xref: /openbmc/linux/fs/super.c (revision c0605cd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->s_time_min = TIME64_MIN;
261 	s->s_time_max = TIME64_MAX;
262 
263 	s->s_shrink.seeks = DEFAULT_SEEKS;
264 	s->s_shrink.scan_objects = super_cache_scan;
265 	s->s_shrink.count_objects = super_cache_count;
266 	s->s_shrink.batch = 1024;
267 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269 		goto fail;
270 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 		goto fail;
274 	return s;
275 
276 fail:
277 	destroy_unused_super(s);
278 	return NULL;
279 }
280 
281 /* Superblock refcounting  */
282 
283 /*
284  * Drop a superblock's refcount.  The caller must hold sb_lock.
285  */
286 static void __put_super(struct super_block *s)
287 {
288 	if (!--s->s_count) {
289 		list_del_init(&s->s_list);
290 		WARN_ON(s->s_dentry_lru.node);
291 		WARN_ON(s->s_inode_lru.node);
292 		WARN_ON(!list_empty(&s->s_mounts));
293 		security_sb_free(s);
294 		put_user_ns(s->s_user_ns);
295 		kfree(s->s_subtype);
296 		call_rcu(&s->rcu, destroy_super_rcu);
297 	}
298 }
299 
300 /**
301  *	put_super	-	drop a temporary reference to superblock
302  *	@sb: superblock in question
303  *
304  *	Drops a temporary reference, frees superblock if there's no
305  *	references left.
306  */
307 void put_super(struct super_block *sb)
308 {
309 	spin_lock(&sb_lock);
310 	__put_super(sb);
311 	spin_unlock(&sb_lock);
312 }
313 
314 
315 /**
316  *	deactivate_locked_super	-	drop an active reference to superblock
317  *	@s: superblock to deactivate
318  *
319  *	Drops an active reference to superblock, converting it into a temporary
320  *	one if there is no other active references left.  In that case we
321  *	tell fs driver to shut it down and drop the temporary reference we
322  *	had just acquired.
323  *
324  *	Caller holds exclusive lock on superblock; that lock is released.
325  */
326 void deactivate_locked_super(struct super_block *s)
327 {
328 	struct file_system_type *fs = s->s_type;
329 	if (atomic_dec_and_test(&s->s_active)) {
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	retire_super	-	prevents superblock from being reused
426  *	@sb: superblock to retire
427  *
428  *	The function marks superblock to be ignored in superblock test, which
429  *	prevents it from being reused for any new mounts.  If the superblock has
430  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
431  *	of the superblock to prevent potential races.  The refcount is reduced
432  *	by generic_shutdown_super().  The function can not be called
433  *	concurrently with generic_shutdown_super().  It is safe to call the
434  *	function multiple times, subsequent calls have no effect.
435  *
436  *	The marker will affect the re-use only for block-device-based
437  *	superblocks.  Other superblocks will still get marked if this function
438  *	is used, but that will not affect their reusability.
439  */
440 void retire_super(struct super_block *sb)
441 {
442 	WARN_ON(!sb->s_bdev);
443 	down_write(&sb->s_umount);
444 	if (sb->s_iflags & SB_I_PERSB_BDI) {
445 		bdi_unregister(sb->s_bdi);
446 		sb->s_iflags &= ~SB_I_PERSB_BDI;
447 	}
448 	sb->s_iflags |= SB_I_RETIRED;
449 	up_write(&sb->s_umount);
450 }
451 EXPORT_SYMBOL(retire_super);
452 
453 /**
454  *	generic_shutdown_super	-	common helper for ->kill_sb()
455  *	@sb: superblock to kill
456  *
457  *	generic_shutdown_super() does all fs-independent work on superblock
458  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
459  *	that need destruction out of superblock, call generic_shutdown_super()
460  *	and release aforementioned objects.  Note: dentries and inodes _are_
461  *	taken care of and do not need specific handling.
462  *
463  *	Upon calling this function, the filesystem may no longer alter or
464  *	rearrange the set of dentries belonging to this super_block, nor may it
465  *	change the attachments of dentries to inodes.
466  */
467 void generic_shutdown_super(struct super_block *sb)
468 {
469 	const struct super_operations *sop = sb->s_op;
470 
471 	if (sb->s_root) {
472 		shrink_dcache_for_umount(sb);
473 		sync_filesystem(sb);
474 		sb->s_flags &= ~SB_ACTIVE;
475 
476 		cgroup_writeback_umount();
477 
478 		/* evict all inodes with zero refcount */
479 		evict_inodes(sb);
480 		/* only nonzero refcount inodes can have marks */
481 		fsnotify_sb_delete(sb);
482 		fscrypt_sb_delete(sb);
483 		security_sb_delete(sb);
484 
485 		if (sb->s_dio_done_wq) {
486 			destroy_workqueue(sb->s_dio_done_wq);
487 			sb->s_dio_done_wq = NULL;
488 		}
489 
490 		if (sop->put_super)
491 			sop->put_super(sb);
492 
493 		if (!list_empty(&sb->s_inodes)) {
494 			printk("VFS: Busy inodes after unmount of %s. "
495 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
496 			   sb->s_id);
497 		}
498 	}
499 	spin_lock(&sb_lock);
500 	/* should be initialized for __put_super_and_need_restart() */
501 	hlist_del_init(&sb->s_instances);
502 	spin_unlock(&sb_lock);
503 	up_write(&sb->s_umount);
504 	if (sb->s_bdi != &noop_backing_dev_info) {
505 		if (sb->s_iflags & SB_I_PERSB_BDI)
506 			bdi_unregister(sb->s_bdi);
507 		bdi_put(sb->s_bdi);
508 		sb->s_bdi = &noop_backing_dev_info;
509 	}
510 }
511 
512 EXPORT_SYMBOL(generic_shutdown_super);
513 
514 bool mount_capable(struct fs_context *fc)
515 {
516 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
517 		return capable(CAP_SYS_ADMIN);
518 	else
519 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
520 }
521 
522 /**
523  * sget_fc - Find or create a superblock
524  * @fc:	Filesystem context.
