1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fscrypt.h> 36 #include <linux/fsnotify.h> 37 #include <linux/lockdep.h> 38 #include <linux/user_namespace.h> 39 #include <linux/fs_context.h> 40 #include <uapi/linux/mount.h> 41 #include "internal.h" 42 43 static int thaw_super_locked(struct super_block *sb); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 /* 55 * One thing we have to be careful of with a per-sb shrinker is that we don't 56 * drop the last active reference to the superblock from within the shrinker. 57 * If that happens we could trigger unregistering the shrinker from within the 58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 59 * take a passive reference to the superblock to avoid this from occurring. 60 */ 61 static unsigned long super_cache_scan(struct shrinker *shrink, 62 struct shrink_control *sc) 63 { 64 struct super_block *sb; 65 long fs_objects = 0; 66 long total_objects; 67 long freed = 0; 68 long dentries; 69 long inodes; 70 71 sb = container_of(shrink, struct super_block, s_shrink); 72 73 /* 74 * Deadlock avoidance. We may hold various FS locks, and we don't want 75 * to recurse into the FS that called us in clear_inode() and friends.. 76 */ 77 if (!(sc->gfp_mask & __GFP_FS)) 78 return SHRINK_STOP; 79 80 if (!trylock_super(sb)) 81 return SHRINK_STOP; 82 83 if (sb->s_op->nr_cached_objects) 84 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 85 86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 88 total_objects = dentries + inodes + fs_objects + 1; 89 if (!total_objects) 90 total_objects = 1; 91 92 /* proportion the scan between the caches */ 93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 96 97 /* 98 * prune the dcache first as the icache is pinned by it, then 99 * prune the icache, followed by the filesystem specific caches 100 * 101 * Ensure that we always scan at least one object - memcg kmem 102 * accounting uses this to fully empty the caches. 103 */ 104 sc->nr_to_scan = dentries + 1; 105 freed = prune_dcache_sb(sb, sc); 106 sc->nr_to_scan = inodes + 1; 107 freed += prune_icache_sb(sb, sc); 108 109 if (fs_objects) { 110 sc->nr_to_scan = fs_objects + 1; 111 freed += sb->s_op->free_cached_objects(sb, sc); 112 } 113 114 up_read(&sb->s_umount); 115 return freed; 116 } 117 118 static unsigned long super_cache_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 struct super_block *sb; 122 long total_objects = 0; 123 124 sb = container_of(shrink, struct super_block, s_shrink); 125 126 /* 127 * We don't call trylock_super() here as it is a scalability bottleneck, 128 * so we're exposed to partial setup state. The shrinker rwsem does not 129 * protect filesystem operations backing list_lru_shrink_count() or 130 * s_op->nr_cached_objects(). Counts can change between 131 * super_cache_count and super_cache_scan, so we really don't need locks 132 * here. 133 * 134 * However, if we are currently mounting the superblock, the underlying 135 * filesystem might be in a state of partial construction and hence it 136 * is dangerous to access it. trylock_super() uses a SB_BORN check to 137 * avoid this situation, so do the same here. The memory barrier is 138 * matched with the one in mount_fs() as we don't hold locks here. 139 */ 140 if (!(sb->s_flags & SB_BORN)) 141 return 0; 142 smp_rmb(); 143 144 if (sb->s_op && sb->s_op->nr_cached_objects) 145 total_objects = sb->s_op->nr_cached_objects(sb, sc); 146 147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 149 150 if (!total_objects) 151 return SHRINK_EMPTY; 152 153 total_objects = vfs_pressure_ratio(total_objects); 154 return total_objects; 155 } 156 157 static void destroy_super_work(struct work_struct *work) 158 { 159 struct super_block *s = container_of(work, struct super_block, 160 destroy_work); 161 int i; 162 163 for (i = 0; i < SB_FREEZE_LEVELS; i++) 164 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 165 kfree(s); 166 } 167 168 static void destroy_super_rcu(struct rcu_head *head) 169 { 170 struct super_block *s = container_of(head, struct super_block, rcu); 171 INIT_WORK(&s->destroy_work, destroy_super_work); 172 schedule_work(&s->destroy_work); 173 } 174 175 /* Free a superblock that has never been seen by anyone */ 176 static void destroy_unused_super(struct super_block *s) 177 { 178 if (!s) 179 return; 180 up_write(&s->s_umount); 181 list_lru_destroy(&s->s_dentry_lru); 182 list_lru_destroy(&s->s_inode_lru); 183 security_sb_free(s); 184 put_user_ns(s->s_user_ns); 185 kfree(s->s_subtype); 186 free_prealloced_shrinker(&s->s_shrink); 187 /* no delays needed */ 188 destroy_super_work(&s->destroy_work); 189 } 190 191 /** 192 * alloc_super - create new superblock 193 * @type: filesystem type superblock should belong to 194 * @flags: the mount flags 195 * @user_ns: User namespace for the super_block 196 * 197 * Allocates and initializes a new &struct super_block. alloc_super() 198 * returns a pointer new superblock or %NULL if allocation had failed. 199 */ 200 static struct super_block *alloc_super(struct file_system_type *type, int flags, 201 struct user_namespace *user_ns) 202 { 203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 204 static const struct super_operations default_op; 205 int i; 206 207 if (!s) 208 return NULL; 209 210 INIT_LIST_HEAD(&s->s_mounts); 211 s->s_user_ns = get_user_ns(user_ns); 212 init_rwsem(&s->s_umount); 213 lockdep_set_class(&s->s_umount, &type->s_umount_key); 214 /* 215 * sget() can have s_umount recursion. 216 * 217 * When it cannot find a suitable sb, it allocates a new 218 * one (this one), and tries again to find a suitable old 219 * one. 220 * 221 * In case that succeeds, it will acquire the s_umount 222 * lock of the old one. Since these are clearly distrinct 223 * locks, and this object isn't exposed yet, there's no 224 * risk of deadlocks. 225 * 226 * Annotate this by putting this lock in a different 227 * subclass. 