev))
1124 		return ERR_CAST(bdev);
1125 
1126 	/*
1127 	 * once the super is inserted into the list by sget, s_umount
1128 	 * will protect the lockfs code from trying to start a snapshot
1129 	 * while we are mounting
1130 	 */
1131 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1132 	if (bdev->bd_fsfreeze_count > 0) {
1133 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1134 		error = -EBUSY;
1135 		goto error_bdev;
1136 	}
1137 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1138 		 bdev);
1139 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1140 	if (IS_ERR(s))
1141 		goto error_s;
1142 
1143 	if (s->s_root) {
1144 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1145 			deactivate_locked_super(s);
1146 			error = -EBUSY;
1147 			goto error_bdev;
1148 		}
1149 
1150 		/*
1151 		 * s_umount nests inside bd_mutex during
1152 		 * __invalidate_device().  blkdev_put() acquires
1153 		 * bd_mutex and can't be called under s_umount.  Drop
1154 		 * s_umount temporarily.  This is safe as we're
1155 		 * holding an active reference.
1156 		 */
1157 		up_write(&s->s_umount);
1158 		blkdev_put(bdev, mode);
1159 		down_write(&s->s_umount);
1160 	} else {
1161 		s->s_mode = mode;
1162 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1163 		sb_set_blocksize(s, block_size(bdev));
1164 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1165 		if (error) {
1166 			deactivate_locked_super(s);
1167 			goto error;
1168 		}
1169 
1170 		s->s_flags |= SB_ACTIVE;
1171 		bdev->bd_super = s;
1172 	}
1173 
1174 	return dget(s->s_root);
1175 
1176 error_s:
1177 	error = PTR_ERR(s);
1178 error_bdev:
1179 	blkdev_put(bdev, mode);
1180 error:
1181 	return ERR_PTR(error);
1182 }
1183 EXPORT_SYMBOL(mount_bdev);
1184 
1185 void kill_block_super(struct super_block *sb)
1186 {
1187 	struct block_device *bdev = sb->s_bdev;
1188 	fmode_t mode = sb->s_mode;
1189 
1190 	bdev->bd_super = NULL;
1191 	generic_shutdown_super(sb);
1192 	sync_blockdev(bdev);
1193 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1194 	blkdev_put(bdev, mode | FMODE_EXCL);
1195 }
1196 
1197 EXPORT_SYMBOL(kill_block_super);
1198 #endif
1199 
1200 struct dentry *mount_nodev(struct file_system_type *fs_type,
1201 	int flags, void *data,
1202 	int (*fill_super)(struct super_block *, void *, int))
1203 {
1204 	int error;
1205 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1206 
1207 	if (IS_ERR(s))
1208 		return ERR_CAST(s);
1209 
1210 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1211 	if (error) {
1212 		deactivate_locked_super(s);
1213 		return ERR_PTR(error);
1214 	}
1215 	s->s_flags |= SB_ACTIVE;
1216 	return dget(s->s_root);
1217 }
1218 EXPORT_SYMBOL(mount_nodev);
1219 
1220 static int compare_single(struct super_block *s, void *p)
1221 {
1222 	return 1;
1223 }
1224 
1225 struct dentry *mount_single(struct file_system_type *fs_type,
1226 	int flags, void *data,
1227 	int (*fill_super)(struct super_block *, void *, int))
1228 {
1229 	struct super_block *s;
1230 	int error;
1231 
1232 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1233 	if (IS_ERR(s))
1234 		return ERR_CAST(s);
1235 	if (!s->s_root) {
1236 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1237 		if (error) {
1238 			deactivate_locked_super(s);
1239 			return ERR_PTR(error);
1240 		}
1241 		s->s_flags |= SB_ACTIVE;
1242 	} else {
1243 		do_remount_sb(s, flags, data, 0);
1244 	}
1245 	return dget(s->s_root);
1246 }
1247 EXPORT_SYMBOL(mount_single);
1248 
1249 struct dentry *
1250 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1251 {
1252 	struct dentry *root;
1253 	struct super_block *sb;
1254 	char *secdata = NULL;
1255 	int error = -ENOMEM;
1256 
1257 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1258 		secdata = alloc_secdata();
1259 		if (!secdata)
1260 			goto out;
1261 
1262 		error = security_sb_copy_data(data, secdata);
1263 		if (error)
1264 			goto out_free_secdata;
1265 	}
1266 
1267 	root = type->mount(type, flags, name, data);
1268 	if (IS_ERR(root)) {
1269 		error = PTR_ERR(root);
1270 		goto out_free_secdata;
1271 	}
1272 	sb = root->d_sb;
1273 	BUG_ON(!sb);
1274 	WARN_ON(!sb->s_bdi);
1275 	sb->s_flags |= SB_BORN;
1276 
1277 	error = security_sb_kern_mount(sb, flags, secdata);
1278 	if (error)
1279 		goto out_sb;
1280 
1281 	/*
1282 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1283 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1284 	 * this warning for a little while to try and catch filesystems that
1285 	 * violate this rule.
