xref: /openbmc/linux/fs/super.c (revision ca460cc2)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!grab_super_passive(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
79 
80 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 
90 	/*
91 	 * prune the dcache first as the icache is pinned by it, then
92 	 * prune the icache, followed by the filesystem specific caches
93 	 */
94 	freed = prune_dcache_sb(sb, dentries, sc->nid);
95 	freed += prune_icache_sb(sb, inodes, sc->nid);
96 
97 	if (fs_objects) {
98 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 								total_objects);
100 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
101 						       sc->nid);
102 	}
103 
104 	drop_super(sb);
105 	return freed;
106 }
107 
108 static unsigned long super_cache_count(struct shrinker *shrink,
109 				       struct shrink_control *sc)
110 {
111 	struct super_block *sb;
112 	long	total_objects = 0;
113 
114 	sb = container_of(shrink, struct super_block, s_shrink);
115 
116 	/*
117 	 * Don't call grab_super_passive as it is a potential
118 	 * scalability bottleneck. The counts could get updated
119 	 * between super_cache_count and super_cache_scan anyway.
120 	 * Call to super_cache_count with shrinker_rwsem held
121 	 * ensures the safety of call to list_lru_count_node() and
122 	 * s_op->nr_cached_objects().
123 	 */
124 	if (sb->s_op && sb->s_op->nr_cached_objects)
125 		total_objects = sb->s_op->nr_cached_objects(sb,
126 						 sc->nid);
127 
128 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
129 						 sc->nid);
130 	total_objects += list_lru_count_node(&sb->s_inode_lru,
131 						 sc->nid);
132 
133 	total_objects = vfs_pressure_ratio(total_objects);
134 	return total_objects;
135 }
136 
137 /**
138  *	destroy_super	-	frees a superblock
139  *	@s: superblock to free
140  *
141  *	Frees a superblock.
142  */
143 static void destroy_super(struct super_block *s)
144 {
145 	int i;
146 	list_lru_destroy(&s->s_dentry_lru);
147 	list_lru_destroy(&s->s_inode_lru);
148 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
149 		percpu_counter_destroy(&s->s_writers.counter[i]);
150 	security_sb_free(s);
151 	WARN_ON(!list_empty(&s->s_mounts));
152 	kfree(s->s_subtype);
153 	kfree(s->s_options);
154 	kfree_rcu(s, rcu);
155 }
156 
157 /**
158  *	alloc_super	-	create new superblock
159  *	@type:	filesystem type superblock should belong to
160  *	@flags: the mount flags
161  *
162  *	Allocates and initializes a new &struct super_block.  alloc_super()
163  *	returns a pointer new superblock or %NULL if allocation had failed.
164  */
165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
166 {
167 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
168 	static const struct super_operations default_op;
169 	int i;
170 
171 	if (!s)
172 		return NULL;
173 
174 	INIT_LIST_HEAD(&s->s_mounts);
175 
176 	if (security_sb_alloc(s))
177 		goto fail;
178 
179 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
180 		if (percpu_counter_init(&s->s_writers.counter[i], 0,
181 					GFP_KERNEL) < 0)
182 			goto fail;
183 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
184 				 &type->s_writers_key[i], 0);
185 	}
186 	init_waitqueue_head(&s->s_writers.wait);
187 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
188 	s->s_flags = flags;
189 	s->s_bdi = &default_backing_dev_info;
190 	INIT_HLIST_NODE(&s->s_instances);
191 	INIT_HLIST_BL_HEAD(&s->s_anon);
192 	INIT_LIST_HEAD(&s->s_inodes);
193 
194 	if (list_lru_init(&s->s_dentry_lru))
195 		goto fail;
196 	if (list_lru_init(&s->s_inode_lru))
197 		goto fail;
198 
199 	init_rwsem(&s->s_umount);
200 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
201 	/*
202 	 * sget() can have s_umount recursion.
203 	 *
204 	 * When it cannot find a suitable sb, it allocates a new
205 	 * one (this one), and tries again to find a suitable old
206 	 * one.
207 	 *
208 	 * In case that succeeds, it will acquire the s_umount
209 	 * lock of the old one. Since these are clearly distrinct
210 	 * locks, and this object isn't exposed yet, there's no
211 	 * risk of deadlocks.
212 	 *
213 	 * Annotate this by putting this lock in a different
214 	 * subclass.
215 	 */
216 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
217 	s->s_count = 1;
218 	atomic_set(&s->s_active, 1);
219 	mutex_init(&s->s_vfs_rename_mutex);
220 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
221 	mutex_init(&s->s_dquot.dqio_mutex);
222 	mutex_init(&s->s_dquot.dqonoff_mutex);
223 	s->s_maxbytes = MAX_NON_LFS;
224 	s->s_op = &default_op;
225 	s->s_time_gran = 1000000000;
226 	s->cleancache_poolid = -1;
227 
228 	s->s_shrink.seeks = DEFAULT_SEEKS;
229 	s->s_shrink.scan_objects = super_cache_scan;
230 	s->s_shrink.count_objects = super_cache_count;
231 	s->s_shrink.batch = 1024;
232 	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
233 	return s;
234 
235 fail:
236 	destroy_super(s);
237 	return NULL;
238 }
239 
240 /* Superblock refcounting  */
241 
242 /*
243  * Drop a superblock's refcount.  The caller must hold sb_lock.
