1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include "internal.h" 37 38 39 LIST_HEAD(super_blocks); 40 DEFINE_SPINLOCK(sb_lock); 41 42 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 43 "sb_writers", 44 "sb_pagefaults", 45 "sb_internal", 46 }; 47 48 /* 49 * One thing we have to be careful of with a per-sb shrinker is that we don't 50 * drop the last active reference to the superblock from within the shrinker. 51 * If that happens we could trigger unregistering the shrinker from within the 52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 53 * take a passive reference to the superblock to avoid this from occurring. 54 */ 55 static unsigned long super_cache_scan(struct shrinker *shrink, 56 struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 long fs_objects = 0; 60 long total_objects; 61 long freed = 0; 62 long dentries; 63 long inodes; 64 65 sb = container_of(shrink, struct super_block, s_shrink); 66 67 /* 68 * Deadlock avoidance. We may hold various FS locks, and we don't want 69 * to recurse into the FS that called us in clear_inode() and friends.. 70 */ 71 if (!(sc->gfp_mask & __GFP_FS)) 72 return SHRINK_STOP; 73 74 if (!grab_super_passive(sb)) 75 return SHRINK_STOP; 76 77 if (sb->s_op->nr_cached_objects) 78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid); 79 80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid); 81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid); 82 total_objects = dentries + inodes + fs_objects + 1; 83 if (!total_objects) 84 total_objects = 1; 85 86 /* proportion the scan between the caches */ 87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 89 90 /* 91 * prune the dcache first as the icache is pinned by it, then 92 * prune the icache, followed by the filesystem specific caches 93 */ 94 freed = prune_dcache_sb(sb, dentries, sc->nid); 95 freed += prune_icache_sb(sb, inodes, sc->nid); 96 97 if (fs_objects) { 98 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, 99 total_objects); 100 freed += sb->s_op->free_cached_objects(sb, fs_objects, 101 sc->nid); 102 } 103 104 drop_super(sb); 105 return freed; 106 } 107 108 static unsigned long super_cache_count(struct shrinker *shrink, 109 struct shrink_control *sc) 110 { 111 struct super_block *sb; 112 long total_objects = 0; 113 114 sb = container_of(shrink, struct super_block, s_shrink); 115 116 /* 117 * Don't call grab_super_passive as it is a potential 118 * scalability bottleneck. The counts could get updated 119 * between super_cache_count and super_cache_scan anyway. 120 * Call to super_cache_count with shrinker_rwsem held 121 * ensures the safety of call to list_lru_count_node() and 122 * s_op->nr_cached_objects(). 123 */ 124 if (sb->s_op && sb->s_op->nr_cached_objects) 125 total_objects = sb->s_op->nr_cached_objects(sb, 126 sc->nid); 127 128 total_objects += list_lru_count_node(&sb->s_dentry_lru, 129 sc->nid); 130 total_objects += list_lru_count_node(&sb->s_inode_lru, 131 sc->nid); 132 133 total_objects = vfs_pressure_ratio(total_objects); 134 return total_objects; 135 } 136 137 /** 138 * destroy_super - frees a superblock 139 * @s: superblock to free 140 * 141 * Frees a superblock. 142 */ 143 static void destroy_super(struct super_block *s) 144 { 145 int i; 146 list_lru_destroy(&s->s_dentry_lru); 147 list_lru_destroy(&s->s_inode_lru); 148 for (i = 0; i < SB_FREEZE_LEVELS; i++) 149 percpu_counter_destroy(&s->s_writers.counter[i]); 150 security_sb_free(s); 151 WARN_ON(!list_empty(&s->s_mounts)); 152 kfree(s->s_subtype); 153 kfree(s->s_options); 154 kfree_rcu(s, rcu); 155 } 156 157 /** 158 * alloc_super - create new superblock 159 * @type: filesystem type superblock should belong to 160 * @flags: the mount flags 161 * 162 * Allocates and initializes a new &struct super_block. alloc_super() 163 * returns a pointer new superblock or %NULL if allocation had failed. 164 */ 165 static struct super_block *alloc_super(struct file_system_type *type, int flags) 166 { 167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 168 static const struct super_operations default_op; 169 int i; 170 171 if (!s) 172 return NULL; 173 174 INIT_LIST_HEAD(&s->s_mounts); 175 176 if (security_sb_alloc(s)) 177 goto fail; 178 179 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 180 if (percpu_counter_init(&s->s_writers.counter[i], 0, 181 GFP_KERNEL) < 0) 182 goto fail; 183 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 184 &type->s_writers_key[i], 0); 185 } 186 init_waitqueue_head(&s->s_writers.wait); 187 init_waitqueue_head(&s->s_writers.wait_unfrozen); 188 s->s_flags = flags; 189 s->s_bdi = &default_backing_dev_info; 190 INIT_HLIST_NODE(&s->s_instances); 191 INIT_HLIST_BL_HEAD(&s->s_anon); 192 INIT_LIST_HEAD(&s->s_inodes); 193 194 if (list_lru_init(&s->s_dentry_lru)) 195 goto fail; 196 if (list_lru_init(&s->s_inode_lru)) 197 goto fail; 198 199 init_rwsem(&s->s_umount); 200 lockdep_set_class(&s->s_umount, &type->s_umount_key); 201 /* 202 * sget() can have s_umount recursion. 