228 */ 229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 230 231 if (security_sb_alloc(s)) 232 goto fail; 233 234 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 236 sb_writers_name[i], 237 &type->s_writers_key[i])) 238 goto fail; 239 } 240 init_waitqueue_head(&s->s_writers.wait_unfrozen); 241 s->s_bdi = &noop_backing_dev_info; 242 s->s_flags = flags; 243 if (s->s_user_ns != &init_user_ns) 244 s->s_iflags |= SB_I_NODEV; 245 INIT_HLIST_NODE(&s->s_instances); 246 INIT_HLIST_BL_HEAD(&s->s_roots); 247 mutex_init(&s->s_sync_lock); 248 INIT_LIST_HEAD(&s->s_inodes); 249 spin_lock_init(&s->s_inode_list_lock); 250 INIT_LIST_HEAD(&s->s_inodes_wb); 251 spin_lock_init(&s->s_inode_wblist_lock); 252 253 s->s_count = 1; 254 atomic_set(&s->s_active, 1); 255 mutex_init(&s->s_vfs_rename_mutex); 256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 257 init_rwsem(&s->s_dquot.dqio_sem); 258 s->s_maxbytes = MAX_NON_LFS; 259 s->s_op = &default_op; 260 s->s_time_gran = 1000000000; 261 s->s_time_min = TIME64_MIN; 262 s->s_time_max = TIME64_MAX; 263 s->cleancache_poolid = CLEANCACHE_NO_POOL; 264 265 s->s_shrink.seeks = DEFAULT_SEEKS; 266 s->s_shrink.scan_objects = super_cache_scan; 267 s->s_shrink.count_objects = super_cache_count; 268 s->s_shrink.batch = 1024; 269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 270 if (prealloc_shrinker(&s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 273 goto fail; 274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 275 goto fail; 276 return s; 277 278 fail: 279 destroy_unused_super(s); 280 return NULL; 281 } 282 283 /* Superblock refcounting */ 284 285 /* 286 * Drop a superblock's refcount. The caller must hold sb_lock. 287 */ 288 static void __put_super(struct super_block *s) 289 { 290 if (!--s->s_count) { 291 list_del_init(&s->s_list); 292 WARN_ON(s->s_dentry_lru.node); 293 WARN_ON(s->s_inode_lru.node); 294 WARN_ON(!list_empty(&s->s_mounts)); 295 security_sb_free(s); 296 fscrypt_sb_free(s); 297 put_user_ns(s->s_user_ns); 298 kfree(s->s_subtype); 299 call_rcu(&s->rcu, destroy_super_rcu); 300 } 301 } 302 303 /** 304 * put_super - drop a temporary reference to superblock 305 * @sb: superblock in question 306 * 307 * Drops a temporary reference, frees superblock if there's no 308 * references left. 309 */ 310 void put_super(struct super_block *sb) 311 { 312 spin_lock(&sb_lock); 313 __put_super(sb); 314 spin_unlock(&sb_lock); 315 } 316 317 318 /** 319 * deactivate_locked_super - drop an active reference to superblock 320 * @s: superblock to deactivate 321 * 322 * Drops an active reference to superblock, converting it into a temporary 323 * one if there is no other active references left. In that case we 324 * tell fs driver to shut it down and drop the temporary reference we 325 * had just acquired. 326 * 327 * Caller holds exclusive lock on superblock; that lock is released. 328 */ 329 void deactivate_locked_super(struct super_block *s) 330 { 331 struct file_system_type *fs = s->s_type; 332 if (atomic_dec_and_test(&s->s_active)) { 333 cleancache_invalidate_fs(s); 334 unregister_shrinker(&s->s_shrink); 335 fs->kill_sb(s); 336 337 /* 338 * Since list_lru_destroy() may sleep, we cannot call it from 339 * put_super(), where we hold the sb_lock. Therefore we destroy 340 * the lru lists right now. 341 */ 342 list_lru_destroy(&s->s_dentry_lru); 343 list_lru_destroy(&s->s_inode_lru); 344 345 put_filesystem(fs); 346 put_super(s); 347 } else { 348 up_write(&s->s_umount); 349 } 350 } 351 352 EXPORT_SYMBOL(deactivate_locked_super); 353 354 /** 355 * deactivate_super - drop an active reference to superblock 356 * @s: superblock to deactivate 357 * 358 * Variant of deactivate_locked_super(), except that superblock is *not* 359 * locked by caller. If we are going to drop the final active reference, 360 * lock will be acquired prior to that. 361 */ 362 void deactivate_super(struct super_block *s) 363 { 364 if (!atomic_add_unless(&s->s_active, -1, 1)) { 365 down_write(&s->s_umount); 366 deactivate_locked_super(s); 367 } 368 } 369 370 EXPORT_SYMBOL(deactivate_super); 371 372 /** 373 * grab_super - acquire an active reference 374 * @s: reference we are trying to make active 375 * 376 * Tries to acquire an active reference. grab_super() is used when we 377 * had just found a superblock in super_blocks or fs_type->fs_supers 378 * and want to turn it into a full-blown active reference. grab_super() 379 * is called with sb_lock held and drops it. Returns 1 in case of 380 * success, 0 if we had failed (superblock contents was already dead or 381 * dying when grab_super() had been called). Note that this is only 382 * called for superblocks not in rundown mode (== ones still on ->fs_supers 383 * of their type), so increment of ->s_count is OK here. 384 */ 385 static int grab_super(struct super_block *s) __releases(sb_lock) 386 { 387 s->s_count++; 388 spin_unlock(&sb_lock); 389 down_write(&s->s_umount); 390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 391 put_super(s); 392 return 1; 393 } 394 up_write(&s->s_umount); 395 put_super(s); 396 return 0; 397 } 398 399 /* 400 * trylock_super - try to grab ->s_umount shared 401 * @sb: reference we are trying to grab 402 * 403 * Try to prevent fs shutdown. This is used in places where we 404 * cannot take an active reference but we need to ensure that the 405 * filesystem is not shut down while we are working on it. It returns 406 * false if we cannot acquire s_umount or if we lose the race and 407 * filesystem already got into shutdown, and returns true with the s_umount 408 * lock held in read mode in case of success. On successful return, 409 * the caller must drop the s_umount lock when done. 410 * 411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 412 * The reason why it's safe is that we are OK with doing trylock instead 413 * of down_read(). There's a couple of places that are OK with that, but 414 * it's very much not a general-purpose interface. 415 */ 416 bool trylock_super(struct super_block *sb) 417 { 418 if (down_read_trylock(&sb->s_umount)) { 419 if (!hlist_unhashed(&sb->s_instances) && 420 sb->s_root && (sb->s_flags & SB_BORN)) 421 return true; 422 up_read(&sb->s_umount); 423 } 424 425 return false; 426 } 427 428 /** 429 * generic_shutdown_super - common helper for ->kill_sb() 430 * @sb: superblock to kill 431 * 432 * generic_shutdown_super() does all fs-independent work on superblock 433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 434 * that need destruction out of superblock, call generic_shutdown_super() 435 * and release aforementioned objects. Note: dentries and inodes _are_ 436 * taken care of and do not need specific handling. 