244  */
245 static void __put_super(struct super_block *sb)
246 {
247 	if (!--sb->s_count) {
248 		list_del_init(&sb->s_list);
249 		destroy_super(sb);
250 	}
251 }
252 
253 /**
254  *	put_super	-	drop a temporary reference to superblock
255  *	@sb: superblock in question
256  *
257  *	Drops a temporary reference, frees superblock if there's no
258  *	references left.
259  */
260 static void put_super(struct super_block *sb)
261 {
262 	spin_lock(&sb_lock);
263 	__put_super(sb);
264 	spin_unlock(&sb_lock);
265 }
266 
267 
268 /**
269  *	deactivate_locked_super	-	drop an active reference to superblock
270  *	@s: superblock to deactivate
271  *
272  *	Drops an active reference to superblock, converting it into a temprory
273  *	one if there is no other active references left.  In that case we
274  *	tell fs driver to shut it down and drop the temporary reference we
275  *	had just acquired.
276  *
277  *	Caller holds exclusive lock on superblock; that lock is released.
278  */
279 void deactivate_locked_super(struct super_block *s)
280 {
281 	struct file_system_type *fs = s->s_type;
282 	if (atomic_dec_and_test(&s->s_active)) {
283 		cleancache_invalidate_fs(s);
284 		unregister_shrinker(&s->s_shrink);
285 		fs->kill_sb(s);
286 
287 		put_filesystem(fs);
288 		put_super(s);
289 	} else {
290 		up_write(&s->s_umount);
291 	}
292 }
293 
294 EXPORT_SYMBOL(deactivate_locked_super);
295 
296 /**
297  *	deactivate_super	-	drop an active reference to superblock
298  *	@s: superblock to deactivate
299  *
300  *	Variant of deactivate_locked_super(), except that superblock is *not*
301  *	locked by caller.  If we are going to drop the final active reference,
302  *	lock will be acquired prior to that.
303  */
304 void deactivate_super(struct super_block *s)
305 {
306         if (!atomic_add_unless(&s->s_active, -1, 1)) {
307 		down_write(&s->s_umount);
308 		deactivate_locked_super(s);
309 	}
310 }
311 
312 EXPORT_SYMBOL(deactivate_super);
313 
314 /**
315  *	grab_super - acquire an active reference
316  *	@s: reference we are trying to make active
317  *
318  *	Tries to acquire an active reference.  grab_super() is used when we
319  * 	had just found a superblock in super_blocks or fs_type->fs_supers
320  *	and want to turn it into a full-blown active reference.  grab_super()
321  *	is called with sb_lock held and drops it.  Returns 1 in case of
322  *	success, 0 if we had failed (superblock contents was already dead or
323  *	dying when grab_super() had been called).  Note that this is only
324  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
325  *	of their type), so increment of ->s_count is OK here.
326  */
327 static int grab_super(struct super_block *s) __releases(sb_lock)
328 {
329 	s->s_count++;
330 	spin_unlock(&sb_lock);
331 	down_write(&s->s_umount);
332 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
333 		put_super(s);
334 		return 1;
335 	}
336 	up_write(&s->s_umount);
337 	put_super(s);
338 	return 0;
339 }
340 
341 /*
342  *	grab_super_passive - acquire a passive reference
343  *	@sb: reference we are trying to grab
344  *
345  *	Tries to acquire a passive reference. This is used in places where we
346  *	cannot take an active reference but we need to ensure that the
347  *	superblock does not go away while we are working on it. It returns
348  *	false if a reference was not gained, and returns true with the s_umount
349  *	lock held in read mode if a reference is gained. On successful return,
350  *	the caller must drop the s_umount lock and the passive reference when
351  *	done.
352  */
353 bool grab_super_passive(struct super_block *sb)
354 {
355 	spin_lock(&sb_lock);
356 	if (hlist_unhashed(&sb->s_instances)) {
357 		spin_unlock(&sb_lock);
358 		return false;
359 	}
360 
361 	sb->s_count++;
362 	spin_unlock(&sb_lock);
363 
364 	if (down_read_trylock(&sb->s_umount)) {
365 		if (sb->s_root && (sb->s_flags & MS_BORN))
366 			return true;
367 		up_read(&sb->s_umount);
368 	}
369 
370 	put_super(sb);
371 	return false;
372 }
373 
374 /**
375  *	generic_shutdown_super	-	common helper for ->kill_sb()
376  *	@sb: superblock to kill
377  *
378  *	generic_shutdown_super() does all fs-independent work on superblock
379  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
380  *	that need destruction out of superblock, call generic_shutdown_super()
381  *	and release aforementioned objects.  Note: dentries and inodes _are_
382  *	taken care of and do not need specific handling.
383  *
384  *	Upon calling this function, the filesystem may no longer alter or
385  *	rearrange the set of dentries belonging to this super_block, nor may it
386  *	change the attachments of dentries to inodes.