525  * @test: Comparison callback
526  * @set: Setup callback
527  *
528  * Find or create a superblock using the parameters stored in the filesystem
529  * context and the two callback functions.
530  *
531  * If an extant superblock is matched, then that will be returned with an
532  * elevated reference count that the caller must transfer or discard.
533  *
534  * If no match is made, a new superblock will be allocated and basic
535  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
536  * the set() callback will be invoked), the superblock will be published and it
537  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
538  * as yet unset.
539  */
540 struct super_block *sget_fc(struct fs_context *fc,
541 			    int (*test)(struct super_block *, struct fs_context *),
542 			    int (*set)(struct super_block *, struct fs_context *))
543 {
544 	struct super_block *s = NULL;
545 	struct super_block *old;
546 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
547 	int err;
548 
549 retry:
550 	spin_lock(&sb_lock);
551 	if (test) {
552 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
553 			if (test(old, fc))
554 				goto share_extant_sb;
555 		}
556 	}
557 	if (!s) {
558 		spin_unlock(&sb_lock);
559 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
560 		if (!s)
561 			return ERR_PTR(-ENOMEM);
562 		goto retry;
563 	}
564 
565 	s->s_fs_info = fc->s_fs_info;
566 	err = set(s, fc);
567 	if (err) {
568 		s->s_fs_info = NULL;
569 		spin_unlock(&sb_lock);
570 		destroy_unused_super(s);
571 		return ERR_PTR(err);
572 	}
573 	fc->s_fs_info = NULL;
574 	s->s_type = fc->fs_type;
575 	s->s_iflags |= fc->s_iflags;
576 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
577 	list_add_tail(&s->s_list, &super_blocks);
578 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
579 	spin_unlock(&sb_lock);
580 	get_filesystem(s->s_type);
581 	register_shrinker_prepared(&s->s_shrink);
582 	return s;
583 
584 share_extant_sb:
585 	if (user_ns != old->s_user_ns) {
586 		spin_unlock(&sb_lock);
587 		destroy_unused_super(s);
588 		return ERR_PTR(-EBUSY);
589 	}
590 	if (!grab_super(old))
591 		goto retry;
592 	destroy_unused_super(s);
593 	return old;
594 }
595 EXPORT_SYMBOL(sget_fc);
596 
597 /**
598  *	sget	-	find or create a superblock
599  *	@type:	  filesystem type superblock should belong to
600  *	@test:	  comparison callback
601  *	@set:	  setup callback
602  *	@flags:	  mount flags
603  *	@data:	  argument to each of them
604  */
605 struct super_block *sget(struct file_system_type *type,
606 			int (*test)(struct super_block *,void *),
607 			int (*set)(struct super_block *,void *),
608 			int flags,
609 			void *data)
610 {
611 	struct user_namespace *user_ns = current_user_ns();
612 	struct super_block *s = NULL;
613 	struct super_block *old;
614 	int err;
615 
616 	/* We don't yet pass the user namespace of the parent
617 	 * mount through to here so always use &init_user_ns
618 	 * until that changes.
619 	 */
620 	if (flags & SB_SUBMOUNT)
621 		user_ns = &init_user_ns;
622 
623 retry:
624 	spin_lock(&sb_lock);
625 	if (test) {
626 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
627 			if (!test(old, data))
628 				continue;
629 			if (user_ns != old->s_user_ns) {
630 				spin_unlock(&sb_lock);
631 				destroy_unused_super(s);
632 				return ERR_PTR(-EBUSY);
633 			}
634 			if (!grab_super(old))
635 				goto retry;
636 			destroy_unused_super(s);
637 			return old;
638 		}
639 	}
640 	if (!s) {
641 		spin_unlock(&sb_lock);
642 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
643 		if (!s)
644 			return ERR_PTR(-ENOMEM);
645 		goto retry;
646 	}
647 
648 	err = set(s, data);
649 	if (err) {
650 		spin_unlock(&sb_lock);
651 		destroy_unused_super(s);
652 		return ERR_PTR(err);
653 	}
654 	s->s_type = type;
655 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
656 	list_add_tail(&s->s_list, &super_blocks);
657 	hlist_add_head(&s->s_instances, &type->fs_supers);
658 	spin_unlock(&sb_lock);
659 	get_filesystem(type);
660 	register_shrinker_prepared(&s->s_shrink);
661 	return s;
662 }
663 EXPORT_SYMBOL(sget);
664 
665 void drop_super(struct super_block *sb)
666 {
667 	up_read(&sb->s_umount);
668 	put_super(sb);
669 }
670 
671 EXPORT_SYMBOL(drop_super);
672 
673 void drop_super_exclusive(struct super_block *sb)
674 {
675 	up_write(&sb->s_umount);
676 	put_super(sb);
677 }
678 EXPORT_SYMBOL(drop_super_exclusive);
679 
680 static void __iterate_supers(void (*f)(struct super_block *))
681 {
682 	struct super_block *sb, *p = NULL;
683 
684 	spin_lock(&sb_lock);
685 	list_for_each_entry(sb, &super_blocks, s_list) {
686 		if (hlist_unhashed(&sb->s_instances))
687 			continue;
688 		sb->s_count++;
689 		spin_unlock(&sb_lock);
690 
691 		f(sb);
692 
693 		spin_lock(&sb_lock);
694 		if (p)
695 			__put_super(p);
696 		p = sb;
697 	}
698 	if (p)
699 		__put_super(p);
700 	spin_unlock(&sb_lock);
701 }
702 /**
703  *	iterate_supers - call function for all active superblocks
704  *	@f: function to call
705  *	@arg: argument to pass to it
706  *
707  *	Scans the superblock list and calls given function, passing it
708  *	locked superblock and given argument.