437 * 438 * Upon calling this function, the filesystem may no longer alter or 439 * rearrange the set of dentries belonging to this super_block, nor may it 440 * change the attachments of dentries to inodes. 441 */ 442 void generic_shutdown_super(struct super_block *sb) 443 { 444 const struct super_operations *sop = sb->s_op; 445 446 if (sb->s_root) { 447 shrink_dcache_for_umount(sb); 448 sync_filesystem(sb); 449 sb->s_flags &= ~SB_ACTIVE; 450 451 cgroup_writeback_umount(); 452 453 /* evict all inodes with zero refcount */ 454 evict_inodes(sb); 455 /* only nonzero refcount inodes can have marks */ 456 fsnotify_sb_delete(sb); 457 458 if (sb->s_dio_done_wq) { 459 destroy_workqueue(sb->s_dio_done_wq); 460 sb->s_dio_done_wq = NULL; 461 } 462 463 if (sop->put_super) 464 sop->put_super(sb); 465 466 if (!list_empty(&sb->s_inodes)) { 467 printk("VFS: Busy inodes after unmount of %s. " 468 "Self-destruct in 5 seconds. Have a nice day...\n", 469 sb->s_id); 470 } 471 } 472 spin_lock(&sb_lock); 473 /* should be initialized for __put_super_and_need_restart() */ 474 hlist_del_init(&sb->s_instances); 475 spin_unlock(&sb_lock); 476 up_write(&sb->s_umount); 477 if (sb->s_bdi != &noop_backing_dev_info) { 478 bdi_put(sb->s_bdi); 479 sb->s_bdi = &noop_backing_dev_info; 480 } 481 } 482 483 EXPORT_SYMBOL(generic_shutdown_super); 484 485 bool mount_capable(struct fs_context *fc) 486 { 487 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 488 return capable(CAP_SYS_ADMIN); 489 else 490 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 491 } 492 493 /** 494 * sget_fc - Find or create a superblock 495 * @fc: Filesystem context. 496 * @test: Comparison callback 497 * @set: Setup callback 498 * 499 * Find or create a superblock using the parameters stored in the filesystem 500 * context and the two callback functions. 501 * 502 * If an extant superblock is matched, then that will be returned with an 503 * elevated reference count that the caller must transfer or discard. 504 * 505 * If no match is made, a new superblock will be allocated and basic 506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 507 * the set() callback will be invoked), the superblock will be published and it 508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 509 * as yet unset. 510 */ 511 struct super_block *sget_fc(struct fs_context *fc, 512 int (*test)(struct super_block *, struct fs_context *), 513 int (*set)(struct super_block *, struct fs_context *)) 514 { 515 struct super_block *s = NULL; 516 struct super_block *old; 517 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 518 int err; 519 520 retry: 521 spin_lock(&sb_lock); 522 if (test) { 523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 524 if (test(old, fc)) 525 goto share_extant_sb; 526 } 527 } 528 if (!s) { 529 spin_unlock(&sb_lock); 530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 531 if (!s) 532 return ERR_PTR(-ENOMEM); 533 goto retry; 534 } 535 536 s->s_fs_info = fc->s_fs_info; 537 err = set(s, fc); 538 if (err) { 539 s->s_fs_info = NULL; 540 spin_unlock(&sb_lock); 541 destroy_unused_super(s); 542 return ERR_PTR(err); 543 } 544 fc->s_fs_info = NULL; 545 s->s_type = fc->fs_type; 546 s->s_iflags |= fc->s_iflags; 547 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 548 list_add_tail(&s->s_list, &super_blocks); 549 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 550 spin_unlock(&sb_lock); 551 get_filesystem(s->s_type); 552 register_shrinker_prepared(&s->s_shrink); 553 return s; 554 555 share_extant_sb: 556 if (user_ns != old->s_user_ns) { 557 spin_unlock(&sb_lock); 558 destroy_unused_super(s); 559 return ERR_PTR(-EBUSY); 560 } 561 if (!grab_super(old)) 562 goto retry; 563 destroy_unused_super(s); 564 return old; 565 } 566 EXPORT_SYMBOL(sget_fc); 567 568 /** 569 * sget - find or create a superblock 570 * @type: filesystem type superblock should belong to 571 * @test: comparison callback 572 * @set: setup callback 573 * @flags: mount flags 574 * @data: argument to each of them 575 */ 576 struct super_block *sget(struct file_system_type *type, 577 int (*test)(struct super_block *,void *), 578 int (*set)(struct super_block *,void *), 579 int flags, 580 void *data) 581 { 582 struct user_namespace *user_ns = current_user_ns(); 583 struct super_block *s = NULL; 584 struct super_block *old; 585 int err; 586 587 /* We don't yet pass the user namespace of the parent 588 * mount through to here so always use &init_user_ns 589 * until that changes. 590 */ 591 if (flags & SB_SUBMOUNT) 592 user_ns = &init_user_ns; 593 594 retry: 595 spin_lock(&sb_lock); 596 if (test) { 597 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 598 if (!test(old, data)) 599 continue; 600 if (user_ns != old->s_user_ns) { 601 spin_unlock(&sb_lock); 602 destroy_unused_super(s); 603 return ERR_PTR(-EBUSY); 604 } 605 if (!grab_super(old)) 606 goto retry; 607 destroy_unused_super(s); 608 return old; 609 } 610 } 611 if (!s) { 612 spin_unlock(&sb_lock); 613 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 614 if (!s) 615 return ERR_PTR(-ENOMEM); 616 goto retry; 617 } 618 619 err = set(s, data); 620 if (err) { 621 spin_unlock(&sb_lock); 622 destroy_unused_super(s); 623 return ERR_PTR(err); 624 } 625 s->s_type = type; 626 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 627 list_add_tail(&s->s_list, &super_blocks); 628 hlist_add_head(&s->s_instances, &type->fs_supers); 629 spin_unlock(&sb_lock); 630 get_filesystem(type); 631 register_shrinker_prepared(&s->s_shrink); 632 return s; 633 } 634 EXPORT_SYMBOL(sget); 635 636 void drop_super(struct super_block *sb) 637 { 638 up_read(&sb->s_umount); 639 put_super(sb); 640 } 641 642 EXPORT_SYMBOL(drop_super); 643 644 void drop_super_exclusive(struct super_block *sb) 645 { 646 up_write(&sb->s_umount); 647 put_super(sb); 648 } 649 EXPORT_SYMBOL(drop_super_exclusive); 650 651 static void __iterate_supers(void (*f)(struct super_block *)) 652 { 653 struct super_block *sb, *p = NULL; 654 655 spin_lock(&sb_lock); 656 list_for_each_entry(sb, &super_blocks, s_list) { 657 if (hlist_unhashed(&sb->s_instances)) 658 continue; 659 sb->s_count++; 660 spin_unlock(&sb_lock); 661 662 f(sb); 663 664 spin_lock(&sb_lock); 665 if (p) 666 __put_super(p); 667 p = sb; 668 } 669 if (p) 670 __put_super(p); 671 spin_unlock(&sb_lock); 672 } 673 /** 674 * iterate_supers - call function for all active superblocks 675 * @f: function to call 676 * @arg: argument to pass to it 677 * 678 * Scans the superblock list and calls given function, passing it 679 * locked superblock and given argument. 