387  */
388 void generic_shutdown_super(struct super_block *sb)
389 {
390 	const struct super_operations *sop = sb->s_op;
391 
392 	if (sb->s_root) {
393 		shrink_dcache_for_umount(sb);
394 		sync_filesystem(sb);
395 		sb->s_flags &= ~MS_ACTIVE;
396 
397 		fsnotify_unmount_inodes(&sb->s_inodes);
398 
399 		evict_inodes(sb);
400 
401 		if (sb->s_dio_done_wq) {
402 			destroy_workqueue(sb->s_dio_done_wq);
403 			sb->s_dio_done_wq = NULL;
404 		}
405 
406 		if (sop->put_super)
407 			sop->put_super(sb);
408 
409 		if (!list_empty(&sb->s_inodes)) {
410 			printk("VFS: Busy inodes after unmount of %s. "
411 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
412 			   sb->s_id);
413 		}
414 	}
415 	spin_lock(&sb_lock);
416 	/* should be initialized for __put_super_and_need_restart() */
417 	hlist_del_init(&sb->s_instances);
418 	spin_unlock(&sb_lock);
419 	up_write(&sb->s_umount);
420 }
421 
422 EXPORT_SYMBOL(generic_shutdown_super);
423 
424 /**
425  *	sget	-	find or create a superblock
426  *	@type:	filesystem type superblock should belong to
427  *	@test:	comparison callback
428  *	@set:	setup callback
429  *	@flags:	mount flags
430  *	@data:	argument to each of them
431  */
432 struct super_block *sget(struct file_system_type *type,
433 			int (*test)(struct super_block *,void *),
434 			int (*set)(struct super_block *,void *),
435 			int flags,
436 			void *data)
437 {
438 	struct super_block *s = NULL;
439 	struct super_block *old;
440 	int err;
441 
442 retry:
443 	spin_lock(&sb_lock);
444 	if (test) {
445 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
446 			if (!test(old, data))
447 				continue;
448 			if (!grab_super(old))
449 				goto retry;
450 			if (s) {
451 				up_write(&s->s_umount);
452 				destroy_super(s);
453 				s = NULL;
454 			}
455 			return old;
456 		}
457 	}
458 	if (!s) {
459 		spin_unlock(&sb_lock);
460 		s = alloc_super(type, flags);
461 		if (!s)
462 			return ERR_PTR(-ENOMEM);
463 		goto retry;
464 	}
465 
466 	err = set(s, data);
467 	if (err) {
468 		spin_unlock(&sb_lock);
469 		up_write(&s->s_umount);
470 		destroy_super(s);
471 		return ERR_PTR(err);
472 	}
473 	s->s_type = type;
474 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
475 	list_add_tail(&s->s_list, &super_blocks);
476 	hlist_add_head(&s->s_instances, &type->fs_supers);
477 	spin_unlock(&sb_lock);
478 	get_filesystem(type);
479 	register_shrinker(&s->s_shrink);
480 	return s;
481 }
482 
483 EXPORT_SYMBOL(sget);
484 
485 void drop_super(struct super_block *sb)
486 {
487 	up_read(&sb->s_umount);
488 	put_super(sb);
489 }
490 
491 EXPORT_SYMBOL(drop_super);
492 
493 /**
494  *	iterate_supers - call function for all active superblocks
495  *	@f: function to call
496  *	@arg: argument to pass to it
497  *
498  *	Scans the superblock list and calls given function, passing it
499  *	locked superblock and given argument.
500  */
501 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
502 {
503 	struct super_block *sb, *p = NULL;
504 
505 	spin_lock(&sb_lock);
506 	list_for_each_entry(sb, &super_blocks, s_list) {
507 		if (hlist_unhashed(&sb->s_instances))
508 			continue;
509 		sb->s_count++;
510 		spin_unlock(&sb_lock);
511 
512 		down_read(&sb->s_umount);
513 		if (sb->s_root && (sb->s_flags & MS_BORN))
514 			f(sb, arg);
515 		up_read(&sb->s_umount);
516 
517 		spin_lock(&sb_lock);
518 		if (p)
519 			__put_super(p);
520 		p = sb;
521 	}
522 	if (p)
523 		__put_super(p);
524 	spin_unlock(&sb_lock);
525 }
526 
527 /**
528  *	iterate_supers_type - call function for superblocks of given type
529  *	@type: fs type
530  *	@f: function to call
531  *	@arg: argument to pass to it
532  *
533  *	Scans the superblock list and calls given function, passing it
534  *	locked superblock and given argument.
535  */
536 void iterate_supers_type(struct file_system_type *type,
537 	void (*f)(struct super_block *, void *), void *arg)
538 {
539 	struct super_block *sb, *p = NULL;
540 
541 	spin_lock(&sb_lock);
542 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
543 		sb->s_count++;
544 		spin_unlock(&sb_lock);
545 
546 		down_read(&sb->s_umount);
547 		if (sb->s_root && (sb->s_flags & MS_BORN))
548 			f(sb, arg);
549 		up_read(&sb->s_umount);
550 
551 		spin_lock(&sb_lock);
552 		if (p)
553 			__put_super(p);
554 		p = sb;
555 	}
556 	if (p)
557 		__put_super(p);
558 	spin_unlock(&sb_lock);
559 }
560 
561 EXPORT_SYMBOL(iterate_supers_type);
562 
563 /**
564  *	get_super - get the superblock of a device
565  *	@bdev: device to get the superblock for
566  *
567  *	Scans the superblock list and finds the superblock of the file system
568  *	mounted on the device given. %NULL is returned if no match is found.
