xref: /openbmc/linux/fs/super.c (revision ca79522c)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	int	fs_objects = 0;
60 	int	total_objects;
61 
62 	sb = container_of(shrink, struct super_block, s_shrink);
63 
64 	/*
65 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
66 	 * to recurse into the FS that called us in clear_inode() and friends..
67 	 */
68 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 		return -1;
70 
71 	if (!grab_super_passive(sb))
72 		return -1;
73 
74 	if (sb->s_op && sb->s_op->nr_cached_objects)
75 		fs_objects = sb->s_op->nr_cached_objects(sb);
76 
77 	total_objects = sb->s_nr_dentry_unused +
78 			sb->s_nr_inodes_unused + fs_objects + 1;
79 
80 	if (sc->nr_to_scan) {
81 		int	dentries;
82 		int	inodes;
83 
84 		/* proportion the scan between the caches */
85 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 							total_objects;
87 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 							total_objects;
89 		if (fs_objects)
90 			fs_objects = (sc->nr_to_scan * fs_objects) /
91 							total_objects;
92 		/*
93 		 * prune the dcache first as the icache is pinned by it, then
94 		 * prune the icache, followed by the filesystem specific caches
95 		 */
96 		prune_dcache_sb(sb, dentries);
97 		prune_icache_sb(sb, inodes);
98 
99 		if (fs_objects && sb->s_op->free_cached_objects) {
100 			sb->s_op->free_cached_objects(sb, fs_objects);
101 			fs_objects = sb->s_op->nr_cached_objects(sb);
102 		}
103 		total_objects = sb->s_nr_dentry_unused +
104 				sb->s_nr_inodes_unused + fs_objects;
105 	}
106 
107 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 	drop_super(sb);
109 	return total_objects;
110 }
111 
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 	int err;
115 	int i;
116 
117 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 		if (err < 0)
120 			goto err_out;
121 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 				 &type->s_writers_key[i], 0);
123 	}
124 	init_waitqueue_head(&s->s_writers.wait);
125 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 	return 0;
127 err_out:
128 	while (--i >= 0)
129 		percpu_counter_destroy(&s->s_writers.counter[i]);
130 	return err;
131 }
132 
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 		percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140 
141 /**
142  *	alloc_super	-	create new superblock
143  *	@type:	filesystem type superblock should belong to
144  *	@flags: the mount flags
145  *
146  *	Allocates and initializes a new &struct super_block.  alloc_super()
147  *	returns a pointer new superblock or %NULL if allocation had failed.
148  */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
152 	static const struct super_operations default_op;
153 
154 	if (s) {
155 		if (security_sb_alloc(s)) {
156 			/*
157 			 * We cannot call security_sb_free() without
158 			 * security_sb_alloc() succeeding. So bail out manually
159 			 */
160 			kfree(s);
161 			s = NULL;
162 			goto out;
163 		}
164 #ifdef CONFIG_SMP
165 		s->s_files = alloc_percpu(struct list_head);
166 		if (!s->s_files)
167 			goto err_out;
168 		else {
169 			int i;
170 
171 			for_each_possible_cpu(i)
172 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 		}
174 #else
175 		INIT_LIST_HEAD(&s->s_files);
176 #endif
177 		if (init_sb_writers(s, type))
178 			goto err_out;
179 		s->s_flags = flags;
180 		s->s_bdi = &default_backing_dev_info;
181 		INIT_HLIST_NODE(&s->s_instances);
182 		INIT_HLIST_BL_HEAD(&s->s_anon);
183 		INIT_LIST_HEAD(&s->s_inodes);
184 		INIT_LIST_HEAD(&s->s_dentry_lru);
185 		INIT_LIST_HEAD(&s->s_inode_lru);
186 		spin_lock_init(&s->s_inode_lru_lock);
187 		INIT_LIST_HEAD(&s->s_mounts);
188 		init_rwsem(&s->s_umount);
189 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
190 		/*
191 		 * sget() can have s_umount recursion.
192 		 *
193 		 * When it cannot find a suitable sb, it allocates a new
194 		 * one (this one), and tries again to find a suitable old
195 		 * one.
196 		 *
197 		 * In case that succeeds, it will acquire the s_umount
198 		 * lock of the old one. Since these are clearly distrinct
199 		 * locks, and this object isn't exposed yet, there's no
200 		 * risk of deadlocks.
201 		 *
202 		 * Annotate this by putting this lock in a different
203 		 * subclass.
204 		 */
205 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
206 		s->s_count = 1;
207 		atomic_set(&s->s_active, 1);
208 		mutex_init(&s->s_vfs_rename_mutex);
209 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
210 		mutex_init(&s->s_dquot.dqio_mutex);
211 		mutex_init(&s->s_dquot.dqonoff_mutex);
212 		init_rwsem(&s->s_dquot.dqptr_sem);
213 		s->s_maxbytes = MAX_NON_LFS;
214 		s->s_op = &default_op;
215 		s->s_time_gran = 1000000000;
216 		s->cleancache_poolid = -1;
217 
218 		s->s_shrink.seeks = DEFAULT_SEEKS;
219 		s->s_shrink.shrink = prune_super;
220 		s->s_shrink.batch = 1024;
221 	}
222 out:
223 	return s;
224 err_out:
225 	security_sb_free(s);
226 #ifdef CONFIG_SMP
227 	if (s->s_files)
228 		free_percpu(s->s_files);
229 #endif
230 	destroy_sb_writers(s);
231 	kfree(s);
232 	s = NULL;
233 	goto out;
234 }
235 
236 /**
237  *	destroy_super	-	frees a superblock
238  *	@s: superblock to free
239  *
240  *	Frees a superblock.