1286 	 */
1287 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1288 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1289 
1290 	up_write(&sb->s_umount);
1291 	free_secdata(secdata);
1292 	return root;
1293 out_sb:
1294 	dput(root);
1295 	deactivate_locked_super(sb);
1296 out_free_secdata:
1297 	free_secdata(secdata);
1298 out:
1299 	return ERR_PTR(error);
1300 }
1301 
1302 /*
1303  * Setup private BDI for given superblock. It gets automatically cleaned up
1304  * in generic_shutdown_super().
1305  */
1306 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1307 {
1308 	struct backing_dev_info *bdi;
1309 	int err;
1310 	va_list args;
1311 
1312 	bdi = bdi_alloc(GFP_KERNEL);
1313 	if (!bdi)
1314 		return -ENOMEM;
1315 
1316 	bdi->name = sb->s_type->name;
1317 
1318 	va_start(args, fmt);
1319 	err = bdi_register_va(bdi, fmt, args);
1320 	va_end(args);
1321 	if (err) {
1322 		bdi_put(bdi);
1323 		return err;
1324 	}
1325 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1326 	sb->s_bdi = bdi;
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL(super_setup_bdi_name);
1331 
1332 /*
1333  * Setup private BDI for given superblock. I gets automatically cleaned up
1334  * in generic_shutdown_super().
1335  */
1336 int super_setup_bdi(struct super_block *sb)
1337 {
1338 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1339 
1340 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1341 				    atomic_long_inc_return(&bdi_seq));
1342 }
1343 EXPORT_SYMBOL(super_setup_bdi);
1344 
1345 /*
1346  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1347  * instead.
1348  */
1349 void __sb_end_write(struct super_block *sb, int level)
1350 {
1351 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1352 }
1353 EXPORT_SYMBOL(__sb_end_write);
1354 
1355 /*
1356  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1357  * instead.
1358  */
1359 int __sb_start_write(struct super_block *sb, int level, bool wait)
1360 {
1361 	bool force_trylock = false;
1362 	int ret = 1;
1363 
1364 #ifdef CONFIG_LOCKDEP
1365 	/*
1366 	 * We want lockdep to tell us about possible deadlocks with freezing
1367 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1368 	 * protection works as getting a read lock but there are subtle
1369 	 * problems. XFS for example gets freeze protection on internal level
1370 	 * twice in some cases, which is OK only because we already hold a
1371 	 * freeze protection also on higher level. Due to these cases we have
1372 	 * to use wait == F (trylock mode) which must not fail.
1373 	 */
1374 	if (wait) {
1375 		int i;
1376 
1377 		for (i = 0; i < level - 1; i++)
1378 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1379 				force_trylock = true;
1380 				break;
1381 			}
1382 	}
1383 #endif
1384 	if (wait && !force_trylock)
1385 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1386 	else
1387 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1388 
1389 	WARN_ON(force_trylock && !ret);
1390 	return ret;
1391 }
1392 EXPORT_SYMBOL(__sb_start_write);
1393 
1394 /**
1395  * sb_wait_write - wait until all writers to given file system finish
1396  * @sb: the super for which we wait
1397  * @level: type of writers we wait for (normal vs page fault)
1398  *
1399  * This function waits until there are no writers of given type to given file
1400  * system.
1401  */
1402 static void sb_wait_write(struct super_block *sb, int level)
1403 {
1404 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1405 }
1406 
1407 /*
1408  * We are going to return to userspace and forget about these locks, the
1409  * ownership goes to the caller of thaw_super() which does unlock().
1410  */
1411 static void lockdep_sb_freeze_release(struct super_block *sb)
1412 {
1413 	int level;
1414 
1415 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1416 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1417 }
1418 
1419 /*
1420  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1421  */
1422 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1423 {
1424 	int level;
1425 
1426 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1427 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1428 }
1429 
1430 static void sb_freeze_unlock(struct super_block *sb)
1431 {
1432 	int level;
1433 
1434 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1435 		percpu_up_write(sb->s_writers.rw_sem + level);
1436 }
1437 
1438 /**
1439  * freeze_super - lock the filesystem and force it into a consistent state
1440  * @sb: the super to lock
1441  *
1442  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1443  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1444  * -EBUSY.