569  */
570 
571 struct super_block *get_super(struct block_device *bdev)
572 {
573 	struct super_block *sb;
574 
575 	if (!bdev)
576 		return NULL;
577 
578 	spin_lock(&sb_lock);
579 rescan:
580 	list_for_each_entry(sb, &super_blocks, s_list) {
581 		if (hlist_unhashed(&sb->s_instances))
582 			continue;
583 		if (sb->s_bdev == bdev) {
584 			sb->s_count++;
585 			spin_unlock(&sb_lock);
586 			down_read(&sb->s_umount);
587 			/* still alive? */
588 			if (sb->s_root && (sb->s_flags & MS_BORN))
589 				return sb;
590 			up_read(&sb->s_umount);
591 			/* nope, got unmounted */
592 			spin_lock(&sb_lock);
593 			__put_super(sb);
594 			goto rescan;
595 		}
596 	}
597 	spin_unlock(&sb_lock);
598 	return NULL;
599 }
600 
601 EXPORT_SYMBOL(get_super);
602 
603 /**
604  *	get_super_thawed - get thawed superblock of a device
605  *	@bdev: device to get the superblock for
606  *
607  *	Scans the superblock list and finds the superblock of the file system
608  *	mounted on the device. The superblock is returned once it is thawed
609  *	(or immediately if it was not frozen). %NULL is returned if no match
610  *	is found.
611  */
612 struct super_block *get_super_thawed(struct block_device *bdev)
613 {
614 	while (1) {
615 		struct super_block *s = get_super(bdev);
616 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
617 			return s;
618 		up_read(&s->s_umount);
619 		wait_event(s->s_writers.wait_unfrozen,
620 			   s->s_writers.frozen == SB_UNFROZEN);
621 		put_super(s);
622 	}
623 }
624 EXPORT_SYMBOL(get_super_thawed);
625 
626 /**
627  * get_active_super - get an active reference to the superblock of a device
628  * @bdev: device to get the superblock for
629  *
630  * Scans the superblock list and finds the superblock of the file system
631  * mounted on the device given.  Returns the superblock with an active
632  * reference or %NULL if none was found.
633  */
634 struct super_block *get_active_super(struct block_device *bdev)
635 {
636 	struct super_block *sb;
637 
638 	if (!bdev)
639 		return NULL;
640 
641 restart:
642 	spin_lock(&sb_lock);
643 	list_for_each_entry(sb, &super_blocks, s_list) {
644 		if (hlist_unhashed(&sb->s_instances))
645 			continue;
646 		if (sb->s_bdev == bdev) {
647 			if (!grab_super(sb))
648 				goto restart;
649 			up_write(&sb->s_umount);
650 			return sb;
651 		}
652 	}
653 	spin_unlock(&sb_lock);
654 	return NULL;
655 }
656 
657 struct super_block *user_get_super(dev_t dev)
658 {
659 	struct super_block *sb;
660 
661 	spin_lock(&sb_lock);
662 rescan:
663 	list_for_each_entry(sb, &super_blocks, s_list) {
664 		if (hlist_unhashed(&sb->s_instances))
665 			continue;
666 		if (sb->s_dev ==  dev) {
667 			sb->s_count++;
668 			spin_unlock(&sb_lock);
669 			down_read(&sb->s_umount);
670 			/* still alive? */
671 			if (sb->s_root && (sb->s_flags & MS_BORN))
672 				return sb;
673 			up_read(&sb->s_umount);
674 			/* nope, got unmounted */
675 			spin_lock(&sb_lock);
676 			__put_super(sb);
677 			goto rescan;
678 		}
679 	}
680 	spin_unlock(&sb_lock);
681 	return NULL;
682 }
683 
684 /**
685  *	do_remount_sb - asks filesystem to change mount options.
686  *	@sb:	superblock in question
687  *	@flags:	numeric part of options
688  *	@data:	the rest of options
689  *      @force: whether or not to force the change
690  *
691  *	Alters the mount options of a mounted file system.
692  */
693 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
694 {
695 	int retval;
696 	int remount_ro;
697 
698 	if (sb->s_writers.frozen != SB_UNFROZEN)
699 		return -EBUSY;
700 
701 #ifdef CONFIG_BLOCK
702 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
703 		return -EACCES;
704 #endif
705 
706 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
707 
708 	if (remount_ro) {
709 		if (sb->s_pins.first) {
710 			up_write(&sb->s_umount);
711 			sb_pin_kill(sb);
712 			down_write(&sb->s_umount);
713 			if (!sb->s_root)
714 				return 0;
715 			if (sb->s_writers.frozen != SB_UNFROZEN)
716 				return -EBUSY;
717 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
718 		}
719 	}
720 	shrink_dcache_sb(sb);
721 
722 	/* If we are remounting RDONLY and current sb is read/write,
723 	   make sure there are no rw files opened */
724 	if (remount_ro) {
725 		if (force) {
726 			sb->s_readonly_remount = 1;
727 			smp_wmb();
728 		} else {
729 			retval = sb_prepare_remount_readonly(sb);
730 			if (retval)
731 				return retval;
732 		}
733 	}
734 
735 	if (sb->s_op->remount_fs) {
736 		retval = sb->s_op->remount_fs(sb, &flags, data);
737 		if (retval) {
738 			if (!force)
739 				goto cancel_readonly;
740 			/* If forced remount, go ahead despite any errors */
741 			WARN(1, "forced remount of a %s fs returned %i\n",
742 			     sb->s_type->name, retval);
743 		}
744 	}
745 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
746 	/* Needs to be ordered wrt mnt_is_readonly() */
747 	smp_wmb();
748 	sb->s_readonly_remount = 0;
749 
750 	/*
751 	 * Some filesystems modify their metadata via some other path than the
752 	 * bdev buffer cache (eg. use a private mapping, or directories in
753 	 * pagecache, etc). Also file data modifications go via their own
754 	 * mappings. So If we try to mount readonly then copy the filesystem
755 	 * from bdev, we could get stale data, so invalidate it to give a best
756 	 * effort at coherency.