241  */
242 static inline void destroy_super(struct super_block *s)
243 {
244 #ifdef CONFIG_SMP
245 	free_percpu(s->s_files);
246 #endif
247 	destroy_sb_writers(s);
248 	security_sb_free(s);
249 	WARN_ON(!list_empty(&s->s_mounts));
250 	kfree(s->s_subtype);
251 	kfree(s->s_options);
252 	kfree(s);
253 }
254 
255 /* Superblock refcounting  */
256 
257 /*
258  * Drop a superblock's refcount.  The caller must hold sb_lock.
259  */
260 static void __put_super(struct super_block *sb)
261 {
262 	if (!--sb->s_count) {
263 		list_del_init(&sb->s_list);
264 		destroy_super(sb);
265 	}
266 }
267 
268 /**
269  *	put_super	-	drop a temporary reference to superblock
270  *	@sb: superblock in question
271  *
272  *	Drops a temporary reference, frees superblock if there's no
273  *	references left.
274  */
275 static void put_super(struct super_block *sb)
276 {
277 	spin_lock(&sb_lock);
278 	__put_super(sb);
279 	spin_unlock(&sb_lock);
280 }
281 
282 
283 /**
284  *	deactivate_locked_super	-	drop an active reference to superblock
285  *	@s: superblock to deactivate
286  *
287  *	Drops an active reference to superblock, converting it into a temprory
288  *	one if there is no other active references left.  In that case we
289  *	tell fs driver to shut it down and drop the temporary reference we
290  *	had just acquired.
291  *
292  *	Caller holds exclusive lock on superblock; that lock is released.
293  */
294 void deactivate_locked_super(struct super_block *s)
295 {
296 	struct file_system_type *fs = s->s_type;
297 	if (atomic_dec_and_test(&s->s_active)) {
298 		cleancache_invalidate_fs(s);
299 		fs->kill_sb(s);
300 
301 		/* caches are now gone, we can safely kill the shrinker now */
302 		unregister_shrinker(&s->s_shrink);
303 		put_filesystem(fs);
304 		put_super(s);
305 	} else {
306 		up_write(&s->s_umount);
307 	}
308 }
309 
310 EXPORT_SYMBOL(deactivate_locked_super);
311 
312 /**
313  *	deactivate_super	-	drop an active reference to superblock
314  *	@s: superblock to deactivate
315  *
316  *	Variant of deactivate_locked_super(), except that superblock is *not*
317  *	locked by caller.  If we are going to drop the final active reference,
318  *	lock will be acquired prior to that.
319  */
320 void deactivate_super(struct super_block *s)
321 {
322         if (!atomic_add_unless(&s->s_active, -1, 1)) {
323 		down_write(&s->s_umount);
324 		deactivate_locked_super(s);
325 	}
326 }
327 
328 EXPORT_SYMBOL(deactivate_super);
329 
330 /**
331  *	grab_super - acquire an active reference
332  *	@s: reference we are trying to make active
333  *
334  *	Tries to acquire an active reference.  grab_super() is used when we
335  * 	had just found a superblock in super_blocks or fs_type->fs_supers
336  *	and want to turn it into a full-blown active reference.  grab_super()
337  *	is called with sb_lock held and drops it.  Returns 1 in case of
338  *	success, 0 if we had failed (superblock contents was already dead or
339  *	dying when grab_super() had been called).
340  */
341 static int grab_super(struct super_block *s) __releases(sb_lock)
342 {
343 	if (atomic_inc_not_zero(&s->s_active)) {
344 		spin_unlock(&sb_lock);
345 		return 1;
346 	}
347 	/* it's going away */
348 	s->s_count++;
349 	spin_unlock(&sb_lock);
350 	/* wait for it to die */
351 	down_write(&s->s_umount);
352 	up_write(&s->s_umount);
353 	put_super(s);
354 	return 0;
355 }
356 
357 /*
358  *	grab_super_passive - acquire a passive reference
359  *	@sb: reference we are trying to grab
360  *
361  *	Tries to acquire a passive reference. This is used in places where we
362  *	cannot take an active reference but we need to ensure that the
363  *	superblock does not go away while we are working on it. It returns
364  *	false if a reference was not gained, and returns true with the s_umount
365  *	lock held in read mode if a reference is gained. On successful return,
366  *	the caller must drop the s_umount lock and the passive reference when
367  *	done.
368  */
369 bool grab_super_passive(struct super_block *sb)
370 {
371 	spin_lock(&sb_lock);
372 	if (hlist_unhashed(&sb->s_instances)) {
373 		spin_unlock(&sb_lock);
374 		return false;
375 	}
376 
377 	sb->s_count++;
378 	spin_unlock(&sb_lock);
379 
380 	if (down_read_trylock(&sb->s_umount)) {
381 		if (sb->s_root && (sb->s_flags & MS_BORN))
382 			return true;
383 		up_read(&sb->s_umount);
384 	}
385 
386 	put_super(sb);
387 	return false;
388 }
389 
390 /**
391  *	generic_shutdown_super	-	common helper for ->kill_sb()
392  *	@sb: superblock to kill
393  *
394  *	generic_shutdown_super() does all fs-independent work on superblock
395  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
396  *	that need destruction out of superblock, call generic_shutdown_super()
397  *	and release aforementioned objects.  Note: dentries and inodes _are_
398  *	taken care of and do not need specific handling.