709  */
710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
711 {
712 	struct super_block *sb, *p = NULL;
713 
714 	spin_lock(&sb_lock);
715 	list_for_each_entry(sb, &super_blocks, s_list) {
716 		if (hlist_unhashed(&sb->s_instances))
717 			continue;
718 		sb->s_count++;
719 		spin_unlock(&sb_lock);
720 
721 		down_read(&sb->s_umount);
722 		if (sb->s_root && (sb->s_flags & SB_BORN))
723 			f(sb, arg);
724 		up_read(&sb->s_umount);
725 
726 		spin_lock(&sb_lock);
727 		if (p)
728 			__put_super(p);
729 		p = sb;
730 	}
731 	if (p)
732 		__put_super(p);
733 	spin_unlock(&sb_lock);
734 }
735 
736 /**
737  *	iterate_supers_type - call function for superblocks of given type
738  *	@type: fs type
739  *	@f: function to call
740  *	@arg: argument to pass to it
741  *
742  *	Scans the superblock list and calls given function, passing it
743  *	locked superblock and given argument.
744  */
745 void iterate_supers_type(struct file_system_type *type,
746 	void (*f)(struct super_block *, void *), void *arg)
747 {
748 	struct super_block *sb, *p = NULL;
749 
750 	spin_lock(&sb_lock);
751 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
752 		sb->s_count++;
753 		spin_unlock(&sb_lock);
754 
755 		down_read(&sb->s_umount);
756 		if (sb->s_root && (sb->s_flags & SB_BORN))
757 			f(sb, arg);
758 		up_read(&sb->s_umount);
759 
760 		spin_lock(&sb_lock);
761 		if (p)
762 			__put_super(p);
763 		p = sb;
764 	}
765 	if (p)
766 		__put_super(p);
767 	spin_unlock(&sb_lock);
768 }
769 
770 EXPORT_SYMBOL(iterate_supers_type);
771 
772 /**
773  * get_super - get the superblock of a device
774  * @bdev: device to get the superblock for
775  *
776  * Scans the superblock list and finds the superblock of the file system
777  * mounted on the device given. %NULL is returned if no match is found.
778  */
779 struct super_block *get_super(struct block_device *bdev)
780 {
781 	struct super_block *sb;
782 
783 	if (!bdev)
784 		return NULL;
785 
786 	spin_lock(&sb_lock);
787 rescan:
788 	list_for_each_entry(sb, &super_blocks, s_list) {
789 		if (hlist_unhashed(&sb->s_instances))
790 			continue;
791 		if (sb->s_bdev == bdev) {
792 			sb->s_count++;
793 			spin_unlock(&sb_lock);
794 			down_read(&sb->s_umount);
795 			/* still alive? */
796 			if (sb->s_root && (sb->s_flags & SB_BORN))
797 				return sb;
798 			up_read(&sb->s_umount);
799 			/* nope, got unmounted */
800 			spin_lock(&sb_lock);
801 			__put_super(sb);
802 			goto rescan;
803 		}
804 	}
805 	spin_unlock(&sb_lock);
806 	return NULL;
807 }
808 
809 /**
810  * get_active_super - get an active reference to the superblock of a device
811  * @bdev: device to get the superblock for
812  *
813  * Scans the superblock list and finds the superblock of the file system
814  * mounted on the device given.  Returns the superblock with an active
815  * reference or %NULL if none was found.
816  */
817 struct super_block *get_active_super(struct block_device *bdev)
818 {
819 	struct super_block *sb;
820 
821 	if (!bdev)
822 		return NULL;
823 
824 restart:
825 	spin_lock(&sb_lock);
826 	list_for_each_entry(sb, &super_blocks, s_list) {
827 		if (hlist_unhashed(&sb->s_instances))
828 			continue;
829 		if (sb->s_bdev == bdev) {
830 			if (!grab_super(sb))
831 				goto restart;
832 			up_write(&sb->s_umount);
833 			return sb;
834 		}
835 	}
836 	spin_unlock(&sb_lock);
837 	return NULL;
838 }
839 
840 struct super_block *user_get_super(dev_t dev, bool excl)
841 {
842 	struct super_block *sb;
843 
844 	spin_lock(&sb_lock);
845 rescan:
846 	list_for_each_entry(sb, &super_blocks, s_list) {
847 		if (hlist_unhashed(&sb->s_instances))
848 			continue;
849 		if (sb->s_dev ==  dev) {
850 			sb->s_count++;
851 			spin_unlock(&sb_lock);
852 			if (excl)
853 				down_write(&sb->s_umount);
854 			else
855 				down_read(&sb->s_umount);
856 			/* still alive? */
857 			if (sb->s_root && (sb->s_flags & SB_BORN))
858 				return sb;
859 			if (excl)
860 				up_write(&sb->s_umount);
861 			else
862 				up_read(&sb->s_umount);
863 			/* nope, got unmounted */
864 			spin_lock(&sb_lock);
865 			__put_super(sb);
866 			goto rescan;
867 		}
868 	}
869 	spin_unlock(&sb_lock);
870 	return NULL;
871 }
872 
873 /**
874  * reconfigure_super - asks filesystem to change superblock parameters
875  * @fc: The superblock and configuration
876  *
877  * Alters the configuration parameters of a live superblock.