757 	 */
758 	if (remount_ro && sb->s_bdev)
759 		invalidate_bdev(sb->s_bdev);
760 	return 0;
761 
762 cancel_readonly:
763 	sb->s_readonly_remount = 0;
764 	return retval;
765 }
766 
767 static void do_emergency_remount(struct work_struct *work)
768 {
769 	struct super_block *sb, *p = NULL;
770 
771 	spin_lock(&sb_lock);
772 	list_for_each_entry(sb, &super_blocks, s_list) {
773 		if (hlist_unhashed(&sb->s_instances))
774 			continue;
775 		sb->s_count++;
776 		spin_unlock(&sb_lock);
777 		down_write(&sb->s_umount);
778 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
779 		    !(sb->s_flags & MS_RDONLY)) {
780 			/*
781 			 * What lock protects sb->s_flags??
782 			 */
783 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
784 		}
785 		up_write(&sb->s_umount);
786 		spin_lock(&sb_lock);
787 		if (p)
788 			__put_super(p);
789 		p = sb;
790 	}
791 	if (p)
792 		__put_super(p);
793 	spin_unlock(&sb_lock);
794 	kfree(work);
795 	printk("Emergency Remount complete\n");
796 }
797 
798 void emergency_remount(void)
799 {
800 	struct work_struct *work;
801 
802 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
803 	if (work) {
804 		INIT_WORK(work, do_emergency_remount);
805 		schedule_work(work);
806 	}
807 }
808 
809 /*
810  * Unnamed block devices are dummy devices used by virtual
811  * filesystems which don't use real block-devices.  -- jrs
812  */
813 
814 static DEFINE_IDA(unnamed_dev_ida);
815 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
816 /* Many userspace utilities consider an FSID of 0 invalid.
817  * Always return at least 1 from get_anon_bdev.
818  */
819 static int unnamed_dev_start = 1;
820 
821 int get_anon_bdev(dev_t *p)
822 {
823 	int dev;
824 	int error;
825 
826  retry:
827 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
828 		return -ENOMEM;
829 	spin_lock(&unnamed_dev_lock);
830 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
831 	if (!error)
832 		unnamed_dev_start = dev + 1;
833 	spin_unlock(&unnamed_dev_lock);
834 	if (error == -EAGAIN)
835 		/* We raced and lost with another CPU. */
836 		goto retry;
837 	else if (error)
838 		return -EAGAIN;
839 
840 	if (dev == (1 << MINORBITS)) {
841 		spin_lock(&unnamed_dev_lock);
842 		ida_remove(&unnamed_dev_ida, dev);
843 		if (unnamed_dev_start > dev)
844 			unnamed_dev_start = dev;
845 		spin_unlock(&unnamed_dev_lock);
846 		return -EMFILE;
847 	}
848 	*p = MKDEV(0, dev & MINORMASK);
849 	return 0;
850 }
851 EXPORT_SYMBOL(get_anon_bdev);
852 
853 void free_anon_bdev(dev_t dev)
854 {
855 	int slot = MINOR(dev);
856 	spin_lock(&unnamed_dev_lock);
857 	ida_remove(&unnamed_dev_ida, slot);
858 	if (slot < unnamed_dev_start)
859 		unnamed_dev_start = slot;
860 	spin_unlock(&unnamed_dev_lock);
861 }
862 EXPORT_SYMBOL(free_anon_bdev);
863 
864 int set_anon_super(struct super_block *s, void *data)
865 {
866 	int error = get_anon_bdev(&s->s_dev);
867 	if (!error)
868 		s->s_bdi = &noop_backing_dev_info;
869 	return error;
870 }
871 
872 EXPORT_SYMBOL(set_anon_super);
873 
874 void kill_anon_super(struct super_block *sb)
875 {
876 	dev_t dev = sb->s_dev;
877 	generic_shutdown_super(sb);
878 	free_anon_bdev(dev);
879 }
880 
881 EXPORT_SYMBOL(kill_anon_super);
882 
883 void kill_litter_super(struct super_block *sb)
884 {
885 	if (sb->s_root)
886 		d_genocide(sb->s_root);
887 	kill_anon_super(sb);
888 }
889 
890 EXPORT_SYMBOL(kill_litter_super);
891 
892 static int ns_test_super(struct super_block *sb, void *data)
893 {
894 	return sb->s_fs_info == data;
895 }
896 
897 static int ns_set_super(struct super_block *sb, void *data)
898 {
899 	sb->s_fs_info = data;
900 	return set_anon_super(sb, NULL);
901 }
902 
903 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
904 	void *data, int (*fill_super)(struct super_block *, void *, int))
905 {
906 	struct super_block *sb;
907 
908 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
909 	if (IS_ERR(sb))
910 		return ERR_CAST(sb);
911 
912 	if (!sb->s_root) {
913 		int err;
914 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
915 		if (err) {
916 			deactivate_locked_super(sb);
917 			return ERR_PTR(err);
918 		}
919 
920 		sb->s_flags |= MS_ACTIVE;
921 	}
922 
923 	return dget(sb->s_root);
924 }
925 
926 EXPORT_SYMBOL(mount_ns);
927 
928 #ifdef CONFIG_BLOCK
929 static int set_bdev_super(struct super_block *s, void *data)