399  *
400  *	Upon calling this function, the filesystem may no longer alter or
401  *	rearrange the set of dentries belonging to this super_block, nor may it
402  *	change the attachments of dentries to inodes.
403  */
404 void generic_shutdown_super(struct super_block *sb)
405 {
406 	const struct super_operations *sop = sb->s_op;
407 
408 	if (sb->s_root) {
409 		shrink_dcache_for_umount(sb);
410 		sync_filesystem(sb);
411 		sb->s_flags &= ~MS_ACTIVE;
412 
413 		fsnotify_unmount_inodes(&sb->s_inodes);
414 
415 		evict_inodes(sb);
416 
417 		if (sop->put_super)
418 			sop->put_super(sb);
419 
420 		if (!list_empty(&sb->s_inodes)) {
421 			printk("VFS: Busy inodes after unmount of %s. "
422 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
423 			   sb->s_id);
424 		}
425 	}
426 	spin_lock(&sb_lock);
427 	/* should be initialized for __put_super_and_need_restart() */
428 	hlist_del_init(&sb->s_instances);
429 	spin_unlock(&sb_lock);
430 	up_write(&sb->s_umount);
431 }
432 
433 EXPORT_SYMBOL(generic_shutdown_super);
434 
435 /**
436  *	sget	-	find or create a superblock
437  *	@type:	filesystem type superblock should belong to
438  *	@test:	comparison callback
439  *	@set:	setup callback
440  *	@flags:	mount flags
441  *	@data:	argument to each of them
442  */
443 struct super_block *sget(struct file_system_type *type,
444 			int (*test)(struct super_block *,void *),
445 			int (*set)(struct super_block *,void *),
446 			int flags,
447 			void *data)
448 {
449 	struct super_block *s = NULL;
450 	struct super_block *old;
451 	int err;
452 
453 retry:
454 	spin_lock(&sb_lock);
455 	if (test) {
456 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
457 			if (!test(old, data))
458 				continue;
459 			if (!grab_super(old))
460 				goto retry;
461 			if (s) {
462 				up_write(&s->s_umount);
463 				destroy_super(s);
464 				s = NULL;
465 			}
466 			down_write(&old->s_umount);
467 			if (unlikely(!(old->s_flags & MS_BORN))) {
468 				deactivate_locked_super(old);
469 				goto retry;
470 			}
471 			return old;
472 		}
473 	}
474 	if (!s) {
475 		spin_unlock(&sb_lock);
476 		s = alloc_super(type, flags);
477 		if (!s)
478 			return ERR_PTR(-ENOMEM);
479 		goto retry;
480 	}
481 
482 	err = set(s, data);
483 	if (err) {
484 		spin_unlock(&sb_lock);
485 		up_write(&s->s_umount);
486 		destroy_super(s);
487 		return ERR_PTR(err);
488 	}
489 	s->s_type = type;
490 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
491 	list_add_tail(&s->s_list, &super_blocks);
492 	hlist_add_head(&s->s_instances, &type->fs_supers);
493 	spin_unlock(&sb_lock);
494 	get_filesystem(type);
495 	register_shrinker(&s->s_shrink);
496 	return s;
497 }
498 
499 EXPORT_SYMBOL(sget);
500 
501 void drop_super(struct super_block *sb)
502 {
503 	up_read(&sb->s_umount);
504 	put_super(sb);
505 }
506 
507 EXPORT_SYMBOL(drop_super);
508 
509 /**
510  *	iterate_supers - call function for all active superblocks
511  *	@f: function to call
512  *	@arg: argument to pass to it
513  *
514  *	Scans the superblock list and calls given function, passing it
515  *	locked superblock and given argument.
516  */
517 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
518 {
519 	struct super_block *sb, *p = NULL;
520 
521 	spin_lock(&sb_lock);
522 	list_for_each_entry(sb, &super_blocks, s_list) {
523 		if (hlist_unhashed(&sb->s_instances))
524 			continue;
525 		sb->s_count++;
526 		spin_unlock(&sb_lock);
527 
528 		down_read(&sb->s_umount);
529 		if (sb->s_root && (sb->s_flags & MS_BORN))
530 			f(sb, arg);
531 		up_read(&sb->s_umount);
532 
533 		spin_lock(&sb_lock);
534 		if (p)
535 			__put_super(p);
536 		p = sb;
537 	}
538 	if (p)
539 		__put_super(p);
540 	spin_unlock(&sb_lock);
541 }
542 
543 /**
544  *	iterate_supers_type - call function for superblocks of given type
545  *	@type: fs type
546  *	@f: function to call
547  *	@arg: argument to pass to it
548  *
549  *	Scans the superblock list and calls given function, passing it
550  *	locked superblock and given argument.