203 * 204 * When it cannot find a suitable sb, it allocates a new 205 * one (this one), and tries again to find a suitable old 206 * one. 207 * 208 * In case that succeeds, it will acquire the s_umount 209 * lock of the old one. Since these are clearly distrinct 210 * locks, and this object isn't exposed yet, there's no 211 * risk of deadlocks. 212 * 213 * Annotate this by putting this lock in a different 214 * subclass. 215 */ 216 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 217 s->s_count = 1; 218 atomic_set(&s->s_active, 1); 219 mutex_init(&s->s_vfs_rename_mutex); 220 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 221 mutex_init(&s->s_dquot.dqio_mutex); 222 mutex_init(&s->s_dquot.dqonoff_mutex); 223 s->s_maxbytes = MAX_NON_LFS; 224 s->s_op = &default_op; 225 s->s_time_gran = 1000000000; 226 s->cleancache_poolid = -1; 227 228 s->s_shrink.seeks = DEFAULT_SEEKS; 229 s->s_shrink.scan_objects = super_cache_scan; 230 s->s_shrink.count_objects = super_cache_count; 231 s->s_shrink.batch = 1024; 232 s->s_shrink.flags = SHRINKER_NUMA_AWARE; 233 return s; 234 235 fail: 236 destroy_super(s); 237 return NULL; 238 } 239 240 /* Superblock refcounting */ 241 242 /* 243 * Drop a superblock's refcount. The caller must hold sb_lock. 244 */ 245 static void __put_super(struct super_block *sb) 246 { 247 if (!--sb->s_count) { 248 list_del_init(&sb->s_list); 249 destroy_super(sb); 250 } 251 } 252 253 /** 254 * put_super - drop a temporary reference to superblock 255 * @sb: superblock in question 256 * 257 * Drops a temporary reference, frees superblock if there's no 258 * references left. 259 */ 260 static void put_super(struct super_block *sb) 261 { 262 spin_lock(&sb_lock); 263 __put_super(sb); 264 spin_unlock(&sb_lock); 265 } 266 267 268 /** 269 * deactivate_locked_super - drop an active reference to superblock 270 * @s: superblock to deactivate 271 * 272 * Drops an active reference to superblock, converting it into a temprory 273 * one if there is no other active references left. In that case we 274 * tell fs driver to shut it down and drop the temporary reference we 275 * had just acquired. 276 * 277 * Caller holds exclusive lock on superblock; that lock is released. 278 */ 279 void deactivate_locked_super(struct super_block *s) 280 { 281 struct file_system_type *fs = s->s_type; 282 if (atomic_dec_and_test(&s->s_active)) { 283 cleancache_invalidate_fs(s); 284 unregister_shrinker(&s->s_shrink); 285 fs->kill_sb(s); 286 287 put_filesystem(fs); 288 put_super(s); 289 } else { 290 up_write(&s->s_umount); 291 } 292 } 293 294 EXPORT_SYMBOL(deactivate_locked_super); 295 296 /** 297 * deactivate_super - drop an active reference to superblock 298 * @s: superblock to deactivate 299 * 300 * Variant of deactivate_locked_super(), except that superblock is *not* 301 * locked by caller. If we are going to drop the final active reference, 302 * lock will be acquired prior to that. 303 */ 304 void deactivate_super(struct super_block *s) 305 { 306 if (!atomic_add_unless(&s->s_active, -1, 1)) { 307 down_write(&s->s_umount); 308 deactivate_locked_super(s); 309 } 310 } 311 312 EXPORT_SYMBOL(deactivate_super); 313 314 /** 315 * grab_super - acquire an active reference 316 * @s: reference we are trying to make active 317 * 318 * Tries to acquire an active reference. grab_super() is used when we 319 * had just found a superblock in super_blocks or fs_type->fs_supers 320 * and want to turn it into a full-blown active reference. grab_super() 321 * is called with sb_lock held and drops it. Returns 1 in case of 322 * success, 0 if we had failed (superblock contents was already dead or 323 * dying when grab_super() had been called). Note that this is only 324 * called for superblocks not in rundown mode (== ones still on ->fs_supers 325 * of their type), so increment of ->s_count is OK here. 326 */ 327 static int grab_super(struct super_block *s) __releases(sb_lock) 328 { 329 s->s_count++; 330 spin_unlock(&sb_lock); 331 down_write(&s->s_umount); 332 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 333 put_super(s); 334 return 1; 335 } 336 up_write(&s->s_umount); 337 put_super(s); 338 return 0; 339 } 340 341 /* 342 * grab_super_passive - acquire a passive reference 343 * @sb: reference we are trying to grab 344 * 345 * Tries to acquire a passive reference. This is used in places where we 346 * cannot take an active reference but we need to ensure that the 347 * superblock does not go away while we are working on it. It