680 */ 681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 682 { 683 struct super_block *sb, *p = NULL; 684 685 spin_lock(&sb_lock); 686 list_for_each_entry(sb, &super_blocks, s_list) { 687 if (hlist_unhashed(&sb->s_instances)) 688 continue; 689 sb->s_count++; 690 spin_unlock(&sb_lock); 691 692 down_read(&sb->s_umount); 693 if (sb->s_root && (sb->s_flags & SB_BORN)) 694 f(sb, arg); 695 up_read(&sb->s_umount); 696 697 spin_lock(&sb_lock); 698 if (p) 699 __put_super(p); 700 p = sb; 701 } 702 if (p) 703 __put_super(p); 704 spin_unlock(&sb_lock); 705 } 706 707 /** 708 * iterate_supers_type - call function for superblocks of given type 709 * @type: fs type 710 * @f: function to call 711 * @arg: argument to pass to it 712 * 713 * Scans the superblock list and calls given function, passing it 714 * locked superblock and given argument. 715 */ 716 void iterate_supers_type(struct file_system_type *type, 717 void (*f)(struct super_block *, void *), void *arg) 718 { 719 struct super_block *sb, *p = NULL; 720 721 spin_lock(&sb_lock); 722 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 723 sb->s_count++; 724 spin_unlock(&sb_lock); 725 726 down_read(&sb->s_umount); 727 if (sb->s_root && (sb->s_flags & SB_BORN)) 728 f(sb, arg); 729 up_read(&sb->s_umount); 730 731 spin_lock(&sb_lock); 732 if (p) 733 __put_super(p); 734 p = sb; 735 } 736 if (p) 737 __put_super(p); 738 spin_unlock(&sb_lock); 739 } 740 741 EXPORT_SYMBOL(iterate_supers_type); 742 743 /** 744 * get_super - get the superblock of a device 745 * @bdev: device to get the superblock for 746 * 747 * Scans the superblock list and finds the superblock of the file system 748 * mounted on the device given. %NULL is returned if no match is found. 749 */ 750 struct super_block *get_super(struct block_device *bdev) 751 { 752 struct super_block *sb; 753 754 if (!bdev) 755 return NULL; 756 757 spin_lock(&sb_lock); 758 rescan: 759 list_for_each_entry(sb, &super_blocks, s_list) { 760 if (hlist_unhashed(&sb->s_instances)) 761 continue; 762 if (sb->s_bdev == bdev) { 763 sb->s_count++; 764 spin_unlock(&sb_lock); 765 down_read(&sb->s_umount); 766 /* still alive? */ 767 if (sb->s_root && (sb->s_flags & SB_BORN)) 768 return sb; 769 up_read(&sb->s_umount); 770 /* nope, got unmounted */ 771 spin_lock(&sb_lock); 772 __put_super(sb); 773 goto rescan; 774 } 775 } 776 spin_unlock(&sb_lock); 777 return NULL; 778 } 779 780 /** 781 * get_active_super - get an active reference to the superblock of a device 782 * @bdev: device to get the superblock for 783 * 784 * Scans the superblock list and finds the superblock of the file system 785 * mounted on the device given. Returns the superblock with an active 786 * reference or %NULL if none was found. 787 */ 788 struct super_block *get_active_super(struct block_device *bdev) 789 { 790 struct super_block *sb; 791 792 if (!bdev) 793 return NULL; 794 795 restart: 796 spin_lock(&sb_lock); 797 list_for_each_entry(sb, &super_blocks, s_list) { 798 if (hlist_unhashed(&sb->s_instances)) 799 continue; 800 if (sb->s_bdev == bdev) { 801 if (!grab_super(sb)) 802 goto restart; 803 up_write(&sb->s_umount); 804 return sb; 805 } 806 } 807 spin_unlock(&sb_lock); 808 return NULL; 809 } 810 811 struct super_block *user_get_super(dev_t dev, bool excl) 812 { 813 struct super_block *sb; 814 815 spin_lock(&sb_lock); 816 rescan: 817 list_for_each_entry(sb, &super_blocks, s_list) { 818 if (hlist_unhashed(&sb->s_instances)) 819 continue; 820 if (sb->s_dev == dev) { 821 sb->s_count++; 822 spin_unlock(&sb_lock); 823 if (excl) 824 down_write(&sb->s_umount); 825 else 826 down_read(&sb->s_umount); 827 /* still alive? */ 828 if (sb->s_root && (sb->s_flags & SB_BORN)) 829 return sb; 830 if (excl) 831 up_write(&sb->s_umount); 832 else 833 up_read(&sb->s_umount); 834 /* nope, got unmounted */ 835 spin_lock(&sb_lock); 836 __put_super(sb); 837 goto rescan; 838 } 839 } 840 spin_unlock(&sb_lock); 841 return NULL; 842 } 843 844 /** 845 * reconfigure_super - asks filesystem to change superblock parameters 846 * @fc: The superblock and configuration 847 * 848 * Alters the configuration parameters of a live superblock. 849 */ 850 int reconfigure_super(struct fs_context *fc) 851 { 852 struct super_block *sb = fc->root->d_sb; 853 int retval; 854 bool remount_ro = false; 855 bool force = fc->sb_flags & SB_FORCE; 856 857 if (fc->sb_flags_mask & ~MS_RMT_MASK) 858 return -EINVAL; 859 if (sb->s_writers.frozen != SB_UNFROZEN) 860 return -EBUSY; 861 862 retval = security_sb_remount(sb, fc->security); 863 if (retval) 864 return retval; 865 866 if (fc->sb_flags_mask & SB_RDONLY) { 867 #ifdef CONFIG_BLOCK 868 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 869 return -EACCES; 870 #endif 871 872 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 873 } 874 875 if (remount_ro) { 876 if (!hlist_empty(&sb->s_pins)) { 877 up_write(&sb->s_umount); 878 group_pin_kill(&sb->s_pins); 879 down_write(&sb->s_umount); 880 if (!sb->s_root) 881 return 0; 882 if (sb->s_writers.frozen != SB_UNFROZEN) 883 return -EBUSY; 884 remount_ro = !sb_rdonly(sb); 885 } 886 } 887 shrink_dcache_sb(sb); 888 889 /* If we are reconfiguring to RDONLY and current sb is read/write, 890 * make sure there are no files open for writing. 