878  */
879 int reconfigure_super(struct fs_context *fc)
880 {
881 	struct super_block *sb = fc->root->d_sb;
882 	int retval;
883 	bool remount_ro = false;
884 	bool force = fc->sb_flags & SB_FORCE;
885 
886 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
887 		return -EINVAL;
888 	if (sb->s_writers.frozen != SB_UNFROZEN)
889 		return -EBUSY;
890 
891 	retval = security_sb_remount(sb, fc->security);
892 	if (retval)
893 		return retval;
894 
895 	if (fc->sb_flags_mask & SB_RDONLY) {
896 #ifdef CONFIG_BLOCK
897 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
898 		    bdev_read_only(sb->s_bdev))
899 			return -EACCES;
900 #endif
901 
902 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
903 	}
904 
905 	if (remount_ro) {
906 		if (!hlist_empty(&sb->s_pins)) {
907 			up_write(&sb->s_umount);
908 			group_pin_kill(&sb->s_pins);
909 			down_write(&sb->s_umount);
910 			if (!sb->s_root)
911 				return 0;
912 			if (sb->s_writers.frozen != SB_UNFROZEN)
913 				return -EBUSY;
914 			remount_ro = !sb_rdonly(sb);
915 		}
916 	}
917 	shrink_dcache_sb(sb);
918 
919 	/* If we are reconfiguring to RDONLY and current sb is read/write,
920 	 * make sure there are no files open for writing.
921 	 */
922 	if (remount_ro) {
923 		if (force) {
924 			sb->s_readonly_remount = 1;
925 			smp_wmb();
926 		} else {
927 			retval = sb_prepare_remount_readonly(sb);
928 			if (retval)
929 				return retval;
930 		}
931 	}
932 
933 	if (fc->ops->reconfigure) {
934 		retval = fc->ops->reconfigure(fc);
935 		if (retval) {
936 			if (!force)
937 				goto cancel_readonly;
938 			/* If forced remount, go ahead despite any errors */
939 			WARN(1, "forced remount of a %s fs returned %i\n",
940 			     sb->s_type->name, retval);
941 		}
942 	}
943 
944 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
945 				 (fc->sb_flags & fc->sb_flags_mask)));
946 	/* Needs to be ordered wrt mnt_is_readonly() */
947 	smp_wmb();
948 	sb->s_readonly_remount = 0;
949 
950 	/*
951 	 * Some filesystems modify their metadata via some other path than the
952 	 * bdev buffer cache (eg. use a private mapping, or directories in
953 	 * pagecache, etc). Also file data modifications go via their own
954 	 * mappings. So If we try to mount readonly then copy the filesystem
955 	 * from bdev, we could get stale data, so invalidate it to give a best
956 	 * effort at coherency.
957 	 */
958 	if (remount_ro && sb->s_bdev)
959 		invalidate_bdev(sb->s_bdev);
960 	return 0;
961 
962 cancel_readonly:
963 	sb->s_readonly_remount = 0;
964 	return retval;
965 }
966 
967 static void do_emergency_remount_callback(struct super_block *sb)
968 {
969 	down_write(&sb->s_umount);
970 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
971 	    !sb_rdonly(sb)) {
972 		struct fs_context *fc;
973 
974 		fc = fs_context_for_reconfigure(sb->s_root,
975 					SB_RDONLY | SB_FORCE, SB_RDONLY);
976 		if (!IS_ERR(fc)) {
977 			if (parse_monolithic_mount_data(fc, NULL) == 0)
978 				(void)reconfigure_super(fc);
979 			put_fs_context(fc);
980 		}
981 	}
982 	up_write(&sb->s_umount);
983 }
984 
985 static void do_emergency_remount(struct work_struct *work)
986 {
987 	__iterate_supers(do_emergency_remount_callback);
988 	kfree(work);
989 	printk("Emergency Remount complete\n");
990 }
991 
992 void emergency_remount(void)
993 {
994 	struct work_struct *work;
995 
996 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
997 	if (work) {
998 		INIT_WORK(work, do_emergency_remount);
999 		schedule_work(work);
1000 	}
1001 }
1002 
1003 static void do_thaw_all_callback(struct super_block *sb)
1004 {
1005 	down_write(&sb->s_umount);
1006 	if (sb->s_root && sb->s_flags & SB_BORN) {
1007 		emergency_thaw_bdev(sb);
1008 		thaw_super_locked(sb);
1009 	} else {
1010 		up_write(&sb->s_umount);
1011 	}
1012 }
1013 
1014 static void do_thaw_all(struct work_struct *work)
1015 {
1016 	__iterate_supers(do_thaw_all_callback);
1017 	kfree(work);
1018 	printk(KERN_WARNING "Emergency Thaw complete\n");
1019 }
1020 
1021 /**
1022  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1023  *
1024  * Used for emergency unfreeze of all filesystems via SysRq
1025  */
1026 void emergency_thaw_all(void)
1027 {
1028 	struct work_struct *work;
1029 
1030 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1031 	if (work) {
1032 		INIT_WORK(work, do_thaw_all);
1033 		schedule_work(work);
1034 	}
1035 }
1036 
1037 static DEFINE_IDA(unnamed_dev_ida);
1038 
1039 /**
1040  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1041  * @p: Pointer to a dev_t.
1042  *
1043  * Filesystems which don't use real block devices can call this function
1044  * to allocate a virtual block device.
1045  *
1046  * Context: Any context.  Frequently called while holding sb_lock.
1047  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1048  * or -ENOMEM if memory allocation failed.
1049  */
1050 int get_anon_bdev(dev_t *p)
1051 {
1052 	int dev;
1053 
1054 	/*
1055 	 * Many userspace utilities consider an FSID of 0 invalid.
1056 	 * Always return at least 1 from get_anon_bdev.