returns 348 * false if a reference was not gained, and returns true with the s_umount 349 * lock held in read mode if a reference is gained. On successful return, 350 * the caller must drop the s_umount lock and the passive reference when 351 * done. 352 */ 353 bool grab_super_passive(struct super_block *sb) 354 { 355 spin_lock(&sb_lock); 356 if (hlist_unhashed(&sb->s_instances)) { 357 spin_unlock(&sb_lock); 358 return false; 359 } 360 361 sb->s_count++; 362 spin_unlock(&sb_lock); 363 364 if (down_read_trylock(&sb->s_umount)) { 365 if (sb->s_root && (sb->s_flags & MS_BORN)) 366 return true; 367 up_read(&sb->s_umount); 368 } 369 370 put_super(sb); 371 return false; 372 } 373 374 /** 375 * generic_shutdown_super - common helper for ->kill_sb() 376 * @sb: superblock to kill 377 * 378 * generic_shutdown_super() does all fs-independent work on superblock 379 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 380 * that need destruction out of superblock, call generic_shutdown_super() 381 * and release aforementioned objects. Note: dentries and inodes _are_ 382 * taken care of and do not need specific handling. 383 * 384 * Upon calling this function, the filesystem may no longer alter or 385 * rearrange the set of dentries belonging to this super_block, nor may it 386 * change the attachments of dentries to inodes. 387 */ 388 void generic_shutdown_super(struct super_block *sb) 389 { 390 const struct super_operations *sop = sb->s_op; 391 392 if (sb->s_root) { 393 shrink_dcache_for_umount(sb); 394 sync_filesystem(sb); 395 sb->s_flags &= ~MS_ACTIVE; 396 397 fsnotify_unmount_inodes(&sb->s_inodes); 398 399 evict_inodes(sb); 400 401 if (sb->s_dio_done_wq) { 402 destroy_workqueue(sb->s_dio_done_wq); 403 sb->s_dio_done_wq = NULL; 404 } 405 406 if (sop->put_super) 407 sop->put_super(sb); 408 409 if (!list_empty(&sb->s_inodes)) { 410 printk("VFS: Busy inodes after unmount of %s. " 411 "Self-destruct in 5 seconds. Have a nice day...\n", 412 sb->s_id); 413 } 414 } 415 spin_lock(&sb_lock); 416 /* should be initialized for __put_super_and_need_restart() */ 417 hlist_del_init(&sb->s_instances); 418 spin_unlock(&sb_lock); 419 up_write(&sb->s_umount); 420 } 421 422 EXPORT_SYMBOL(generic_shutdown_super); 423 424 /** 425 * sget - find or create a superblock 426 * @type: filesystem type superblock should belong to 427 * @test: comparison callback 428 * @set: setup callback 429 * @flags: mount flags 430 * @data: argument to each of them 431 */ 432 struct super_block *sget(struct file_system_type *type, 433 int (*test)(struct super_block *,void *), 434 int (*set)(struct super_block *,void *), 435 int flags, 436 void *data) 437 { 438 struct super_block *s = NULL; 439 struct super_block *old; 440 int err; 441 442 retry: 443 spin_lock(&sb_lock); 444 if (test) { 445 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 446 if (!test(old, data)) 447 continue; 448 if (!grab_super(old)) 449 goto retry; 450 if (s) { 451 up_write(&s->s_umount); 452 destroy_super(s); 453 s = NULL; 454 } 455 return old; 456 } 457 } 458 if (!s) { 459 spin_unlock(&sb_lock); 460 s = alloc_super(type, flags); 461 if (!s) 462 return ERR_PTR(-ENOMEM); 463 goto retry; 464 } 465 466 err = set(s, data); 467 if (err) { 468 spin_unlock(&sb_lock); 469 up_write(&s->s_umount); 470 destroy_super(s); 471 return ERR_PTR(err); 472 } 473 s->s_type = type; 474 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 475 list_add_tail(&s->s_list, &super_blocks); 476 hlist_add_head(&s->s_instances, &type->fs_supers); 477 spin_unlock(&sb_lock); 478 get_filesystem(type); 479 register_shrinker(&s->s_shrink); 480 return s; 481 } 482 483 EXPORT_SYMBOL(sget); 484 485 void drop_super(struct super_block *sb) 486 { 487 up_read(&sb->s_umount); 488 put_super(sb); 489 } 490 491 EXPORT_SYMBOL(drop_super); 492 493 /** 494 * iterate_supers - call function for all active superblocks 495 * @f: function to call 496 * @arg: argument to pass to it 497 * 498 * Scans the superblock list and calls given function, passing it 499 * locked superblock and given argument. 500 */ 501 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 502 { 503 struct super_block *sb, *p = NULL; 504 505 spin_lock(&sb_lock); 506 list_for_each_entry(sb, &super_blocks, s_list) { 507 if (hlist_unhashed(&sb->s_instances)) 508 continue; 509 sb->s_count++; 510 spin_unlock(&sb_lock); 511 512 down_read(&sb->s_umount); 513 if (sb->s_root && (sb->s_flags & MS_BORN)) 514 f(sb, arg); 515 up_read(&sb->s_umount); 516 517 spin_lock(&sb_lock); 518 if (p) 519 __put_super(p); 520 p = sb; 521 } 522 if (p) 523 __put_super(p); 524 spin_unlock(&sb_lock); 525 } 526 527 /** 528 * iterate_supers_type - call function for superblocks of given type 529 * @type: fs type 530 * @f: function to call 531 * @arg: argument to pass to it 532 * 533 * Scans the superblock list and calls given function, passing it 534 * locked superblock and given argument. 