551  */
552 void iterate_supers_type(struct file_system_type *type,
553 	void (*f)(struct super_block *, void *), void *arg)
554 {
555 	struct super_block *sb, *p = NULL;
556 
557 	spin_lock(&sb_lock);
558 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
559 		sb->s_count++;
560 		spin_unlock(&sb_lock);
561 
562 		down_read(&sb->s_umount);
563 		if (sb->s_root && (sb->s_flags & MS_BORN))
564 			f(sb, arg);
565 		up_read(&sb->s_umount);
566 
567 		spin_lock(&sb_lock);
568 		if (p)
569 			__put_super(p);
570 		p = sb;
571 	}
572 	if (p)
573 		__put_super(p);
574 	spin_unlock(&sb_lock);
575 }
576 
577 EXPORT_SYMBOL(iterate_supers_type);
578 
579 /**
580  *	get_super - get the superblock of a device
581  *	@bdev: device to get the superblock for
582  *
583  *	Scans the superblock list and finds the superblock of the file system
584  *	mounted on the device given. %NULL is returned if no match is found.
585  */
586 
587 struct super_block *get_super(struct block_device *bdev)
588 {
589 	struct super_block *sb;
590 
591 	if (!bdev)
592 		return NULL;
593 
594 	spin_lock(&sb_lock);
595 rescan:
596 	list_for_each_entry(sb, &super_blocks, s_list) {
597 		if (hlist_unhashed(&sb->s_instances))
598 			continue;
599 		if (sb->s_bdev == bdev) {
600 			sb->s_count++;
601 			spin_unlock(&sb_lock);
602 			down_read(&sb->s_umount);
603 			/* still alive? */
604 			if (sb->s_root && (sb->s_flags & MS_BORN))
605 				return sb;
606 			up_read(&sb->s_umount);
607 			/* nope, got unmounted */
608 			spin_lock(&sb_lock);
609 			__put_super(sb);
610 			goto rescan;
611 		}
612 	}
613 	spin_unlock(&sb_lock);
614 	return NULL;
615 }
616 
617 EXPORT_SYMBOL(get_super);
618 
619 /**
620  *	get_super_thawed - get thawed superblock of a device
621  *	@bdev: device to get the superblock for
622  *
623  *	Scans the superblock list and finds the superblock of the file system
624  *	mounted on the device. The superblock is returned once it is thawed
625  *	(or immediately if it was not frozen). %NULL is returned if no match
626  *	is found.
627  */
628 struct super_block *get_super_thawed(struct block_device *bdev)
629 {
630 	while (1) {
631 		struct super_block *s = get_super(bdev);
632 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
633 			return s;
634 		up_read(&s->s_umount);
635 		wait_event(s->s_writers.wait_unfrozen,
636 			   s->s_writers.frozen == SB_UNFROZEN);
637 		put_super(s);
638 	}
639 }
640 EXPORT_SYMBOL(get_super_thawed);
641 
642 /**
643  * get_active_super - get an active reference to the superblock of a device
644  * @bdev: device to get the superblock for
645  *
646  * Scans the superblock list and finds the superblock of the file system
647  * mounted on the device given.  Returns the superblock with an active
648  * reference or %NULL if none was found.
649  */
650 struct super_block *get_active_super(struct block_device *bdev)
651 {
652 	struct super_block *sb;
653 
654 	if (!bdev)
655 		return NULL;
656 
657 restart:
658 	spin_lock(&sb_lock);
659 	list_for_each_entry(sb, &super_blocks, s_list) {
660 		if (hlist_unhashed(&sb->s_instances))
661 			continue;
662 		if (sb->s_bdev == bdev) {
663 			if (grab_super(sb)) /* drops sb_lock */
664 				return sb;
665 			else
666 				goto restart;
667 		}
668 	}
669 	spin_unlock(&sb_lock);
670 	return NULL;
671 }
672 
673 struct super_block *user_get_super(dev_t dev)
674 {
675 	struct super_block *sb;
676 
677 	spin_lock(&sb_lock);
678 rescan:
679 	list_for_each_entry(sb, &super_blocks, s_list) {
680 		if (hlist_unhashed(&sb->s_instances))
681 			continue;
682 		if (sb->s_dev ==  dev) {
683 			sb->s_count++;
684 			spin_unlock(&sb_lock);
685 			down_read(&sb->s_umount);
686 			/* still alive? */
687 			if (sb->s_root && (sb->s_flags & MS_BORN))
688 				return sb;
689 			up_read(&sb->s_umount);
690 			/* nope, got unmounted */
691 			spin_lock(&sb_lock);
692 			__put_super(sb);
693 			goto rescan;
694 		}
695 	}
696 	spin_unlock(&sb_lock);
697 	return NULL;
698 }
699 
700 /**
701  *	do_remount_sb - asks filesystem to change mount options.
702  *	@sb:	superblock in question
703  *	@flags:	numeric part of options
704  *	@data:	the rest of options
705  *      @force: whether or not to force the change
706  *
707  *	Alters the mount options of a mounted file system.