1057 	 */
1058 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1059 			GFP_ATOMIC);
1060 	if (dev == -ENOSPC)
1061 		dev = -EMFILE;
1062 	if (dev < 0)
1063 		return dev;
1064 
1065 	*p = MKDEV(0, dev);
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL(get_anon_bdev);
1069 
1070 void free_anon_bdev(dev_t dev)
1071 {
1072 	ida_free(&unnamed_dev_ida, MINOR(dev));
1073 }
1074 EXPORT_SYMBOL(free_anon_bdev);
1075 
1076 int set_anon_super(struct super_block *s, void *data)
1077 {
1078 	return get_anon_bdev(&s->s_dev);
1079 }
1080 EXPORT_SYMBOL(set_anon_super);
1081 
1082 void kill_anon_super(struct super_block *sb)
1083 {
1084 	dev_t dev = sb->s_dev;
1085 	generic_shutdown_super(sb);
1086 	free_anon_bdev(dev);
1087 }
1088 EXPORT_SYMBOL(kill_anon_super);
1089 
1090 void kill_litter_super(struct super_block *sb)
1091 {
1092 	if (sb->s_root)
1093 		d_genocide(sb->s_root);
1094 	kill_anon_super(sb);
1095 }
1096 EXPORT_SYMBOL(kill_litter_super);
1097 
1098 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1099 {
1100 	return set_anon_super(sb, NULL);
1101 }
1102 EXPORT_SYMBOL(set_anon_super_fc);
1103 
1104 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1105 {
1106 	return sb->s_fs_info == fc->s_fs_info;
1107 }
1108 
1109 static int test_single_super(struct super_block *s, struct fs_context *fc)
1110 {
1111 	return 1;
1112 }
1113 
1114 /**
1115  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1116  * @fc: The filesystem context holding the parameters
1117  * @keying: How to distinguish superblocks
1118  * @fill_super: Helper to initialise a new superblock
1119  *
1120  * Search for a superblock and create a new one if not found.  The search
1121  * criterion is controlled by @keying.  If the search fails, a new superblock
1122  * is created and @fill_super() is called to initialise it.
1123  *
1124  * @keying can take one of a number of values:
1125  *
1126  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1127  *     system.  This is typically used for special system filesystems.
1128  *
1129  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1130  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1131  *     key again will turn up the superblock for that key.
1132  *
1133  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1134  *     unkeyed.  Each call will get a new superblock.
1135  *
1136  * A permissions check is made by sget_fc() unless we're getting a superblock
1137  * for a kernel-internal mount or a submount.
1138  */
1139 int vfs_get_super(struct fs_context *fc,
1140 		  enum vfs_get_super_keying keying,
1141 		  int (*fill_super)(struct super_block *sb,
1142 				    struct fs_context *fc))
1143 {
1144 	int (*test)(struct super_block *, struct fs_context *);
1145 	struct super_block *sb;
1146 	int err;
1147 
1148 	switch (keying) {
1149 	case vfs_get_single_super:
1150 	case vfs_get_single_reconf_super:
1151 		test = test_single_super;
1152 		break;
1153 	case vfs_get_keyed_super:
1154 		test = test_keyed_super;
1155 		break;
1156 	case vfs_get_independent_super:
1157 		test = NULL;
1158 		break;
1159 	default:
1160 		BUG();
1161 	}
1162 
1163 	sb = sget_fc(fc, test, set_anon_super_fc);
1164 	if (IS_ERR(sb))
1165 		return PTR_ERR(sb);
1166 
1167 	if (!sb->s_root) {
1168 		err = fill_super(sb, fc);
1169 		if (err)
1170 			goto error;
1171 
1172 		sb->s_flags |= SB_ACTIVE;
1173 		fc->root = dget(sb->s_root);
1174 	} else {
1175 		fc->root = dget(sb->s_root);
1176 		if (keying == vfs_get_single_reconf_super) {
1177 			err = reconfigure_super(fc);
1178 			if (err < 0) {
1179 				dput(fc->root);
1180 				fc->root = NULL;
1181 				goto error;
1182 			}
1183 		}
1184 	}
1185 
1186 	return 0;
1187 
1188 error:
1189 	deactivate_locked_super(sb);
1190 	return err;
1191 }
1192 EXPORT_SYMBOL(vfs_get_super);
1193 
1194 int get_tree_nodev(struct fs_context *fc,
1195 		  int (*fill_super)(struct super_block *sb,
1196 				    struct fs_context *fc))
1197 {
1198 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1199 }
1200 EXPORT_SYMBOL(get_tree_nodev);
1201 
1202 int get_tree_single(struct fs_context *fc,
1203 		  int (*fill_super)(struct super_block *sb,
1204 				    struct fs_context *fc))
1205 {
1206 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1207 }
1208 EXPORT_SYMBOL(get_tree_single);
1209 
1210 int get_tree_single_reconf(struct fs_context *fc,
1211 		  int (*fill_super)(struct super_block *sb,
1212 				    struct fs_context *fc))
1213 {
1214 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1215 }
1216 EXPORT_SYMBOL(get_tree_single_reconf);
1217 
1218 int get_tree_keyed(struct fs_context *fc,
1219 		  int (*fill_super)(struct super_block *sb,
1220 				    struct fs_context *fc),
1221 		void *key)
1222 {
1223 	fc->s_fs_info = key;
1224 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1225 }
1226 EXPORT_SYMBOL(get_tree_keyed);
1227 
1228 #ifdef CONFIG_BLOCK
1229 
1230 static int set_bdev_super(struct super_block *s, void *data)
1231 {
1232 	s->s_bdev = data;
1233 	s->s_dev = s->s_bdev->bd_dev;
1234 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1235 
1236 	if (bdev_stable_writes(s->s_bdev))
1237 		s->s_iflags |= SB_I_STABLE_WRITES;
1238 	return 0;
1239 }
1240 
1241 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1242 {
1243 	return set_bdev_super(s, fc->sget_key);
1244 }
1245 
1246 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1247 {
1248 	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1249 }
1250 
1251 /**
1252  * get_tree_bdev - Get a superblock based on a single block device
1253  * @fc: The filesystem context holding the parameters
1254  * @fill_super: Helper to initialise a new superblock
1255  */
1256 int get_tree_bdev(struct fs_context *fc,
1257 		int (*fill_super)(struct super_block *,
1258 				  struct fs_context *))
1259 {
1260 	struct block_device *bdev;
1261 	struct super_block *s;
1262 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1263 	int error = 0;
1264 
1265 	if (!(fc->sb_flags & SB_RDONLY))
1266 		mode |= FMODE_WRITE;
1267 
1268 	if (!fc->source)