535 */ 536 void iterate_supers_type(struct file_system_type *type, 537 void (*f)(struct super_block *, void *), void *arg) 538 { 539 struct super_block *sb, *p = NULL; 540 541 spin_lock(&sb_lock); 542 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 543 sb->s_count++; 544 spin_unlock(&sb_lock); 545 546 down_read(&sb->s_umount); 547 if (sb->s_root && (sb->s_flags & MS_BORN)) 548 f(sb, arg); 549 up_read(&sb->s_umount); 550 551 spin_lock(&sb_lock); 552 if (p) 553 __put_super(p); 554 p = sb; 555 } 556 if (p) 557 __put_super(p); 558 spin_unlock(&sb_lock); 559 } 560 561 EXPORT_SYMBOL(iterate_supers_type); 562 563 /** 564 * get_super - get the superblock of a device 565 * @bdev: device to get the superblock for 566 * 567 * Scans the superblock list and finds the superblock of the file system 568 * mounted on the device given. %NULL is returned if no match is found. 569 */ 570 571 struct super_block *get_super(struct block_device *bdev) 572 { 573 struct super_block *sb; 574 575 if (!bdev) 576 return NULL; 577 578 spin_lock(&sb_lock); 579 rescan: 580 list_for_each_entry(sb, &super_blocks, s_list) { 581 if (hlist_unhashed(&sb->s_instances)) 582 continue; 583 if (sb->s_bdev == bdev) { 584 sb->s_count++; 585 spin_unlock(&sb_lock); 586 down_read(&sb->s_umount); 587 /* still alive? */ 588 if (sb->s_root && (sb->s_flags & MS_BORN)) 589 return sb; 590 up_read(&sb->s_umount); 591 /* nope, got unmounted */ 592 spin_lock(&sb_lock); 593 __put_super(sb); 594 goto rescan; 595 } 596 } 597 spin_unlock(&sb_lock); 598 return NULL; 599 } 600 601 EXPORT_SYMBOL(get_super); 602 603 /** 604 * get_super_thawed - get thawed superblock of a device 605 * @bdev: device to get the superblock for 606 * 607 * Scans the superblock list and finds the superblock of the file system 608 * mounted on the device. The superblock is returned once it is thawed 609 * (or immediately if it was not frozen). %NULL is returned if no match 610 * is found. 611 */ 612 struct super_block *get_super_thawed(struct block_device *bdev) 613 { 614 while (1) { 615 struct super_block *s = get_super(bdev); 616 if (!s || s->s_writers.frozen == SB_UNFROZEN) 617 return s; 618 up_read(&s->s_umount); 619 wait_event(s->s_writers.wait_unfrozen, 620 s->s_writers.frozen == SB_UNFROZEN); 621 put_super(s); 622 } 623 } 624 EXPORT_SYMBOL(get_super_thawed); 625 626 /** 627 * get_active_super - get an active reference to the superblock of a device 628 * @bdev: device to get the superblock for 629 * 630 * Scans the superblock list and finds the superblock of the file system 631 * mounted on the device given. Returns the superblock with an active 632 * reference or %NULL if none was found. 633 */ 634 struct super_block *get_active_super(struct block_device *bdev) 635 { 636 struct super_block *sb; 637 638 if (!bdev) 639 return NULL; 640 641 restart: 642 spin_lock(&sb_lock); 643 list_for_each_entry(sb, &super_blocks, s_list) { 644 if (hlist_unhashed(&sb->s_instances)) 645 continue; 646 if (sb->s_bdev == bdev) { 647 if (!grab_super(sb)) 648 goto restart; 649 up_write(&sb->s_umount); 650 return sb; 651 } 652 } 653 spin_unlock(&sb_lock); 654 return NULL; 655 } 656 657 struct super_block *user_get_super(dev_t dev) 658 { 659 struct super_block *sb; 660 661 spin_lock(&sb_lock); 662 rescan: 663 list_for_each_entry(sb, &super_blocks, s_list) { 664 if (hlist_unhashed(&sb->s_instances)) 665 continue; 666 if (sb->s_dev == dev) { 667 sb->s_count++; 668 spin_unlock(&sb_lock); 669 down_read(&sb->s_umount); 670 /* still alive? */ 671 if (sb->s_root && (sb->s_flags & MS_BORN)) 672 return sb; 673 up_read(&sb->s_umount); 674 /* nope, got unmounted */ 675 spin_lock(&sb_lock); 676 __put_super(sb); 677 goto rescan; 678 } 679 } 680 spin_unlock(&sb_lock); 681 return NULL; 682 } 683 684 /** 685 * do_remount_sb - asks filesystem to change mount options. 686 * @sb: superblock in question 687 * @flags: numeric part of options 688 * @data: the rest of options 689 * @force: whether or not to force the change 690 * 691 * Alters the mount options of a mounted file system. 