708  */
709 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
710 {
711 	int retval;
712 	int remount_ro;
713 
714 	if (sb->s_writers.frozen != SB_UNFROZEN)
715 		return -EBUSY;
716 
717 #ifdef CONFIG_BLOCK
718 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
719 		return -EACCES;
720 #endif
721 
722 	if (flags & MS_RDONLY)
723 		acct_auto_close(sb);
724 	shrink_dcache_sb(sb);
725 	sync_filesystem(sb);
726 
727 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
728 
729 	/* If we are remounting RDONLY and current sb is read/write,
730 	   make sure there are no rw files opened */
731 	if (remount_ro) {
732 		if (force) {
733 			mark_files_ro(sb);
734 		} else {
735 			retval = sb_prepare_remount_readonly(sb);
736 			if (retval)
737 				return retval;
738 		}
739 	}
740 
741 	if (sb->s_op->remount_fs) {
742 		retval = sb->s_op->remount_fs(sb, &flags, data);
743 		if (retval) {
744 			if (!force)
745 				goto cancel_readonly;
746 			/* If forced remount, go ahead despite any errors */
747 			WARN(1, "forced remount of a %s fs returned %i\n",
748 			     sb->s_type->name, retval);
749 		}
750 	}
751 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
752 	/* Needs to be ordered wrt mnt_is_readonly() */
753 	smp_wmb();
754 	sb->s_readonly_remount = 0;
755 
756 	/*
757 	 * Some filesystems modify their metadata via some other path than the
758 	 * bdev buffer cache (eg. use a private mapping, or directories in
759 	 * pagecache, etc). Also file data modifications go via their own
760 	 * mappings. So If we try to mount readonly then copy the filesystem
761 	 * from bdev, we could get stale data, so invalidate it to give a best
762 	 * effort at coherency.
763 	 */
764 	if (remount_ro && sb->s_bdev)
765 		invalidate_bdev(sb->s_bdev);
766 	return 0;
767 
768 cancel_readonly:
769 	sb->s_readonly_remount = 0;
770 	return retval;
771 }
772 
773 static void do_emergency_remount(struct work_struct *work)
774 {
775 	struct super_block *sb, *p = NULL;
776 
777 	spin_lock(&sb_lock);
778 	list_for_each_entry(sb, &super_blocks, s_list) {
779 		if (hlist_unhashed(&sb->s_instances))
780 			continue;
781 		sb->s_count++;
782 		spin_unlock(&sb_lock);
783 		down_write(&sb->s_umount);
784 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
785 		    !(sb->s_flags & MS_RDONLY)) {
786 			/*
787 			 * What lock protects sb->s_flags??
788 			 */
789 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
790 		}
791 		up_write(&sb->s_umount);
792 		spin_lock(&sb_lock);
793 		if (p)
794 			__put_super(p);
795 		p = sb;
796 	}
797 	if (p)
798 		__put_super(p);
799 	spin_unlock(&sb_lock);
800 	kfree(work);
801 	printk("Emergency Remount complete\n");
802 }
803 
804 void emergency_remount(void)
805 {
806 	struct work_struct *work;
807 
808 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
809 	if (work) {
810 		INIT_WORK(work, do_emergency_remount);
811 		schedule_work(work);
812 	}
813 }
814 
815 /*
816  * Unnamed block devices are dummy devices used by virtual
817  * filesystems which don't use real block-devices.  -- jrs
818  */
819 
820 static DEFINE_IDA(unnamed_dev_ida);
821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
822 static int unnamed_dev_start = 0; /* don't bother trying below it */
823 
824 int get_anon_bdev(dev_t *p)
825 {
826 	int dev;
827 	int error;
828 
829  retry:
830 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
831 		return -ENOMEM;
832 	spin_lock(&unnamed_dev_lock);
833 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
834 	if (!error)
835 		unnamed_dev_start = dev + 1;
836 	spin_unlock(&unnamed_dev_lock);
837 	if (error == -EAGAIN)
838 		/* We raced and lost with another CPU. */
839 		goto retry;
840 	else if (error)
841 		return -EAGAIN;
842 
843 	if (dev == (1 << MINORBITS)) {
844 		spin_lock(&unnamed_dev_lock);
845 		ida_remove(&unnamed_dev_ida, dev);
846 		if (unnamed_dev_start > dev)
847 			unnamed_dev_start = dev;
848 		spin_unlock(&unnamed_dev_lock);
849 		return -EMFILE;
850 	}
851 	*p = MKDEV(0, dev & MINORMASK);
852 	return 0;
853 }
854 EXPORT_SYMBOL(get_anon_bdev);
855 
856 void free_anon_bdev(dev_t dev)
857 {
858 	int slot = MINOR(dev);
859 	spin_lock(&unnamed_dev_lock);
860 	ida_remove(&unnamed_dev_ida, slot);
861 	if (slot < unnamed_dev_start)
862 		unnamed_dev_start = slot;
863 	spin_unlock(&unnamed_dev_lock);
864 }
865 EXPORT_SYMBOL(free_anon_bdev);
866 
867 int set_anon_super(struct super_block *s, void *data)
868 {
869 	int error = get_anon_bdev(&s->s_dev);
870 	if (!error)
871 		s->s_bdi = &noop_backing_dev_info;
872 	return error;
873 }
874 
875 EXPORT_SYMBOL(set_anon_super);
876 
877 void kill_anon_super(struct super_block *sb)
878 {
879 	dev_t dev = sb->s_dev;
880 	generic_shutdown_super(sb);
881 	free_anon_bdev(dev);
882 }
883 
884 EXPORT_SYMBOL(kill_anon_super);
885 
886 void kill_litter_super(struct super_block *sb)