1445  *
1446  * During this function, sb->s_writers.frozen goes through these values:
1447  *
1448  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1449  *
1450  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1451  * writes should be blocked, though page faults are still allowed. We wait for
1452  * all writes to complete and then proceed to the next stage.
1453  *
1454  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1455  * but internal fs threads can still modify the filesystem (although they
1456  * should not dirty new pages or inodes), writeback can run etc. After waiting
1457  * for all running page faults we sync the filesystem which will clean all
1458  * dirty pages and inodes (no new dirty pages or inodes can be created when
1459  * sync is running).
1460  *
1461  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1462  * modification are blocked (e.g. XFS preallocation truncation on inode
1463  * reclaim). This is usually implemented by blocking new transactions for
1464  * filesystems that have them and need this additional guard. After all
1465  * internal writers are finished we call ->freeze_fs() to finish filesystem
1466  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1467  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1468  *
1469  * sb->s_writers.frozen is protected by sb->s_umount.
1470  */
1471 int freeze_super(struct super_block *sb)
1472 {
1473 	int ret;
1474 
1475 	atomic_inc(&sb->s_active);
1476 	down_write(&sb->s_umount);
1477 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1478 		deactivate_locked_super(sb);
1479 		return -EBUSY;
1480 	}
1481 
1482 	if (!(sb->s_flags & SB_BORN)) {
1483 		up_write(&sb->s_umount);
1484 		return 0;	/* sic - it's "nothing to do" */
1485 	}
1486 
1487 	if (sb_rdonly(sb)) {
1488 		/* Nothing to do really... */
1489 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1490 		up_write(&sb->s_umount);
1491 		return 0;
1492 	}
1493 
1494 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1495 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1496 	up_write(&sb->s_umount);
1497 	sb_wait_write(sb, SB_FREEZE_WRITE);
1498 	down_write(&sb->s_umount);
1499 
1500 	/* Now we go and block page faults... */
1501 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1502 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1503 
1504 	/* All writers are done so after syncing there won't be dirty data */
1505 	sync_filesystem(sb);
1506 
1507 	/* Now wait for internal filesystem counter */
1508 	sb->s_writers.frozen = SB_FREEZE_FS;
1509 	sb_wait_write(sb, SB_FREEZE_FS);
1510 
1511 	if (sb->s_op->freeze_fs) {
1512 		ret = sb->s_op->freeze_fs(sb);
1513 		if (ret) {
1514 			printk(KERN_ERR
1515 				"VFS:Filesystem freeze failed\n");
1516 			sb->s_writers.frozen = SB_UNFROZEN;
1517 			sb_freeze_unlock(sb);
1518 			wake_up(&sb->s_writers.wait_unfrozen);
1519 			deactivate_locked_super(sb);
1520 			return ret;
1521 		}
1522 	}
1523 	/*
1524 	 * For debugging purposes so that fs can warn if it sees write activity
1525 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1526 	 */
1527 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1528 	lockdep_sb_freeze_release(sb);
1529 	up_write(&sb->s_umount);
1530 	return 0;
1531 }
1532 EXPORT_SYMBOL(freeze_super);
1533 
1534 /**
1535  * thaw_super -- unlock filesystem
1536  * @sb: the super to thaw
1537  *
1538  * Unlocks the filesystem and marks it writeable again after freeze_super().
1539  */
1540 static int thaw_super_locked(struct super_block *sb)
1541 {
1542 	int error;
1543 
1544 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1545 		up_write(&sb->s_umount);
1546 		return -EINVAL;
1547 	}
1548 
1549 	if (sb_rdonly(sb)) {
1550 		sb->s_writers.frozen = SB_UNFROZEN;
1551 		goto out;
1552 	}
1553 
1554 	lockdep_sb_freeze_acquire(sb);
1555 
1556 	if (sb->s_op->unfreeze_fs) {
1557 		error = sb->s_op->unfreeze_fs(sb);
1558 		if (error) {
1559 			printk(KERN_ERR
1560 				"VFS:Filesystem thaw failed\n");
1561 			lockdep_sb_freeze_release(sb);
1562 			up_write(&sb->s_umount);
1563 			return error;
1564 		}
1565 	}
1566 
1567 	sb->s_writers.frozen = SB_UNFROZEN;
1568 	sb_freeze_unlock(sb);
1569 out:
1570 	wake_up(&sb->s_writers.wait_unfrozen);
1571 	deactivate_locked_super(sb);
1572 	return 0;
1573 }
1574 
1575 int thaw_super(struct super_block *sb)
1576 {
1577 	down_write(&sb->s_umount);
1578 	return thaw_super_locked(sb);
1579 }
1580 EXPORT_SYMBOL(thaw_super);
1581