692 */ 693 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 694 { 695 int retval; 696 int remount_ro; 697 698 if (sb->s_writers.frozen != SB_UNFROZEN) 699 return -EBUSY; 700 701 #ifdef CONFIG_BLOCK 702 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 703 return -EACCES; 704 #endif 705 706 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 707 708 if (remount_ro) { 709 if (sb->s_pins.first) { 710 up_write(&sb->s_umount); 711 sb_pin_kill(sb); 712 down_write(&sb->s_umount); 713 if (!sb->s_root) 714 return 0; 715 if (sb->s_writers.frozen != SB_UNFROZEN) 716 return -EBUSY; 717 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 718 } 719 } 720 shrink_dcache_sb(sb); 721 722 /* If we are remounting RDONLY and current sb is read/write, 723 make sure there are no rw files opened */ 724 if (remount_ro) { 725 if (force) { 726 sb->s_readonly_remount = 1; 727 smp_wmb(); 728 } else { 729 retval = sb_prepare_remount_readonly(sb); 730 if (retval) 731 return retval; 732 } 733 } 734 735 if (sb->s_op->remount_fs) { 736 retval = sb->s_op->remount_fs(sb, &flags, data); 737 if (retval) { 738 if (!force) 739 goto cancel_readonly; 740 /* If forced remount, go ahead despite any errors */ 741 WARN(1, "forced remount of a %s fs returned %i\n", 742 sb->s_type->name, retval); 743 } 744 } 745 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 746 /* Needs to be ordered wrt mnt_is_readonly() */ 747 smp_wmb(); 748 sb->s_readonly_remount = 0; 749 750 /* 751 * Some filesystems modify their metadata via some other path than the 752 * bdev buffer cache (eg. use a private mapping, or directories in 753 * pagecache, etc). Also file data modifications go via their own 754 * mappings. So If we try to mount readonly then copy the filesystem 755 * from bdev, we could get stale data, so invalidate it to give a best 756 * effort at coherency. 757 */ 758 if (remount_ro && sb->s_bdev) 759 invalidate_bdev(sb->s_bdev); 760 return 0; 761 762 cancel_readonly: 763 sb->s_readonly_remount = 0; 764 return retval; 765 } 766 767 static void do_emergency_remount(struct work_struct *work) 768 { 769 struct super_block *sb, *p = NULL; 770 771 spin_lock(&sb_lock); 772 list_for_each_entry(sb, &super_blocks, s_list) { 773 if (hlist_unhashed(&sb->s_instances)) 774 continue; 775 sb->s_count++; 776 spin_unlock(&sb_lock); 777 down_write(&sb->s_umount); 778 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 779 !(sb->s_flags & MS_RDONLY)) { 780 /* 781 * What lock protects sb->s_flags?? 782 */ 783 do_remount_sb(sb, MS_RDONLY, NULL, 1); 784 } 785 up_write(&sb->s_umount); 786 spin_lock(&sb_lock); 787 if (p) 788 __put_super(p); 789 p = sb; 790 } 791 if (p) 792 __put_super(p); 793 spin_unlock(&sb_lock); 794 kfree(work); 795 printk("Emergency Remount complete\n"); 796 } 797 798 void emergency_remount(void) 799 { 800 struct work_struct *work; 801 802 work = kmalloc(sizeof(*work), GFP_ATOMIC); 803 if (work) { 804 INIT_WORK(work, do_emergency_remount); 805 schedule_work(work); 806 } 807 } 808 809 /* 810 * Unnamed block devices are dummy devices used by virtual 811 * filesystems which don't use real block-devices. -- jrs 812 */ 813 814 static DEFINE_IDA(unnamed_dev_ida); 815 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 816 /* Many userspace utilities consider an FSID of 0 invalid. 817 * Always return at least 1 from get_anon_bdev. 818 */ 819 static int unnamed_dev_start = 1; 820 821 int get_anon_bdev(dev_t *p) 822 { 823 int dev; 824 int error; 825 826 retry: 827 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 828 return -ENOMEM; 829 spin_lock(&unnamed_dev_lock); 830 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 831 if (!error) 832 unnamed_dev_start = dev + 1; 833 spin_unlock(&unnamed_dev_lock); 834 if (error == -EAGAIN) 835 /* We raced and lost with another CPU. */ 836 goto retry; 837 else if (error) 838 return -EAGAIN; 839 840 if (dev == (1 << MINORBITS)) { 841 spin_lock(&unnamed_dev_lock); 842 ida_remove(&unnamed_dev_ida, dev); 843 if (unnamed_dev_start > dev) 844 unnamed_dev_start = dev; 845 spin_unlock(&unnamed_dev_lock); 846 return -EMFILE; 847 } 848 *p = MKDEV(0, dev & MINORMASK); 849 return 0; 850 } 851 EXPORT_SYMBOL(get_anon_bdev); 852 853 void free_anon_bdev(dev_t dev) 854 { 855 int slot = MINOR(dev); 856 spin_lock(&unnamed_dev_lock); 857 ida_remove(&unnamed_dev_ida, slot); 858 if (slot < unnamed_dev_start) 859 unnamed_dev_start = slot; 860 spin_unlock(&unnamed_dev_lock); 861 } 862 EXPORT_SYMBOL(free_anon_bdev); 863 864 int set_anon_super(struct super_block *s, void *data) 865 { 866 int error = get_anon_bdev(&s->s_dev); 867 if (!error) 868 s->s_bdi = &noop_backing_dev_info; 869 return error; 870 } 871 872 EXPORT_SYMBOL(set_anon_super); 873 874 void kill_anon_super(struct super_block *sb) 875 { 876 dev_t dev = sb->s_dev; 877 generic_shutdown_super(sb); 878 free_anon_bdev(dev); 879 } 880 881 EXPORT_SYMBOL(kill_anon_super); 882 883 void kill_litter_super(struct super_block *sb) 884 { 885 if (sb->s_root) 886 d_genocide(sb->s_root); 887 kill_anon_super(sb); 888 } 889 890 EXPORT_SYMBOL(kill_litter_super); 891 892 static int ns_test_super(struct super_block *sb, void *data) 893 { 894 return sb->s_fs_info == data; 895 } 896 897 static int ns_set_super(struct super_block *sb, void *data) 898 { 899 sb->s_fs_info = data; 900 return set_anon_super(sb, NULL); 901 } 902 903 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 904 void *data, int (*fill_super)(struct super_block *, void *, int)) 905 { 906 struct super_block *sb; 907 908 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 909 if (IS_ERR(sb)) 910 return ERR_CAST(sb); 911 912 if (!sb->s_root) { 913 int err; 914 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 915 if (err) { 916 deactivate_locked_super(sb); 917 return ERR_PTR(err); 918 } 919 920 sb->s_flags |= MS_ACTIVE; 921 } 922 923 return dget(sb->s_root); 924 } 925 926 EXPORT_SYMBOL(mount_ns); 927 928 #ifdef CONFIG_BLOCK 929 static int set_bdev_super(struct super_block *s, void *data) 930 { 931 s->s_bdev = data; 932 s->s_dev = s->s_bdev->bd_dev; 933 934 /* 935 * We set the bdi here to the queue backing, file systems can 936 * overwrite this in ->fill_super() 937 */ 938 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 939 return 0; 940 } 941 942 static int test_bdev_super(struct super_block *s, void *data) 943 { 944 return (void *)s->s_bdev == data; 945 } 946 947 struct dentry *mount_bdev(struct file_system_type *fs_type, 948 int flags, const char *dev_name, void *data, 949 int (*fill_super)(struct super_block *, void *, int)) 950 { 951 struct block_device *bdev; 952 struct super_block *s; 953 fmode_t mode = FMODE_READ | FMODE_EXCL; 954 int error = 0; 955 956 if (!(flags & MS_RDONLY)) 957 mode |= FMODE_WRITE; 958 959 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 960 if (IS_ERR(bdev)) 961 return ERR_CAST(bdev); 962 963 /* 964 * once the super is inserted into the list by sget, s_umount 965 * will protect the lockfs code from trying to start a snapshot 966 * while we are mounting 967 */ 968 mutex_lock(&bdev->bd_fsfreeze_mutex); 969 if (bdev->bd_fsfreeze_count > 0) { 970 mutex_unlock(&bdev->bd_fsfreeze_mutex); 971 error = -EBUSY; 972 goto error_bdev; 973 } 974 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 975 bdev); 976 mutex_unlock(&bdev->bd_fsfreeze_mutex); 977 if (IS_ERR(s)) 978 goto error_s; 979 980 if (s->s_root) { 981 if ((flags ^ s->s_flags) & MS_RDONLY) { 982 deactivate_locked_super(s); 983 error = -EBUSY; 984 goto error_bdev; 985 } 986 987 /* 988 * s_umount nests inside bd_mutex during 989 * __invalidate_device(). blkdev_put() acquires 990 * bd_mutex and can't be called under s_umount. Drop 991 * s_umount temporarily. This is safe as we're 992 * holding an active reference. 993 */ 994 up_write(&s->s_umount); 995 blkdev_put(bdev, mode); 996 down_write(&s->s_umount); 997 } else { 998 char b[BDEVNAME_SIZE]; 999 1000 s->s_mode = mode; 1001 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1002 sb_set_blocksize(s, block_size(bdev)); 1003 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1004 if (error) { 1005 deactivate_locked_super(s); 1006 goto error; 1007 } 1008 1009 s->s_flags |= MS_ACTIVE; 1010 bdev->bd_super = s; 1011 } 1012 1013 return dget(s->s_root); 1014 1015 error_s: 1016 error = PTR_ERR(s); 1017 error_bdev: 1018 blkdev_put(bdev, mode); 1019 error: 1020 return ERR_PTR(error); 1021 } 1022 EXPORT_SYMBOL(mount_bdev); 1023 1024 void kill_block_super(struct super_block *sb) 1025 { 1026 struct block_device *bdev = sb->s_bdev; 1027 fmode_t mode = sb->s_mode; 1028 1029 bdev->bd_super = NULL; 1030 generic_shutdown_super(sb); 1031 sync_blockdev(bdev); 1032 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1033 blkdev_put(bdev, mode | FMODE_EXCL); 1034 } 1035 1036 EXPORT_SYMBOL(kill_block_super); 1037 #endif 1038 1039 struct dentry *mount_nodev(struct file_system_type *fs_type, 1040 int flags, void *data, 1041 int (*fill_super)(struct super_block *, void *, int)) 1042 { 1043 int error; 1044 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1045 1046 if (IS_ERR(s)) 1047 return ERR_CAST(s); 1048 1049 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1050 if (error) { 1051 deactivate_locked_super(s); 1052 return ERR_PTR(error); 1053 } 1054 s->s_flags |= MS_ACTIVE; 1055 return dget(s->s_root); 1056 } 1057 EXPORT_SYMBOL(mount_nodev); 1058 1059 static int compare_single(struct super_block *s, void *p) 1060 { 1061 return 1; 1062 } 1063 1064 struct dentry *mount_single(struct file_system_type *fs_type, 1065 int flags, void *data, 1066 int (*fill_super)(struct super_block *, void *, int)) 1067 { 1068 struct super_block *s; 1069 int error; 1070 1071 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1072 if (IS_ERR(s)) 1073 return ERR_CAST(s); 1074 if (!s->s_root) { 1075 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1076 if (error) { 1077 deactivate_locked_super(s); 1078 return ERR_PTR(error); 1079 } 1080 s->s_flags |= MS_ACTIVE; 1081 } else { 1082 