930 {
931 	s->s_bdev = data;
932 	s->s_dev = s->s_bdev->bd_dev;
933 
934 	/*
935 	 * We set the bdi here to the queue backing, file systems can
936 	 * overwrite this in ->fill_super()
937 	 */
938 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
939 	return 0;
940 }
941 
942 static int test_bdev_super(struct super_block *s, void *data)
943 {
944 	return (void *)s->s_bdev == data;
945 }
946 
947 struct dentry *mount_bdev(struct file_system_type *fs_type,
948 	int flags, const char *dev_name, void *data,
949 	int (*fill_super)(struct super_block *, void *, int))
950 {
951 	struct block_device *bdev;
952 	struct super_block *s;
953 	fmode_t mode = FMODE_READ | FMODE_EXCL;
954 	int error = 0;
955 
956 	if (!(flags & MS_RDONLY))
957 		mode |= FMODE_WRITE;
958 
959 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
960 	if (IS_ERR(bdev))
961 		return ERR_CAST(bdev);
962 
963 	/*
964 	 * once the super is inserted into the list by sget, s_umount
965 	 * will protect the lockfs code from trying to start a snapshot
966 	 * while we are mounting
967 	 */
968 	mutex_lock(&bdev->bd_fsfreeze_mutex);
969 	if (bdev->bd_fsfreeze_count > 0) {
970 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
971 		error = -EBUSY;
972 		goto error_bdev;
973 	}
974 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
975 		 bdev);
976 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
977 	if (IS_ERR(s))
978 		goto error_s;
979 
980 	if (s->s_root) {
981 		if ((flags ^ s->s_flags) & MS_RDONLY) {
982 			deactivate_locked_super(s);
983 			error = -EBUSY;
984 			goto error_bdev;
985 		}
986 
987 		/*
988 		 * s_umount nests inside bd_mutex during
989 		 * __invalidate_device().  blkdev_put() acquires
990 		 * bd_mutex and can't be called under s_umount.  Drop
991 		 * s_umount temporarily.  This is safe as we're
992 		 * holding an active reference.
993 		 */
994 		up_write(&s->s_umount);
995 		blkdev_put(bdev, mode);
996 		down_write(&s->s_umount);
997 	} else {
998 		char b[BDEVNAME_SIZE];
999 
1000 		s->s_mode = mode;
1001 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1002 		sb_set_blocksize(s, block_size(bdev));
1003 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1004 		if (error) {
1005 			deactivate_locked_super(s);
1006 			goto error;
1007 		}
1008 
1009 		s->s_flags |= MS_ACTIVE;
1010 		bdev->bd_super = s;
1011 	}
1012 
1013 	return dget(s->s_root);
1014 
1015 error_s:
1016 	error = PTR_ERR(s);
1017 error_bdev:
1018 	blkdev_put(bdev, mode);
1019 error:
1020 	return ERR_PTR(error);
1021 }
1022 EXPORT_SYMBOL(mount_bdev);
1023 
1024 void kill_block_super(struct super_block *sb)
1025 {
1026 	struct block_device *bdev = sb->s_bdev;
1027 	fmode_t mode = sb->s_mode;
1028 
1029 	bdev->bd_super = NULL;
1030 	generic_shutdown_super(sb);
1031 	sync_blockdev(bdev);
1032 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1033 	blkdev_put(bdev, mode | FMODE_EXCL);
1034 }
1035 
1036 EXPORT_SYMBOL(kill_block_super);
1037 #endif
1038 
1039 struct dentry *mount_nodev(struct file_system_type *fs_type,
1040 	int flags, void *data,
1041 	int (*fill_super)(struct super_block *, void *, int))
1042 {
1043 	int error;
1044 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1045 
1046 	if (IS_ERR(s))
1047 		return ERR_CAST(s);
1048 
1049 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1050 	if (error) {
1051 		deactivate_locked_super(s);
1052 		return ERR_PTR(error);
1053 	}
1054 	s->s_flags |= MS_ACTIVE;
1055 	return dget(s->s_root);
1056 }
1057 EXPORT_SYMBOL(mount_nodev);
1058 
1059 static int compare_single(struct super_block *s, void *p)
1060 {
1061 	return 1;
1062 }
1063 
1064 struct dentry *mount_single(struct file_system_type *fs_type,
1065 	int flags, void *data,
1066 	int (*fill_super)(struct super_block *, void *, int))
1067 {
1068 	struct super_block *s;
1069 	int error;
1070 
1071 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1072 	if (IS_ERR(s))
1073 		return ERR_CAST(s);
1074 	if (!s->s_root) {
1075 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1076 		if (error) {
1077 			deactivate_locked_super(s);
1078 			return ERR_PTR(error);
1079 		}
1080 		s->s_flags |= MS_ACTIVE;
1081 	} else {
1082 		do_remount_sb(s, flags, data, 0);
1083 	}
1084 	return dget(s->s_root);
1085 }
1086 EXPORT_SYMBOL(mount_single);
1087 
1088 struct dentry *