891 */ 892 if (remount_ro) { 893 if (force) { 894 sb->s_readonly_remount = 1; 895 smp_wmb(); 896 } else { 897 retval = sb_prepare_remount_readonly(sb); 898 if (retval) 899 return retval; 900 } 901 } 902 903 if (fc->ops->reconfigure) { 904 retval = fc->ops->reconfigure(fc); 905 if (retval) { 906 if (!force) 907 goto cancel_readonly; 908 /* If forced remount, go ahead despite any errors */ 909 WARN(1, "forced remount of a %s fs returned %i\n", 910 sb->s_type->name, retval); 911 } 912 } 913 914 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 915 (fc->sb_flags & fc->sb_flags_mask))); 916 /* Needs to be ordered wrt mnt_is_readonly() */ 917 smp_wmb(); 918 sb->s_readonly_remount = 0; 919 920 /* 921 * Some filesystems modify their metadata via some other path than the 922 * bdev buffer cache (eg. use a private mapping, or directories in 923 * pagecache, etc). Also file data modifications go via their own 924 * mappings. So If we try to mount readonly then copy the filesystem 925 * from bdev, we could get stale data, so invalidate it to give a best 926 * effort at coherency. 927 */ 928 if (remount_ro && sb->s_bdev) 929 invalidate_bdev(sb->s_bdev); 930 return 0; 931 932 cancel_readonly: 933 sb->s_readonly_remount = 0; 934 return retval; 935 } 936 937 static void do_emergency_remount_callback(struct super_block *sb) 938 { 939 down_write(&sb->s_umount); 940 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 941 !sb_rdonly(sb)) { 942 struct fs_context *fc; 943 944 fc = fs_context_for_reconfigure(sb->s_root, 945 SB_RDONLY | SB_FORCE, SB_RDONLY); 946 if (!IS_ERR(fc)) { 947 if (parse_monolithic_mount_data(fc, NULL) == 0) 948 (void)reconfigure_super(fc); 949 put_fs_context(fc); 950 } 951 } 952 up_write(&sb->s_umount); 953 } 954 955 static void do_emergency_remount(struct work_struct *work) 956 { 957 __iterate_supers(do_emergency_remount_callback); 958 kfree(work); 959 printk("Emergency Remount complete\n"); 960 } 961 962 void emergency_remount(void) 963 { 964 struct work_struct *work; 965 966 work = kmalloc(sizeof(*work), GFP_ATOMIC); 967 if (work) { 968 INIT_WORK(work, do_emergency_remount); 969 schedule_work(work); 970 } 971 } 972 973 static void do_thaw_all_callback(struct super_block *sb) 974 { 975 down_write(&sb->s_umount); 976 if (sb->s_root && sb->s_flags & SB_BORN) { 977 emergency_thaw_bdev(sb); 978 thaw_super_locked(sb); 979 } else { 980 up_write(&sb->s_umount); 981 } 982 } 983 984 static void do_thaw_all(struct work_struct *work) 985 { 986 __iterate_supers(do_thaw_all_callback); 987 kfree(work); 988 printk(KERN_WARNING "Emergency Thaw complete\n"); 989 } 990 991 /** 992 * emergency_thaw_all -- forcibly thaw every frozen filesystem 993 * 994 * Used for emergency unfreeze of all filesystems via SysRq 995 */ 996 void emergency_thaw_all(void) 997 { 998 struct work_struct *work; 999 1000 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1001 if (work) { 1002 INIT_WORK(work, do_thaw_all); 1003 schedule_work(work); 1004 } 1005 } 1006 1007 static DEFINE_IDA(unnamed_dev_ida); 1008 1009 /** 1010 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1011 * @p: Pointer to a dev_t. 1012 * 1013 * Filesystems which don't use real block devices can call this function 1014 * to allocate a virtual block device. 1015 * 1016 * Context: Any context. Frequently called while holding sb_lock. 1017 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1018 * or -ENOMEM if memory allocation failed. 1019 */ 1020 int get_anon_bdev(dev_t *p) 1021 { 1022 int dev; 1023 1024 /* 1025 * Many userspace utilities consider an FSID of 0 invalid. 1026 * Always return at least 1 from get_anon_bdev. 1027 */ 1028 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1029 GFP_ATOMIC); 1030 if (dev == -ENOSPC) 1031 dev = -EMFILE; 1032 if (dev < 0) 1033 return dev; 1034 1035 *p = MKDEV(0, dev); 1036 return 0; 1037 } 1038 EXPORT_SYMBOL(get_anon_bdev); 1039 1040 void free_anon_bdev(dev_t dev) 1041 { 1042 ida_free(&unnamed_dev_ida, MINOR(dev)); 1043 } 1044 EXPORT_SYMBOL(free_anon_bdev); 1045 1046 int set_anon_super(struct super_block *s, void *data) 1047 { 1048 return get_anon_bdev(&s->s_dev); 1049 } 1050 EXPORT_SYMBOL(set_anon_super); 1051 1052 void kill_anon_super(struct super_block *sb) 1053 { 1054 dev_t dev = sb->s_dev; 1055 generic_shutdown_super(sb); 1056 free_anon_bdev(dev); 1057 } 1058 EXPORT_SYMBOL(kill_anon_super); 1059 1060 void kill_litter_super(struct super_block *sb) 1061 { 1062 if (sb->s_root) 1063 d_genocide(sb->s_root); 1064 kill_anon_super(sb); 1065 } 1066 EXPORT_SYMBOL(kill_litter_super); 1067 1068 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1069 { 1070 return set_anon_super(sb, NULL); 1071 } 1072 EXPORT_SYMBOL(set_anon_super_fc); 1073 1074 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1075 { 1076 return sb->s_fs_info == fc->s_fs_info; 1077 } 1078 1079 static int test_single_super(struct super_block *s, struct fs_context *fc) 1080 { 1081 return 1; 1082 } 1083 1084 /** 1085 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1086 * @fc: The filesystem context holding the parameters 1087 * @keying: How to distinguish superblocks 1088 * @fill_super: Helper to initialise a new superblock 1089 * 1090 * Search for a superblock and create a new one if not found. The search 1091 * criterion is controlled by @keying. If the search fails, a new superblock 1092 * is created and @fill_super() is called to initialise it. 1093 * 1094 * @keying can take one of a number of values: 1095 * 1096 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1097 * system. This is typically used for special system filesystems. 1098 * 1099 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1100 * distinct keys (where the key is in s_fs_info). Searching for the same 1101 * key again will turn up the superblock for that key. 1102 * 1103 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1104 * unkeyed. Each call will get a new superblock. 1105 * 1106 * A permissions check is made by sget_fc() unless we're getting a superblock 1107 * for a kernel-internal mount or a submount. 