do_remount_sb(s, flags, data, 0); 1083 } 1084 return dget(s->s_root); 1085 } 1086 EXPORT_SYMBOL(mount_single); 1087 1088 struct dentry * 1089 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1090 { 1091 struct dentry *root; 1092 struct super_block *sb; 1093 char *secdata = NULL; 1094 int error = -ENOMEM; 1095 1096 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1097 secdata = alloc_secdata(); 1098 if (!secdata) 1099 goto out; 1100 1101 error = security_sb_copy_data(data, secdata); 1102 if (error) 1103 goto out_free_secdata; 1104 } 1105 1106 root = type->mount(type, flags, name, data); 1107 if (IS_ERR(root)) { 1108 error = PTR_ERR(root); 1109 goto out_free_secdata; 1110 } 1111 sb = root->d_sb; 1112 BUG_ON(!sb); 1113 WARN_ON(!sb->s_bdi); 1114 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1115 sb->s_flags |= MS_BORN; 1116 1117 error = security_sb_kern_mount(sb, flags, secdata); 1118 if (error) 1119 goto out_sb; 1120 1121 /* 1122 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1123 * but s_maxbytes was an unsigned long long for many releases. Throw 1124 * this warning for a little while to try and catch filesystems that 1125 * violate this rule. 1126 */ 1127 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1128 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1129 1130 up_write(&sb->s_umount); 1131 free_secdata(secdata); 1132 return root; 1133 out_sb: 1134 dput(root); 1135 deactivate_locked_super(sb); 1136 out_free_secdata: 1137 free_secdata(secdata); 1138 out: 1139 return ERR_PTR(error); 1140 } 1141 1142 /* 1143 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1144 * instead. 1145 */ 1146 void __sb_end_write(struct super_block *sb, int level) 1147 { 1148 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1149 /* 1150 * Make sure s_writers are updated before we wake up waiters in 1151 * freeze_super(). 1152 */ 1153 smp_mb(); 1154 if (waitqueue_active(&sb->s_writers.wait)) 1155 wake_up(&sb->s_writers.wait); 1156 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1157 } 1158 EXPORT_SYMBOL(__sb_end_write); 1159 1160 #ifdef CONFIG_LOCKDEP 1161 /* 1162 * We want lockdep to tell us about possible deadlocks with freezing but 1163 * it's it bit tricky to properly instrument it. Getting a freeze protection 1164 * works as getting a read lock but there are subtle problems. XFS for example 1165 * gets freeze protection on internal level twice in some cases, which is OK 1166 * only because we already hold a freeze protection also on higher level. Due 1167 * to these cases we have to tell lockdep we are doing trylock when we 1168 * already hold a freeze protection for a higher freeze level. 1169 */ 1170 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1171 unsigned long ip) 1172 { 1173 int i; 1174 1175 if (!trylock) { 1176 for (i = 0; i < level - 1; i++) 1177 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1178 trylock = true; 1179 break; 1180 } 1181 } 1182 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1183 } 1184 #endif 1185 1186 /* 1187 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1188 * instead. 1189 */ 1190 int __sb_start_write(struct super_block *sb, int level, bool wait) 1191 { 1192 retry: 1193 if (unlikely(sb->s_writers.frozen >= level)) { 1194 if (!wait) 1195 return 0; 1196 wait_event(sb->s_writers.wait_unfrozen, 1197 sb->s_writers.frozen < level); 1198 } 1199 1200 #ifdef CONFIG_LOCKDEP 1201 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1202 #endif 1203 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1204 /* 1205 * Make sure counter is updated before we check for frozen. 1206 * freeze_super() first sets frozen and then checks the counter. 1207 */ 1208 smp_mb(); 1209 if (unlikely(sb->s_writers.frozen >= level)) { 1210 __sb_end_write(sb, level); 1211 goto retry; 1212 } 1213 return 1; 1214 } 1215 EXPORT_SYMBOL(__sb_start_write); 1216 1217 /** 1218 * sb_wait_write - wait until all writers to given file system finish 1219 * @sb: the super for which we wait 1220 * @level: type of writers we wait for (normal vs page fault) 1221 * 1222 * This function waits until there are no writers of given type to given file 1223 * system. Caller of this function should make sure there can be no new writers 1224 * of type @level before calling this function. Otherwise this function can 1225 * livelock. 