1089 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1090 {
1091 	struct dentry *root;
1092 	struct super_block *sb;
1093 	char *secdata = NULL;
1094 	int error = -ENOMEM;
1095 
1096 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1097 		secdata = alloc_secdata();
1098 		if (!secdata)
1099 			goto out;
1100 
1101 		error = security_sb_copy_data(data, secdata);
1102 		if (error)
1103 			goto out_free_secdata;
1104 	}
1105 
1106 	root = type->mount(type, flags, name, data);
1107 	if (IS_ERR(root)) {
1108 		error = PTR_ERR(root);
1109 		goto out_free_secdata;
1110 	}
1111 	sb = root->d_sb;
1112 	BUG_ON(!sb);
1113 	WARN_ON(!sb->s_bdi);
1114 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1115 	sb->s_flags |= MS_BORN;
1116 
1117 	error = security_sb_kern_mount(sb, flags, secdata);
1118 	if (error)
1119 		goto out_sb;
1120 
1121 	/*
1122 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1123 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1124 	 * this warning for a little while to try and catch filesystems that
1125 	 * violate this rule.
1126 	 */
1127 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1128 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1129 
1130 	up_write(&sb->s_umount);
1131 	free_secdata(secdata);
1132 	return root;
1133 out_sb:
1134 	dput(root);
1135 	deactivate_locked_super(sb);
1136 out_free_secdata:
1137 	free_secdata(secdata);
1138 out:
1139 	return ERR_PTR(error);
1140 }
1141 
1142 /*
1143  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1144  * instead.
1145  */
1146 void __sb_end_write(struct super_block *sb, int level)
1147 {
1148 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1149 	/*
1150 	 * Make sure s_writers are updated before we wake up waiters in
1151 	 * freeze_super().
1152 	 */
1153 	smp_mb();
1154 	if (waitqueue_active(&sb->s_writers.wait))
1155 		wake_up(&sb->s_writers.wait);
1156 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1157 }
1158 EXPORT_SYMBOL(__sb_end_write);
1159 
1160 #ifdef CONFIG_LOCKDEP
1161 /*
1162  * We want lockdep to tell us about possible deadlocks with freezing but
1163  * it's it bit tricky to properly instrument it. Getting a freeze protection
1164  * works as getting a read lock but there are subtle problems. XFS for example
1165  * gets freeze protection on internal level twice in some cases, which is OK
1166  * only because we already hold a freeze protection also on higher level. Due
1167  * to these cases we have to tell lockdep we are doing trylock when we
1168  * already hold a freeze protection for a higher freeze level.
1169  */
1170 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1171 				unsigned long ip)
1172 {
1173 	int i;
1174 
1175 	if (!trylock) {
1176 		for (i = 0; i < level - 1; i++)
1177 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1178 				trylock = true;
1179 				break;
1180 			}
1181 	}
1182 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1183 }
1184 #endif
1185 
1186 /*
1187  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1188  * instead.
1189  */
1190 int __sb_start_write(struct super_block *sb, int level, bool wait)
1191 {
1192 retry:
1193 	if (unlikely(sb->s_writers.frozen >= level)) {
1194 		if (!wait)
1195 			return 0;
1196 		wait_event(sb->s_writers.wait_unfrozen,
1197 			   sb->s_writers.frozen < level);
1198 	}
1199 
1200 #ifdef CONFIG_LOCKDEP
1201 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1202 #endif
1203 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1204 	/*
1205 	 * Make sure counter is updated before we check for frozen.
1206 	 * freeze_super() first sets frozen and then checks the counter.
1207 	 */
1208 	smp_mb();
1209 	if (unlikely(sb->s_writers.frozen >= level)) {
1210 		__sb_end_write(sb, level);
1211 		goto retry;
1212 	}
1213 	return 1;
1214 }
1215 EXPORT_SYMBOL(__sb_start_write);
1216 
1217 /**
1218  * sb_wait_write - wait until all writers to given file system finish
1219  * @sb: the super for which we wait
1220  * @level: type of writers we wait for (normal vs page fault)
1221  *
1222  * This function waits until there are no writers of given type to given file
1223  * system. Caller of this function should make sure there can be no new writers
1224  * of type @level before calling this function. Otherwise this function can
1225  * livelock.