1269 		return invalf(fc, "No source specified");
1270 
1271 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1272 	if (IS_ERR(bdev)) {
1273 		errorf(fc, "%s: Can't open blockdev", fc->source);
1274 		return PTR_ERR(bdev);
1275 	}
1276 
1277 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1278 	 * will protect the lockfs code from trying to start a snapshot while
1279 	 * we are mounting
1280 	 */
1281 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1282 	if (bdev->bd_fsfreeze_count > 0) {
1283 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1284 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1285 		blkdev_put(bdev, mode);
1286 		return -EBUSY;
1287 	}
1288 
1289 	fc->sb_flags |= SB_NOSEC;
1290 	fc->sget_key = bdev;
1291 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1292 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1293 	if (IS_ERR(s)) {
1294 		blkdev_put(bdev, mode);
1295 		return PTR_ERR(s);
1296 	}
1297 
1298 	if (s->s_root) {
1299 		/* Don't summarily change the RO/RW state. */
1300 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1301 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1302 			deactivate_locked_super(s);
1303 			blkdev_put(bdev, mode);
1304 			return -EBUSY;
1305 		}
1306 
1307 		/*
1308 		 * s_umount nests inside open_mutex during
1309 		 * __invalidate_device().  blkdev_put() acquires
1310 		 * open_mutex and can't be called under s_umount.  Drop
1311 		 * s_umount temporarily.  This is safe as we're
1312 		 * holding an active reference.
1313 		 */
1314 		up_write(&s->s_umount);
1315 		blkdev_put(bdev, mode);
1316 		down_write(&s->s_umount);
1317 	} else {
1318 		s->s_mode = mode;
1319 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1320 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1321 					fc->fs_type->name, s->s_id);
1322 		sb_set_blocksize(s, block_size(bdev));
1323 		error = fill_super(s, fc);
1324 		if (error) {
1325 			deactivate_locked_super(s);
1326 			return error;
1327 		}
1328 
1329 		s->s_flags |= SB_ACTIVE;
1330 		bdev->bd_super = s;
1331 	}
1332 
1333 	BUG_ON(fc->root);
1334 	fc->root = dget(s->s_root);
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL(get_tree_bdev);
1338 
1339 static int test_bdev_super(struct super_block *s, void *data)
1340 {
1341 	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1342 }
1343 
1344 struct dentry *mount_bdev(struct file_system_type *fs_type,
1345 	int flags, const char *dev_name, void *data,
1346 	int (*fill_super)(struct super_block *, void *, int))
1347 {
1348 	struct block_device *bdev;
1349 	struct super_block *s;
1350 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1351 	int error = 0;
1352 
1353 	if (!(flags & SB_RDONLY))
1354 		mode |= FMODE_WRITE;
1355 
1356 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1357 	if (IS_ERR(bdev))
1358 		return ERR_CAST(bdev);
1359 
1360 	/*
1361 	 * once the super is inserted into the list by sget, s_umount
1362 	 * will protect the lockfs code from trying to start a snapshot
1363 	 * while we are mounting
1364 	 */
1365 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1366 	if (bdev->bd_fsfreeze_count > 0) {
1367 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1368 		error = -EBUSY;
1369 		goto error_bdev;
1370 	}
1371 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1372 		 bdev);
1373 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1374 	if (IS_ERR(s))
1375 		goto error_s;
1376 
1377 	if (s->s_root) {
1378 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1379 			deactivate_locked_super(s);
1380 			error = -EBUSY;
1381 			goto error_bdev;
1382 		}
1383 
1384 		/*
1385 		 * s_umount nests inside open_mutex during
1386 		 * __invalidate_device().  blkdev_put() acquires
1387 		 * open_mutex and can't be called under s_umount.  Drop
1388 		 * s_umount temporarily.  This is safe as we're
1389 		 * holding an active reference.
1390 		 */
1391 		up_write(&s->s_umount);
1392 		blkdev_put(bdev, mode);
1393 		down_write(&s->s_umount);
1394 	} else {
1395 		s->s_mode = mode;
1396 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1397 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1398 					fs_type->name, s->s_id);
1399 		sb_set_blocksize(s, block_size(bdev));
1400 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1401 		if (error) {
1402 			deactivate_locked_super(s);
1403 			goto error;
1404 		}
1405 
1406 		s->s_flags |= SB_ACTIVE;
1407 		bdev->bd_super = s;
1408 	}
1409 
1410 	return dget(s->s_root);
1411 
1412 error_s:
1413 	error = PTR_ERR(s);
1414 error_bdev:
1415 	blkdev_put(bdev, mode);
1416 error:
1417 	return ERR_PTR(error);
1418 }
1419 EXPORT_SYMBOL(mount_bdev);
1420 
1421 void kill_block_super(struct super_block *sb)
1422 {
1423 	struct block_device *bdev = sb->s_bdev;
1424 	fmode_t mode = sb->s_mode;
1425 
1426 	bdev->bd_super = NULL;
1427 	generic_shutdown_super(sb);
1428 	sync_blockdev(bdev);
1429 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1430 	blkdev_put(bdev, mode | FMODE_EXCL);
1431 }
1432 
1433 EXPORT_SYMBOL(kill_block_super);
1434 #endif
1435 
1436 struct dentry *mount_nodev(struct file_system_type *fs_type,
1437 	int flags, void *data,
1438 	int (*fill_super)(struct super_block *, void *, int))
1439 {
1440 	int error;
1441 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1442 
1443 	if (IS_ERR(s))
1444 		return ERR_CAST(s);
1445 
1446 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1447 	if (error) {
1448 		deactivate_locked_super(s);
1449 		return ERR_PTR(error);
1450 	}
1451 	s->s_flags |= SB_ACTIVE;
1452 	return dget(s->s_root);
1453 }
1454 EXPORT_SYMBOL(mount_nodev);
1455 
1456 int reconfigure_single(struct super_block *s,
1457 		       int flags, void *data)
1458 {
1459 	struct fs_context *fc;
1460 	int ret;
1461 
1462 	/* The caller really need to be passing fc down into mount_single(),
1463 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1464 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1465 	 * mount should be rejected if the parameters are not compatible.