887 {
888 	if (sb->s_root)
889 		d_genocide(sb->s_root);
890 	kill_anon_super(sb);
891 }
892 
893 EXPORT_SYMBOL(kill_litter_super);
894 
895 static int ns_test_super(struct super_block *sb, void *data)
896 {
897 	return sb->s_fs_info == data;
898 }
899 
900 static int ns_set_super(struct super_block *sb, void *data)
901 {
902 	sb->s_fs_info = data;
903 	return set_anon_super(sb, NULL);
904 }
905 
906 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
907 	void *data, int (*fill_super)(struct super_block *, void *, int))
908 {
909 	struct super_block *sb;
910 
911 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
912 	if (IS_ERR(sb))
913 		return ERR_CAST(sb);
914 
915 	if (!sb->s_root) {
916 		int err;
917 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
918 		if (err) {
919 			deactivate_locked_super(sb);
920 			return ERR_PTR(err);
921 		}
922 
923 		sb->s_flags |= MS_ACTIVE;
924 	}
925 
926 	return dget(sb->s_root);
927 }
928 
929 EXPORT_SYMBOL(mount_ns);
930 
931 #ifdef CONFIG_BLOCK
932 static int set_bdev_super(struct super_block *s, void *data)
933 {
934 	s->s_bdev = data;
935 	s->s_dev = s->s_bdev->bd_dev;
936 
937 	/*
938 	 * We set the bdi here to the queue backing, file systems can
939 	 * overwrite this in ->fill_super()
940 	 */
941 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
942 	return 0;
943 }
944 
945 static int test_bdev_super(struct super_block *s, void *data)
946 {
947 	return (void *)s->s_bdev == data;
948 }
949 
950 struct dentry *mount_bdev(struct file_system_type *fs_type,
951 	int flags, const char *dev_name, void *data,
952 	int (*fill_super)(struct super_block *, void *, int))
953 {
954 	struct block_device *bdev;
955 	struct super_block *s;
956 	fmode_t mode = FMODE_READ | FMODE_EXCL;
957 	int error = 0;
958 
959 	if (!(flags & MS_RDONLY))
960 		mode |= FMODE_WRITE;
961 
962 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
963 	if (IS_ERR(bdev))
964 		return ERR_CAST(bdev);
965 
966 	/*
967 	 * once the super is inserted into the list by sget, s_umount
968 	 * will protect the lockfs code from trying to start a snapshot
969 	 * while we are mounting
970 	 */
971 	mutex_lock(&bdev->bd_fsfreeze_mutex);
972 	if (bdev->bd_fsfreeze_count > 0) {
973 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
974 		error = -EBUSY;
975 		goto error_bdev;
976 	}
977 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
978 		 bdev);
979 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
980 	if (IS_ERR(s))
981 		goto error_s;
982 
983 	if (s->s_root) {
984 		if ((flags ^ s->s_flags) & MS_RDONLY) {
985 			deactivate_locked_super(s);
986 			error = -EBUSY;
987 			goto error_bdev;
988 		}
989 
990 		/*
991 		 * s_umount nests inside bd_mutex during
992 		 * __invalidate_device().  blkdev_put() acquires
993 		 * bd_mutex and can't be called under s_umount.  Drop
994 		 * s_umount temporarily.  This is safe as we're
995 		 * holding an active reference.
996 		 */
997 		up_write(&s->s_umount);
998 		blkdev_put(bdev, mode);
999 		down_write(&s->s_umount);
1000 	} else {
1001 		char b[BDEVNAME_SIZE];
1002 
1003 		s->s_mode = mode;
1004 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1005 		sb_set_blocksize(s, block_size(bdev));
1006 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1007 		if (error) {
1008 			deactivate_locked_super(s);
1009 			goto error;
1010 		}
1011 
1012 		s->s_flags |= MS_ACTIVE;
1013 		bdev->bd_super = s;
1014 	}
1015 
1016 	return dget(s->s_root);
1017 
1018 error_s:
1019 	error = PTR_ERR(s);
1020 error_bdev:
1021 	blkdev_put(bdev, mode);
1022 error:
1023 	return ERR_PTR(error);
1024 }
1025 EXPORT_SYMBOL(mount_bdev);
1026 
1027 void kill_block_super(struct super_block *sb)
1028 {
1029 	struct block_device *bdev = sb->s_bdev;
1030 	fmode_t mode = sb->s_mode;
1031 
1032 	bdev->bd_super = NULL;
1033 	generic_shutdown_super(sb);
1034 	sync_blockdev(bdev);
1035 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1036 	blkdev_put(bdev, mode | FMODE_EXCL);
1037 }
1038 
1039 EXPORT_SYMBOL(kill_block_super);
1040 #endif
1041 
1042 struct dentry *mount_nodev(struct file_system_type *fs_type,
1043 	int flags, void *data,
1044 	int (*fill_super)(struct super_block *, void *, int))
1045 {
1046 	int error;
1047 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1048 
1049 	if (IS_ERR(s))
1050 		return ERR_CAST(s);
1051 
1052 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1053 	if (error) {
1054 		deactivate_locked_super(s);
1055 		return ERR_PTR(error);
1056 	}
1057 	s->s_flags |= MS_ACTIVE;
1058 	return dget(s->s_root);
1059 }
1060 EXPORT_SYMBOL(mount_nodev);
1061 
1062 static int compare_single(struct super_block *s, void *p)
1063 {
1064 	return 1;
1065 }
1066 
1067 struct dentry *mount_single(struct file_system_type *fs_type,
1068 	int flags, void *data,
1069 	int (*fill_super)(struct super_block *, void *, int))