1108 */ 1109 int vfs_get_super(struct fs_context *fc, 1110 enum vfs_get_super_keying keying, 1111 int (*fill_super)(struct super_block *sb, 1112 struct fs_context *fc)) 1113 { 1114 int (*test)(struct super_block *, struct fs_context *); 1115 struct super_block *sb; 1116 int err; 1117 1118 switch (keying) { 1119 case vfs_get_single_super: 1120 case vfs_get_single_reconf_super: 1121 test = test_single_super; 1122 break; 1123 case vfs_get_keyed_super: 1124 test = test_keyed_super; 1125 break; 1126 case vfs_get_independent_super: 1127 test = NULL; 1128 break; 1129 default: 1130 BUG(); 1131 } 1132 1133 sb = sget_fc(fc, test, set_anon_super_fc); 1134 if (IS_ERR(sb)) 1135 return PTR_ERR(sb); 1136 1137 if (!sb->s_root) { 1138 err = fill_super(sb, fc); 1139 if (err) 1140 goto error; 1141 1142 sb->s_flags |= SB_ACTIVE; 1143 fc->root = dget(sb->s_root); 1144 } else { 1145 fc->root = dget(sb->s_root); 1146 if (keying == vfs_get_single_reconf_super) { 1147 err = reconfigure_super(fc); 1148 if (err < 0) { 1149 dput(fc->root); 1150 fc->root = NULL; 1151 goto error; 1152 } 1153 } 1154 } 1155 1156 return 0; 1157 1158 error: 1159 deactivate_locked_super(sb); 1160 return err; 1161 } 1162 EXPORT_SYMBOL(vfs_get_super); 1163 1164 int get_tree_nodev(struct fs_context *fc, 1165 int (*fill_super)(struct super_block *sb, 1166 struct fs_context *fc)) 1167 { 1168 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1169 } 1170 EXPORT_SYMBOL(get_tree_nodev); 1171 1172 int get_tree_single(struct fs_context *fc, 1173 int (*fill_super)(struct super_block *sb, 1174 struct fs_context *fc)) 1175 { 1176 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1177 } 1178 EXPORT_SYMBOL(get_tree_single); 1179 1180 int get_tree_single_reconf(struct fs_context *fc, 1181 int (*fill_super)(struct super_block *sb, 1182 struct fs_context *fc)) 1183 { 1184 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super); 1185 } 1186 EXPORT_SYMBOL(get_tree_single_reconf); 1187 1188 int get_tree_keyed(struct fs_context *fc, 1189 int (*fill_super)(struct super_block *sb, 1190 struct fs_context *fc), 1191 void *key) 1192 { 1193 fc->s_fs_info = key; 1194 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1195 } 1196 EXPORT_SYMBOL(get_tree_keyed); 1197 1198 #ifdef CONFIG_BLOCK 1199 1200 static int set_bdev_super(struct super_block *s, void *data) 1201 { 1202 s->s_bdev = data; 1203 s->s_dev = s->s_bdev->bd_dev; 1204 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1205 1206 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue)) 1207 s->s_iflags |= SB_I_STABLE_WRITES; 1208 return 0; 1209 } 1210 1211 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1212 { 1213 return set_bdev_super(s, fc->sget_key); 1214 } 1215 1216 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1217 { 1218 return s->s_bdev == fc->sget_key; 1219 } 1220 1221 /** 1222 * get_tree_bdev - Get a superblock based on a single block device 1223 * @fc: The filesystem context holding the parameters 1224 * @fill_super: Helper to initialise a new superblock 1225 */ 1226 int get_tree_bdev(struct fs_context *fc, 1227 int (*fill_super)(struct super_block *, 1228 struct fs_context *)) 1229 { 1230 struct block_device *bdev; 1231 struct super_block *s; 1232 fmode_t mode = FMODE_READ | FMODE_EXCL; 1233 int error = 0; 1234 1235 if (!(fc->sb_flags & SB_RDONLY)) 1236 mode |= FMODE_WRITE; 1237 1238 if (!fc->source) 1239 return invalf(fc, "No source specified"); 1240 1241 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1242 if (IS_ERR(bdev)) { 1243 errorf(fc, "%s: Can't open blockdev", fc->source); 1244 return PTR_ERR(bdev); 1245 } 1246 1247 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1248 * will protect the lockfs code from trying to start a snapshot while 1249 * we are mounting 1250 */ 1251 mutex_lock(&bdev->bd_fsfreeze_mutex); 1252 if (bdev->bd_fsfreeze_count > 0) { 1253 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1254 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1255 blkdev_put(bdev, mode); 1256 return -EBUSY; 1257 } 1258 1259 fc->sb_flags |= SB_NOSEC; 1260 fc->sget_key = bdev; 1261 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1262 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1263 if (IS_ERR(s)) { 1264 blkdev_put(bdev, mode); 1265 return PTR_ERR(s); 1266 } 1267 1268 if (s->s_root) { 1269 /* Don't summarily change the RO/RW state. */ 1270 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1271 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1272 deactivate_locked_super(s); 1273 blkdev_put(bdev, mode); 1274 return -EBUSY; 1275 } 1276 1277 /* 1278 * s_umount nests inside bd_mutex during 1279 * __invalidate_device(). blkdev_put() acquires 1280 * bd_mutex and can't be called under s_umount. Drop 1281 * s_umount temporarily. This is safe as we're 1282 * holding an active reference. 1283 */ 1284 up_write(&s->s_umount); 1285 blkdev_put(bdev, mode); 1286 down_write(&s->s_umount); 1287 } else { 1288 s->s_mode = mode; 1289 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1290 sb_set_blocksize(s, block_size(bdev)); 1291 error = fill_super(s, fc); 1292 if (error) { 1293 deactivate_locked_super(s); 1294 return error; 1295 } 1296 1297 s->s_flags |= SB_ACTIVE; 1298 bdev->bd_super = s; 1299 } 1300 1301 BUG_ON(fc->root); 1302 fc->root = dget(s->s_root); 1303 return 0; 1304 } 1305 EXPORT_SYMBOL(get_tree_bdev); 1306 1307 static int test_bdev_super(struct super_block *s, void *data) 1308 { 1309 return (void *)s->s_bdev == data; 1310 } 1311 1312 struct dentry *mount_bdev(struct file_system_type *fs_type, 1313 int flags, const char *dev_name, void *data, 1314 int (*fill_super)(struct super_block *, void *, int)) 1315 { 1316 struct block_device *bdev; 1317 struct super_block *s; 1318 fmode_t mode = FMODE_READ | FMODE_EXCL; 1319 int error = 0; 1320 1321 if (!(flags & SB_RDONLY)) 1322 mode |= FMODE_WRITE; 1323 1324 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1325 if (IS_ERR(bdev)) 1326 return ERR_CAST(bdev); 1327 1328 /* 1329 * once the super is inserted into the list by sget, s_umount 1330 * will protect the lockfs code from trying to start a snapshot 1331 * while we are mounting 1332 */ 1333 mutex_lock(&bdev->bd_fsfreeze_mutex); 1334 if (bdev->bd_fsfreeze_count > 0) { 1335 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1336 error = -EBUSY; 1337 goto error_bdev; 1338 } 1339 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1340 bdev); 1341 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1342 if (IS_ERR(s)) 1343 goto error_s; 1344 1345 if (s->s_root) { 1346 if ((flags ^ s->s_flags) & SB_RDONLY) { 1347 deactivate_locked_super(s); 1348 error = -EBUSY; 1349 goto error_bdev; 1350 } 1351 1352 /* 1353 * s_umount nests inside bd_mutex during 1354 * __invalidate_device(). blkdev_put() acquires 1355 * bd_mutex and can't be called under s_umount. Drop 1356 * s_umount temporarily. This is safe as we're 1357 * holding an active reference. 