1226 */ 1227 static void sb_wait_write(struct super_block *sb, int level) 1228 { 1229 s64 writers; 1230 1231 /* 1232 * We just cycle-through lockdep here so that it does not complain 1233 * about returning with lock to userspace 1234 */ 1235 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1236 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1237 1238 do { 1239 DEFINE_WAIT(wait); 1240 1241 /* 1242 * We use a barrier in prepare_to_wait() to separate setting 1243 * of frozen and checking of the counter 1244 */ 1245 prepare_to_wait(&sb->s_writers.wait, &wait, 1246 TASK_UNINTERRUPTIBLE); 1247 1248 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1249 if (writers) 1250 schedule(); 1251 1252 finish_wait(&sb->s_writers.wait, &wait); 1253 } while (writers); 1254 } 1255 1256 /** 1257 * freeze_super - lock the filesystem and force it into a consistent state 1258 * @sb: the super to lock 1259 * 1260 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1261 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1262 * -EBUSY. 1263 * 1264 * During this function, sb->s_writers.frozen goes through these values: 1265 * 1266 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1267 * 1268 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1269 * writes should be blocked, though page faults are still allowed. We wait for 1270 * all writes to complete and then proceed to the next stage. 1271 * 1272 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1273 * but internal fs threads can still modify the filesystem (although they 1274 * should not dirty new pages or inodes), writeback can run etc. After waiting 1275 * for all running page faults we sync the filesystem which will clean all 1276 * dirty pages and inodes (no new dirty pages or inodes can be created when 1277 * sync is running). 1278 * 1279 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1280 * modification are blocked (e.g. XFS preallocation truncation on inode 1281 * reclaim). This is usually implemented by blocking new transactions for 1282 * filesystems that have them and need this additional guard. After all 1283 * internal writers are finished we call ->freeze_fs() to finish filesystem 1284 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1285 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1286 * 1287 * sb->s_writers.frozen is protected by sb->s_umount. 1288 */ 1289 int freeze_super(struct super_block *sb) 1290 { 1291 int ret; 1292 1293 atomic_inc(&sb->s_active); 1294 down_write(&sb->s_umount); 1295 if (sb->s_writers.frozen != SB_UNFROZEN) { 1296 deactivate_locked_super(sb); 1297 return -EBUSY; 1298 } 1299 1300 if (!(sb->s_flags & MS_BORN)) { 1301 up_write(&sb->s_umount); 1302 return 0; /* sic - it's "nothing to do" */ 1303 } 1304 1305 if (sb->s_flags & MS_RDONLY) { 1306 /* Nothing to do really... */ 1307 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1308 up_write(&sb->s_umount); 1309 return 0; 1310 } 1311 1312 /* From now on, no new normal writers can start */ 1313 sb->s_writers.frozen = SB_FREEZE_WRITE; 1314 smp_wmb(); 1315 1316 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1317 up_write(&sb->s_umount); 1318 1319 sb_wait_write(sb, SB_FREEZE_WRITE); 1320 1321 /* Now we go and block page faults... */ 1322 down_write(&sb->s_umount); 1323 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1324 smp_wmb(); 1325 1326 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1327 1328 /* All writers are done so after syncing there won't be dirty data */ 1329 sync_filesystem(sb); 1330 1331 /* Now wait for internal filesystem counter */ 1332 sb->s_writers.frozen = SB_FREEZE_FS; 1333 smp_wmb(); 1334 sb_wait_write(sb, SB_FREEZE_FS); 1335 1336 if (sb->s_op->freeze_fs) { 1337 ret = sb->s_op->freeze_fs(sb); 1338 if (ret) { 1339 printk(KERN_ERR 1340 "VFS:Filesystem freeze failed\n"); 1341 sb->s_writers.frozen = SB_UNFROZEN; 1342 smp_wmb(); 1343 wake_up(&sb->s_writers.wait_unfrozen); 1344 deactivate_locked_super(sb); 1345 return ret; 1346 } 1347 } 1348 /* 1349 * This is just for debugging purposes so that fs can warn if it 1350 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1351 */ 1352 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1353 up_write(&sb->s_umount); 1354 return 0; 1355 } 1356 EXPORT_SYMBOL(freeze_super); 1357 1358 /** 1359 * thaw_super -- unlock filesystem 1360 * @sb: the super to thaw 1361 * 1362 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1363 */ 1364 int thaw_super(struct super_block *sb) 1365 { 1366 int error; 1367 1368 down_write(&sb->s_umount); 1369 if (sb->s_writers.frozen == SB_UNFROZEN) { 1370 up_write(&sb->s_umount); 1371 return -EINVAL; 1372 } 1373 1374 if (sb->s_flags & MS_RDONLY) 1375 goto out; 1376 1377 if (sb->s_op->unfreeze_fs) { 1378 error = sb->s_op->unfreeze_fs(sb); 1379 if (error) { 1380 printk(KERN_ERR 1381 "VFS:Filesystem thaw failed\n"); 1382 up_write(&sb->s_umount); 1383 return error; 1384 } 1385 } 1386 1387 out: 1388 sb->s_writers.frozen = SB_UNFROZEN; 1389 smp_wmb(); 1390 wake_up(&sb->s_writers.wait_unfrozen); 1391 deactivate_locked_super(sb); 1392 1393 return 0; 1394 } 1395 EXPORT_SYMBOL(thaw_super); 1396