1466 	 */
1467 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1468 	if (IS_ERR(fc))
1469 		return PTR_ERR(fc);
1470 
1471 	ret = parse_monolithic_mount_data(fc, data);
1472 	if (ret < 0)
1473 		goto out;
1474 
1475 	ret = reconfigure_super(fc);
1476 out:
1477 	put_fs_context(fc);
1478 	return ret;
1479 }
1480 
1481 static int compare_single(struct super_block *s, void *p)
1482 {
1483 	return 1;
1484 }
1485 
1486 struct dentry *mount_single(struct file_system_type *fs_type,
1487 	int flags, void *data,
1488 	int (*fill_super)(struct super_block *, void *, int))
1489 {
1490 	struct super_block *s;
1491 	int error;
1492 
1493 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1494 	if (IS_ERR(s))
1495 		return ERR_CAST(s);
1496 	if (!s->s_root) {
1497 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1498 		if (!error)
1499 			s->s_flags |= SB_ACTIVE;
1500 	} else {
1501 		error = reconfigure_single(s, flags, data);
1502 	}
1503 	if (unlikely(error)) {
1504 		deactivate_locked_super(s);
1505 		return ERR_PTR(error);
1506 	}
1507 	return dget(s->s_root);
1508 }
1509 EXPORT_SYMBOL(mount_single);
1510 
1511 /**
1512  * vfs_get_tree - Get the mountable root
1513  * @fc: The superblock configuration context.
1514  *
1515  * The filesystem is invoked to get or create a superblock which can then later
1516  * be used for mounting.  The filesystem places a pointer to the root to be
1517  * used for mounting in @fc->root.
1518  */
1519 int vfs_get_tree(struct fs_context *fc)
1520 {
1521 	struct super_block *sb;
1522 	int error;
1523 
1524 	if (fc->root)
1525 		return -EBUSY;
1526 
1527 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1528 	 * on the superblock.
1529 	 */
1530 	error = fc->ops->get_tree(fc);
1531 	if (error < 0)
1532 		return error;
1533 
1534 	if (!fc->root) {
1535 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1536 		       fc->fs_type->name);
1537 		/* We don't know what the locking state of the superblock is -
1538 		 * if there is a superblock.
1539 		 */
1540 		BUG();
1541 	}
1542 
1543 	sb = fc->root->d_sb;
1544 	WARN_ON(!sb->s_bdi);
1545 
1546 	/*
1547 	 * Write barrier is for super_cache_count(). We place it before setting
1548 	 * SB_BORN as the data dependency between the two functions is the
1549 	 * superblock structure contents that we just set up, not the SB_BORN
1550 	 * flag.
1551 	 */
1552 	smp_wmb();
1553 	sb->s_flags |= SB_BORN;
1554 
1555 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1556 	if (unlikely(error)) {
1557 		fc_drop_locked(fc);
1558 		return error;
1559 	}
1560 
1561 	/*
1562 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1563 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1564 	 * this warning for a little while to try and catch filesystems that
1565 	 * violate this rule.
1566 	 */
1567 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1568 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL(vfs_get_tree);
1573 
1574 /*
1575  * Setup private BDI for given superblock. It gets automatically cleaned up
1576  * in generic_shutdown_super().
1577  */
1578 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1579 {
1580 	struct backing_dev_info *bdi;
1581 	int err;
1582 	va_list args;
1583 
1584 	bdi = bdi_alloc(NUMA_NO_NODE);
1585 	if (!bdi)
1586 		return -ENOMEM;
1587 
1588 	va_start(args, fmt);
1589 	err = bdi_register_va(bdi, fmt, args);
1590 	va_end(args);
1591 	if (err) {
1592 		bdi_put(bdi);
1593 		return err;
1594 	}
1595 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1596 	sb->s_bdi = bdi;
1597 	sb->s_iflags |= SB_I_PERSB_BDI;
1598 
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(super_setup_bdi_name);
1602 
1603 /*
1604  * Setup private BDI for given superblock. I gets automatically cleaned up
1605  * in generic_shutdown_super().
1606  */
1607 int super_setup_bdi(struct super_block *sb)
1608 {
1609 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1610 
1611 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1612 				    atomic_long_inc_return(&bdi_seq));
1613 }
1614 EXPORT_SYMBOL(super_setup_bdi);
1615 
1616 /**
1617  * sb_wait_write - wait until all writers to given file system finish
1618  * @sb: the super for which we wait
1619  * @level: type of writers we wait for (normal vs page fault)
1620  *
1621  * This function waits until there are no writers of given type to given file
1622  * system.