1226  */
1227 static void sb_wait_write(struct super_block *sb, int level)
1228 {
1229 	s64 writers;
1230 
1231 	/*
1232 	 * We just cycle-through lockdep here so that it does not complain
1233 	 * about returning with lock to userspace
1234 	 */
1235 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1236 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1237 
1238 	do {
1239 		DEFINE_WAIT(wait);
1240 
1241 		/*
1242 		 * We use a barrier in prepare_to_wait() to separate setting
1243 		 * of frozen and checking of the counter
1244 		 */
1245 		prepare_to_wait(&sb->s_writers.wait, &wait,
1246 				TASK_UNINTERRUPTIBLE);
1247 
1248 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1249 		if (writers)
1250 			schedule();
1251 
1252 		finish_wait(&sb->s_writers.wait, &wait);
1253 	} while (writers);
1254 }
1255 
1256 /**
1257  * freeze_super - lock the filesystem and force it into a consistent state
1258  * @sb: the super to lock
1259  *
1260  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1261  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1262  * -EBUSY.
1263  *
1264  * During this function, sb->s_writers.frozen goes through these values:
1265  *
1266  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1267  *
1268  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1269  * writes should be blocked, though page faults are still allowed. We wait for
1270  * all writes to complete and then proceed to the next stage.
1271  *
1272  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1273  * but internal fs threads can still modify the filesystem (although they
1274  * should not dirty new pages or inodes), writeback can run etc. After waiting
1275  * for all running page faults we sync the filesystem which will clean all
1276  * dirty pages and inodes (no new dirty pages or inodes can be created when
1277  * sync is running).
1278  *
1279  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1280  * modification are blocked (e.g. XFS preallocation truncation on inode
1281  * reclaim). This is usually implemented by blocking new transactions for
1282  * filesystems that have them and need this additional guard. After all
1283  * internal writers are finished we call ->freeze_fs() to finish filesystem
1284  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1285  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1286  *
1287  * sb->s_writers.frozen is protected by sb->s_umount.
1288  */
1289 int freeze_super(struct super_block *sb)
1290 {
1291 	int ret;
1292 
1293 	atomic_inc(&sb->s_active);
1294 	down_write(&sb->s_umount);
1295 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1296 		deactivate_locked_super(sb);
1297 		return -EBUSY;
1298 	}
1299 
1300 	if (!(sb->s_flags & MS_BORN)) {
1301 		up_write(&sb->s_umount);
1302 		return 0;	/* sic - it's "nothing to do" */
1303 	}
1304 
1305 	if (sb->s_flags & MS_RDONLY) {
1306 		/* Nothing to do really... */
1307 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1308 		up_write(&sb->s_umount);
1309 		return 0;
1310 	}
1311 
1312 	/* From now on, no new normal writers can start */
1313 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1314 	smp_wmb();
1315 
1316 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1317 	up_write(&sb->s_umount);
1318 
1319 	sb_wait_write(sb, SB_FREEZE_WRITE);
1320 
1321 	/* Now we go and block page faults... */
1322 	down_write(&sb->s_umount);
1323 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1324 	smp_wmb();
1325 
1326 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1327 
1328 	/* All writers are done so after syncing there won't be dirty data */
1329 	sync_filesystem(sb);
1330 
1331 	/* Now wait for internal filesystem counter */
1332 	sb->s_writers.frozen = SB_FREEZE_FS;
1333 	smp_wmb();
1334 	sb_wait_write(sb, SB_FREEZE_FS);
1335 
1336 	if (sb->s_op->freeze_fs) {
1337 		ret = sb->s_op->freeze_fs(sb);
1338 		if (ret) {
1339 			printk(KERN_ERR
1340 				"VFS:Filesystem freeze failed\n");
1341 			sb->s_writers.frozen = SB_UNFROZEN;
1342 			smp_wmb();
1343 			wake_up(&sb->s_writers.wait_unfrozen);
1344 			deactivate_locked_super(sb);
1345 			return ret;
1346 		}
1347 	}
1348 	/*
1349 	 * This is just for debugging purposes so that fs can warn if it
1350 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1351 	 */
1352 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1353 	up_write(&sb->s_umount);
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(freeze_super);
1357 
1358 /**
1359  * thaw_super -- unlock filesystem
1360  * @sb: the super to thaw
1361  *
1362  * Unlocks the filesystem and marks it writeable again after freeze_super().
1363  */
1364 int thaw_super(struct super_block *sb)
1365 {
1366 	int error;
1367 
1368 	down_write(&sb->s_umount);
1369 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1370 		up_write(&sb->s_umount);
1371 		return -EINVAL;
1372 	}
1373 
1374 	if (sb->s_flags & MS_RDONLY)
1375 		goto out;
1376 
1377 	if (sb->s_op->unfreeze_fs) {
1378 		error = sb->s_op->unfreeze_fs(sb);
1379 		if (error) {
1380 			printk(KERN_ERR
1381 				"VFS:Filesystem thaw failed\n");
1382 			up_write(&sb->s_umount);
1383 			return error;
1384 		}
1385 	}
1386 
1387 out:
1388 	sb->s_writers.frozen = SB_UNFROZEN;
1389 	smp_wmb();
1390 	wake_up(&sb->s_writers.wait_unfrozen);
1391 	deactivate_locked_super(sb);
1392 
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL(thaw_super);
1396