1070 {
1071 	struct super_block *s;
1072 	int error;
1073 
1074 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1075 	if (IS_ERR(s))
1076 		return ERR_CAST(s);
1077 	if (!s->s_root) {
1078 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1079 		if (error) {
1080 			deactivate_locked_super(s);
1081 			return ERR_PTR(error);
1082 		}
1083 		s->s_flags |= MS_ACTIVE;
1084 	} else {
1085 		do_remount_sb(s, flags, data, 0);
1086 	}
1087 	return dget(s->s_root);
1088 }
1089 EXPORT_SYMBOL(mount_single);
1090 
1091 struct dentry *
1092 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1093 {
1094 	struct dentry *root;
1095 	struct super_block *sb;
1096 	char *secdata = NULL;
1097 	int error = -ENOMEM;
1098 
1099 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1100 		secdata = alloc_secdata();
1101 		if (!secdata)
1102 			goto out;
1103 
1104 		error = security_sb_copy_data(data, secdata);
1105 		if (error)
1106 			goto out_free_secdata;
1107 	}
1108 
1109 	root = type->mount(type, flags, name, data);
1110 	if (IS_ERR(root)) {
1111 		error = PTR_ERR(root);
1112 		goto out_free_secdata;
1113 	}
1114 	sb = root->d_sb;
1115 	BUG_ON(!sb);
1116 	WARN_ON(!sb->s_bdi);
1117 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1118 	sb->s_flags |= MS_BORN;
1119 
1120 	error = security_sb_kern_mount(sb, flags, secdata);
1121 	if (error)
1122 		goto out_sb;
1123 
1124 	/*
1125 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1126 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1127 	 * this warning for a little while to try and catch filesystems that
1128 	 * violate this rule.
1129 	 */
1130 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1131 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1132 
1133 	up_write(&sb->s_umount);
1134 	free_secdata(secdata);
1135 	return root;
1136 out_sb:
1137 	dput(root);
1138 	deactivate_locked_super(sb);
1139 out_free_secdata:
1140 	free_secdata(secdata);
1141 out:
1142 	return ERR_PTR(error);
1143 }
1144 
1145 /*
1146  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1147  * instead.
1148  */
1149 void __sb_end_write(struct super_block *sb, int level)
1150 {
1151 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1152 	/*
1153 	 * Make sure s_writers are updated before we wake up waiters in
1154 	 * freeze_super().
1155 	 */
1156 	smp_mb();
1157 	if (waitqueue_active(&sb->s_writers.wait))
1158 		wake_up(&sb->s_writers.wait);
1159 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1160 }
1161 EXPORT_SYMBOL(__sb_end_write);
1162 
1163 #ifdef CONFIG_LOCKDEP
1164 /*
1165  * We want lockdep to tell us about possible deadlocks with freezing but
1166  * it's it bit tricky to properly instrument it. Getting a freeze protection
1167  * works as getting a read lock but there are subtle problems. XFS for example
1168  * gets freeze protection on internal level twice in some cases, which is OK
1169  * only because we already hold a freeze protection also on higher level. Due
1170  * to these cases we have to tell lockdep we are doing trylock when we
1171  * already hold a freeze protection for a higher freeze level.
1172  */
1173 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1174 				unsigned long ip)
1175 {
1176 	int i;
1177 
1178 	if (!trylock) {
1179 		for (i = 0; i < level - 1; i++)
1180 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1181 				trylock = true;
1182 				break;
1183 			}
1184 	}
1185 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1186 }
1187 #endif
1188 
1189 /*
1190  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1191  * instead.
1192  */
1193 int __sb_start_write(struct super_block *sb, int level, bool wait)
1194 {
1195 retry:
1196 	if (unlikely(sb->s_writers.frozen >= level)) {
1197 		if (!wait)
1198 			return 0;
1199 		wait_event(sb->s_writers.wait_unfrozen,
1200 			   sb->s_writers.frozen < level);
1201 	}
1202 
1203 #ifdef CONFIG_LOCKDEP
1204 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1205 #endif
1206 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1207 	/*
1208 	 * Make sure counter is updated before we check for frozen.
1209 	 * freeze_super() first sets frozen and then checks the counter.
1210 	 */
1211 	smp_mb();
1212 	if (unlikely(sb->s_writers.frozen >= level)) {
1213 		__sb_end_write(sb, level);
1214 		goto retry;
1215 	}
1216 	return 1;
1217 }
1218 EXPORT_SYMBOL(__sb_start_write);
1219 
1220 /**
1221  * sb_wait_write - wait until all writers to given file system finish
1222  * @sb: the super for which we wait
1223  * @level: type of writers we wait for (normal vs page fault)
1224  *
1225  * This function waits until there are no writers of given type to given file
1226  * system. Caller of this function should make sure there can be no new writers
1227  * of type @level before calling this function. Otherwise this function can
1228  * livelock.