1623  */
1624 static void sb_wait_write(struct super_block *sb, int level)
1625 {
1626 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1627 }
1628 
1629 /*
1630  * We are going to return to userspace and forget about these locks, the
1631  * ownership goes to the caller of thaw_super() which does unlock().
1632  */
1633 static void lockdep_sb_freeze_release(struct super_block *sb)
1634 {
1635 	int level;
1636 
1637 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1638 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1639 }
1640 
1641 /*
1642  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1643  */
1644 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1645 {
1646 	int level;
1647 
1648 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1649 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1650 }
1651 
1652 static void sb_freeze_unlock(struct super_block *sb, int level)
1653 {
1654 	for (level--; level >= 0; level--)
1655 		percpu_up_write(sb->s_writers.rw_sem + level);
1656 }
1657 
1658 /**
1659  * freeze_super - lock the filesystem and force it into a consistent state
1660  * @sb: the super to lock
1661  *
1662  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1663  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1664  * -EBUSY.
1665  *
1666  * During this function, sb->s_writers.frozen goes through these values:
1667  *
1668  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1669  *
1670  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1671  * writes should be blocked, though page faults are still allowed. We wait for
1672  * all writes to complete and then proceed to the next stage.
1673  *
1674  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1675  * but internal fs threads can still modify the filesystem (although they
1676  * should not dirty new pages or inodes), writeback can run etc. After waiting
1677  * for all running page faults we sync the filesystem which will clean all
1678  * dirty pages and inodes (no new dirty pages or inodes can be created when
1679  * sync is running).
1680  *
1681  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1682  * modification are blocked (e.g. XFS preallocation truncation on inode
1683  * reclaim). This is usually implemented by blocking new transactions for
1684  * filesystems that have them and need this additional guard. After all
1685  * internal writers are finished we call ->freeze_fs() to finish filesystem
1686  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1687  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1688  *
1689  * sb->s_writers.frozen is protected by sb->s_umount.
1690  */
1691 int freeze_super(struct super_block *sb)
1692 {
1693 	int ret;
1694 
1695 	atomic_inc(&sb->s_active);
1696 	down_write(&sb->s_umount);
1697 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1698 		deactivate_locked_super(sb);
1699 		return -EBUSY;
1700 	}
1701 
1702 	if (!(sb->s_flags & SB_BORN)) {
1703 		up_write(&sb->s_umount);
1704 		return 0;	/* sic - it's "nothing to do" */
1705 	}
1706 
1707 	if (sb_rdonly(sb)) {
1708 		/* Nothing to do really... */
1709 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1710 		up_write(&sb->s_umount);
1711 		return 0;
1712 	}
1713 
1714 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1715 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1716 	up_write(&sb->s_umount);
1717 	sb_wait_write(sb, SB_FREEZE_WRITE);
1718 	down_write(&sb->s_umount);
1719 
1720 	/* Now we go and block page faults... */
1721 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1722 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1723 
1724 	/* All writers are done so after syncing there won't be dirty data */
1725 	ret = sync_filesystem(sb);
1726 	if (ret) {
1727 		sb->s_writers.frozen = SB_UNFROZEN;
1728 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1729 		wake_up(&sb->s_writers.wait_unfrozen);
1730 		deactivate_locked_super(sb);
1731 		return ret;
1732 	}
1733 
1734 	/* Now wait for internal filesystem counter */
1735 	sb->s_writers.frozen = SB_FREEZE_FS;
1736 	sb_wait_write(sb, SB_FREEZE_FS);
1737 
1738 	if (sb->s_op->freeze_fs) {
1739 		ret = sb->s_op->freeze_fs(sb);
1740 		if (ret) {
1741 			printk(KERN_ERR
1742 				"VFS:Filesystem freeze failed\n");
1743 			sb->s_writers.frozen = SB_UNFROZEN;
1744 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1745 			wake_up(&sb->s_writers.wait_unfrozen);
1746 			deactivate_locked_super(sb);
1747 			return ret;
1748 		}
1749 	}
1750 	/*
1751 	 * For debugging purposes so that fs can warn if it sees write activity
1752 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1753 	 */
1754 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1755 	lockdep_sb_freeze_release(sb);
1756 	up_write(&sb->s_umount);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(freeze_super);
1760 
1761 static int thaw_super_locked(struct super_block *sb)
1762 {
1763 	int error;
1764 
1765 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1766 		up_write(&sb->s_umount);
1767 		return -EINVAL;
1768 	}
1769 
1770 	if (sb_rdonly(sb)) {
1771 		sb->s_writers.frozen = SB_UNFROZEN;
1772 		goto out;
1773 	}
1774 
1775 	lockdep_sb_freeze_acquire(sb);
1776 
1777 	if (sb->s_op->unfreeze_fs) {
1778 		error = sb->s_op->unfreeze_fs(sb);
1779 		if (error) {
1780 			printk(KERN_ERR
1781 				"VFS:Filesystem thaw failed\n");
1782 			lockdep_sb_freeze_release(sb);
1783 			up_write(&sb->s_umount);
1784 			return error;
1785 		}
1786 	}
1787 
1788 	sb->s_writers.frozen = SB_UNFROZEN;
1789 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1790 out:
1791 	wake_up(&sb->s_writers.wait_unfrozen);
1792 	deactivate_locked_super(sb);
1793 	return 0;
1794 }
1795 
1796 /**
1797  * thaw_super -- unlock filesystem
1798  * @sb: the super to thaw
1799  *
1800  * Unlocks the filesystem and marks it writeable again after freeze_super().
1801  */
1802 int thaw_super(struct super_block *sb)
1803 {
1804 	down_write(&sb->s_umount);
1805 	return thaw_super_locked(sb);
1806 }
1807 EXPORT_SYMBOL(thaw_super);
1808