1358 */ 1359 up_write(&s->s_umount); 1360 blkdev_put(bdev, mode); 1361 down_write(&s->s_umount); 1362 } else { 1363 s->s_mode = mode; 1364 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1365 sb_set_blocksize(s, block_size(bdev)); 1366 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1367 if (error) { 1368 deactivate_locked_super(s); 1369 goto error; 1370 } 1371 1372 s->s_flags |= SB_ACTIVE; 1373 bdev->bd_super = s; 1374 } 1375 1376 return dget(s->s_root); 1377 1378 error_s: 1379 error = PTR_ERR(s); 1380 error_bdev: 1381 blkdev_put(bdev, mode); 1382 error: 1383 return ERR_PTR(error); 1384 } 1385 EXPORT_SYMBOL(mount_bdev); 1386 1387 void kill_block_super(struct super_block *sb) 1388 { 1389 struct block_device *bdev = sb->s_bdev; 1390 fmode_t mode = sb->s_mode; 1391 1392 bdev->bd_super = NULL; 1393 generic_shutdown_super(sb); 1394 sync_blockdev(bdev); 1395 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1396 blkdev_put(bdev, mode | FMODE_EXCL); 1397 } 1398 1399 EXPORT_SYMBOL(kill_block_super); 1400 #endif 1401 1402 struct dentry *mount_nodev(struct file_system_type *fs_type, 1403 int flags, void *data, 1404 int (*fill_super)(struct super_block *, void *, int)) 1405 { 1406 int error; 1407 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1408 1409 if (IS_ERR(s)) 1410 return ERR_CAST(s); 1411 1412 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1413 if (error) { 1414 deactivate_locked_super(s); 1415 return ERR_PTR(error); 1416 } 1417 s->s_flags |= SB_ACTIVE; 1418 return dget(s->s_root); 1419 } 1420 EXPORT_SYMBOL(mount_nodev); 1421 1422 static int reconfigure_single(struct super_block *s, 1423 int flags, void *data) 1424 { 1425 struct fs_context *fc; 1426 int ret; 1427 1428 /* The caller really need to be passing fc down into mount_single(), 1429 * then a chunk of this can be removed. [Bollocks -- AV] 1430 * Better yet, reconfiguration shouldn't happen, but rather the second 1431 * mount should be rejected if the parameters are not compatible. 1432 */ 1433 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1434 if (IS_ERR(fc)) 1435 return PTR_ERR(fc); 1436 1437 ret = parse_monolithic_mount_data(fc, data); 1438 if (ret < 0) 1439 goto out; 1440 1441 ret = reconfigure_super(fc); 1442 out: 1443 put_fs_context(fc); 1444 return ret; 1445 } 1446 1447 static int compare_single(struct super_block *s, void *p) 1448 { 1449 return 1; 1450 } 1451 1452 struct dentry *mount_single(struct file_system_type *fs_type, 1453 int flags, void *data, 1454 int (*fill_super)(struct super_block *, void *, int)) 1455 { 1456 struct super_block *s; 1457 int error; 1458 1459 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1460 if (IS_ERR(s)) 1461 return ERR_CAST(s); 1462 if (!s->s_root) { 1463 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1464 if (!error) 1465 s->s_flags |= SB_ACTIVE; 1466 } else { 1467 error = reconfigure_single(s, flags, data); 1468 } 1469 if (unlikely(error)) { 1470 deactivate_locked_super(s); 1471 return ERR_PTR(error); 1472 } 1473 return dget(s->s_root); 1474 } 1475 EXPORT_SYMBOL(mount_single); 1476 1477 /** 1478 * vfs_get_tree - Get the mountable root 1479 * @fc: The superblock configuration context. 1480 * 1481 * The filesystem is invoked to get or create a superblock which can then later 1482 * be used for mounting. The filesystem places a pointer to the root to be 1483 * used for mounting in @fc->root. 1484 */ 1485 int vfs_get_tree(struct fs_context *fc) 1486 { 1487 struct super_block *sb; 1488 int error; 1489 1490 if (fc->root) 1491 return -EBUSY; 1492 1493 /* Get the mountable root in fc->root, with a ref on the root and a ref 1494 * on the superblock. 1495 */ 1496 error = fc->ops->get_tree(fc); 1497 if (error < 0) 1498 return error; 1499 1500 if (!fc->root) { 1501 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1502 fc->fs_type->name); 1503 /* We don't know what the locking state of the superblock is - 1504 * if there is a superblock. 1505 */ 1506 BUG(); 1507 } 1508 1509 sb = fc->root->d_sb; 1510 WARN_ON(!sb->s_bdi); 1511 1512 /* 1513 * Write barrier is for super_cache_count(). We place it before setting 1514 * SB_BORN as the data dependency between the two functions is the 1515 * superblock structure contents that we just set up, not the SB_BORN 1516 * flag. 1517 */ 1518 smp_wmb(); 1519 sb->s_flags |= SB_BORN; 1520 1521 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1522 if (unlikely(error)) { 1523 fc_drop_locked(fc); 1524 return error; 1525 } 1526 1527 /* 1528 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1529 * but s_maxbytes was an unsigned long long for many releases. Throw 1530 * this warning for a little while to try and catch filesystems that 1531 * violate this rule. 1532 */ 1533 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1534 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1535 1536 return 0; 1537 } 1538 EXPORT_SYMBOL(vfs_get_tree); 1539 1540 /* 1541 * Setup private BDI for given superblock. It gets automatically cleaned up 1542 * in generic_shutdown_super(). 1543 */ 1544 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1545 { 1546 struct backing_dev_info *bdi; 1547 int err; 1548 va_list args; 1549 1550 bdi = bdi_alloc(NUMA_NO_NODE); 1551 if (!bdi) 1552 return -ENOMEM; 1553 1554 va_start(args, fmt); 1555 err = bdi_register_va(bdi, fmt, args); 1556 va_end(args); 1557 if (err) { 1558 bdi_put(bdi); 1559 return err; 1560 } 1561 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1562 sb->s_bdi = bdi; 1563 1564 return 0; 1565 } 1566 EXPORT_SYMBOL(super_setup_bdi_name); 1567 1568 /* 1569 * Setup private BDI for given superblock. I gets automatically cleaned up 1570 * in generic_shutdown_super(). 