1229  */
1230 static void sb_wait_write(struct super_block *sb, int level)
1231 {
1232 	s64 writers;
1233 
1234 	/*
1235 	 * We just cycle-through lockdep here so that it does not complain
1236 	 * about returning with lock to userspace
1237 	 */
1238 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1239 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1240 
1241 	do {
1242 		DEFINE_WAIT(wait);
1243 
1244 		/*
1245 		 * We use a barrier in prepare_to_wait() to separate setting
1246 		 * of frozen and checking of the counter
1247 		 */
1248 		prepare_to_wait(&sb->s_writers.wait, &wait,
1249 				TASK_UNINTERRUPTIBLE);
1250 
1251 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1252 		if (writers)
1253 			schedule();
1254 
1255 		finish_wait(&sb->s_writers.wait, &wait);
1256 	} while (writers);
1257 }
1258 
1259 /**
1260  * freeze_super - lock the filesystem and force it into a consistent state
1261  * @sb: the super to lock
1262  *
1263  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1264  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1265  * -EBUSY.
1266  *
1267  * During this function, sb->s_writers.frozen goes through these values:
1268  *
1269  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1270  *
1271  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1272  * writes should be blocked, though page faults are still allowed. We wait for
1273  * all writes to complete and then proceed to the next stage.
1274  *
1275  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1276  * but internal fs threads can still modify the filesystem (although they
1277  * should not dirty new pages or inodes), writeback can run etc. After waiting
1278  * for all running page faults we sync the filesystem which will clean all
1279  * dirty pages and inodes (no new dirty pages or inodes can be created when
1280  * sync is running).
1281  *
1282  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1283  * modification are blocked (e.g. XFS preallocation truncation on inode
1284  * reclaim). This is usually implemented by blocking new transactions for
1285  * filesystems that have them and need this additional guard. After all
1286  * internal writers are finished we call ->freeze_fs() to finish filesystem
1287  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1288  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1289  *
1290  * sb->s_writers.frozen is protected by sb->s_umount.
1291  */
1292 int freeze_super(struct super_block *sb)
1293 {
1294 	int ret;
1295 
1296 	atomic_inc(&sb->s_active);
1297 	down_write(&sb->s_umount);
1298 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1299 		deactivate_locked_super(sb);
1300 		return -EBUSY;
1301 	}
1302 
1303 	if (!(sb->s_flags & MS_BORN)) {
1304 		up_write(&sb->s_umount);
1305 		return 0;	/* sic - it's "nothing to do" */
1306 	}
1307 
1308 	if (sb->s_flags & MS_RDONLY) {
1309 		/* Nothing to do really... */
1310 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1311 		up_write(&sb->s_umount);
1312 		return 0;
1313 	}
1314 
1315 	/* From now on, no new normal writers can start */
1316 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1317 	smp_wmb();
1318 
1319 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1320 	up_write(&sb->s_umount);
1321 
1322 	sb_wait_write(sb, SB_FREEZE_WRITE);
1323 
1324 	/* Now we go and block page faults... */
1325 	down_write(&sb->s_umount);
1326 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1327 	smp_wmb();
1328 
1329 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1330 
1331 	/* All writers are done so after syncing there won't be dirty data */
1332 	sync_filesystem(sb);
1333 
1334 	/* Now wait for internal filesystem counter */
1335 	sb->s_writers.frozen = SB_FREEZE_FS;
1336 	smp_wmb();
1337 	sb_wait_write(sb, SB_FREEZE_FS);
1338 
1339 	if (sb->s_op->freeze_fs) {
1340 		ret = sb->s_op->freeze_fs(sb);
1341 		if (ret) {
1342 			printk(KERN_ERR
1343 				"VFS:Filesystem freeze failed\n");
1344 			sb->s_writers.frozen = SB_UNFROZEN;
1345 			smp_wmb();
1346 			wake_up(&sb->s_writers.wait_unfrozen);
1347 			deactivate_locked_super(sb);
1348 			return ret;
1349 		}
1350 	}
1351 	/*
1352 	 * This is just for debugging purposes so that fs can warn if it
1353 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1354 	 */
1355 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1356 	up_write(&sb->s_umount);
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL(freeze_super);
1360 
1361 /**
1362  * thaw_super -- unlock filesystem
1363  * @sb: the super to thaw
1364  *
1365  * Unlocks the filesystem and marks it writeable again after freeze_super().
1366  */
1367 int thaw_super(struct super_block *sb)
1368 {
1369 	int error;
1370 
1371 	down_write(&sb->s_umount);
1372 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1373 		up_write(&sb->s_umount);
1374 		return -EINVAL;
1375 	}
1376 
1377 	if (sb->s_flags & MS_RDONLY)
1378 		goto out;
1379 
1380 	if (sb->s_op->unfreeze_fs) {
1381 		error = sb->s_op->unfreeze_fs(sb);
1382 		if (error) {
1383 			printk(KERN_ERR
1384 				"VFS:Filesystem thaw failed\n");
1385 			up_write(&sb->s_umount);
1386 			return error;
1387 		}
1388 	}
1389 
1390 out:
1391 	sb->s_writers.frozen = SB_UNFROZEN;
1392 	smp_wmb();
1393 	wake_up(&sb->s_writers.wait_unfrozen);
1394 	deactivate_locked_super(sb);
1395 
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL(thaw_super);
1399