1571 */ 1572 int super_setup_bdi(struct super_block *sb) 1573 { 1574 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1575 1576 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1577 atomic_long_inc_return(&bdi_seq)); 1578 } 1579 EXPORT_SYMBOL(super_setup_bdi); 1580 1581 /** 1582 * sb_wait_write - wait until all writers to given file system finish 1583 * @sb: the super for which we wait 1584 * @level: type of writers we wait for (normal vs page fault) 1585 * 1586 * This function waits until there are no writers of given type to given file 1587 * system. 1588 */ 1589 static void sb_wait_write(struct super_block *sb, int level) 1590 { 1591 percpu_down_write(sb->s_writers.rw_sem + level-1); 1592 } 1593 1594 /* 1595 * We are going to return to userspace and forget about these locks, the 1596 * ownership goes to the caller of thaw_super() which does unlock(). 1597 */ 1598 static void lockdep_sb_freeze_release(struct super_block *sb) 1599 { 1600 int level; 1601 1602 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1603 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1604 } 1605 1606 /* 1607 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1608 */ 1609 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1610 { 1611 int level; 1612 1613 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1614 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1615 } 1616 1617 static void sb_freeze_unlock(struct super_block *sb) 1618 { 1619 int level; 1620 1621 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1622 percpu_up_write(sb->s_writers.rw_sem + level); 1623 } 1624 1625 /** 1626 * freeze_super - lock the filesystem and force it into a consistent state 1627 * @sb: the super to lock 1628 * 1629 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1630 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1631 * -EBUSY. 1632 * 1633 * During this function, sb->s_writers.frozen goes through these values: 1634 * 1635 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1636 * 1637 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1638 * writes should be blocked, though page faults are still allowed. We wait for 1639 * all writes to complete and then proceed to the next stage. 1640 * 1641 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1642 * but internal fs threads can still modify the filesystem (although they 1643 * should not dirty new pages or inodes), writeback can run etc. After waiting 1644 * for all running page faults we sync the filesystem which will clean all 1645 * dirty pages and inodes (no new dirty pages or inodes can be created when 1646 * sync is running). 1647 * 1648 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1649 * modification are blocked (e.g. XFS preallocation truncation on inode 1650 * reclaim). This is usually implemented by blocking new transactions for 1651 * filesystems that have them and need this additional guard. After all 1652 * internal writers are finished we call ->freeze_fs() to finish filesystem 1653 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1654 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1655 * 1656 * sb->s_writers.frozen is protected by sb->s_umount. 1657 */ 1658 int freeze_super(struct super_block *sb) 1659 { 1660 int ret; 1661 1662 atomic_inc(&sb->s_active); 1663 down_write(&sb->s_umount); 1664 if (sb->s_writers.frozen != SB_UNFROZEN) { 1665 deactivate_locked_super(sb); 1666 return -EBUSY; 1667 } 1668 1669 if (!(sb->s_flags & SB_BORN)) { 1670 up_write(&sb->s_umount); 1671 return 0; /* sic - it's "nothing to do" */ 1672 } 1673 1674 if (sb_rdonly(sb)) { 1675 /* Nothing to do really... */ 1676 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1677 up_write(&sb->s_umount); 1678 return 0; 1679 } 1680 1681 sb->s_writers.frozen = SB_FREEZE_WRITE; 1682 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1683 up_write(&sb->s_umount); 1684 sb_wait_write(sb, SB_FREEZE_WRITE); 1685 down_write(&sb->s_umount); 1686 1687 /* Now we go and block page faults... */ 1688 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1689 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1690 1691 /* All writers are done so after syncing there won't be dirty data */ 1692 sync_filesystem(sb); 1693 1694 /* Now wait for internal filesystem counter */ 1695 sb->s_writers.frozen = SB_FREEZE_FS; 1696 sb_wait_write(sb, SB_FREEZE_FS); 1697 1698 if (sb->s_op->freeze_fs) { 1699 ret = sb->s_op->freeze_fs(sb); 1700 if (ret) { 1701 printk(KERN_ERR 1702 "VFS:Filesystem freeze failed\n"); 1703 sb->s_writers.frozen = SB_UNFROZEN; 1704 sb_freeze_unlock(sb); 1705 wake_up(&sb->s_writers.wait_unfrozen); 1706 deactivate_locked_super(sb); 1707 return ret; 1708 } 1709 } 1710 /* 1711 * For debugging purposes so that fs can warn if it sees write activity 1712 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1713 */ 1714 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1715 lockdep_sb_freeze_release(sb); 1716 up_write(&sb->s_umount); 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(freeze_super); 1720 1721 /** 1722 * thaw_super -- unlock filesystem 1723 * @sb: the super to thaw 1724 * 1725 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1726 */ 1727 static int thaw_super_locked(struct super_block *sb) 1728 { 1729 int error; 1730 1731 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1732 up_write(&sb->s_umount); 1733 return -EINVAL; 1734 } 1735 1736 if (sb_rdonly(sb)) { 1737 sb->s_writers.frozen = SB_UNFROZEN; 1738 goto out; 1739 } 1740 1741 lockdep_sb_freeze_acquire(sb); 1742 1743 if (sb->s_op->unfreeze_fs) { 1744 error = sb->s_op->unfreeze_fs(sb); 1745 if (error) { 1746 printk(KERN_ERR 1747 "VFS:Filesystem thaw failed\n"); 1748 lockdep_sb_freeze_release(sb); 1749 up_write(&sb->s_umount); 1750 return error; 1751 } 1752 } 1753 1754 sb->s_writers.frozen = SB_UNFROZEN; 1755 sb_freeze_unlock(sb); 1756 out: 1757 wake_up(&sb->s_writers.wait_unfrozen); 1758 deactivate_locked_super(sb); 1759 return 0; 1760 } 1761 1762 int thaw_super(struct super_block *sb) 1763 { 1764 down_write(&sb->s_umount); 1765 return thaw_super_locked(sb); 1766 } 1767 EXPORT_SYMBOL(thaw_super); 1768