1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->cleancache_poolid = CLEANCACHE_NO_POOL; 261 262 s->s_shrink.seeks = DEFAULT_SEEKS; 263 s->s_shrink.scan_objects = super_cache_scan; 264 s->s_shrink.count_objects = super_cache_count; 265 s->s_shrink.batch = 1024; 266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 267 if (prealloc_shrinker(&s->s_shrink)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 270 goto fail; 271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 272 goto fail; 273 return s; 274 275 fail: 276 destroy_unused_super(s); 277 return NULL; 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *s) 286 { 287 if (!--s->s_count) { 288 list_del_init(&s->s_list); 289 WARN_ON(s->s_dentry_lru.node); 290 WARN_ON(s->s_inode_lru.node); 291 WARN_ON(!list_empty(&s->s_mounts)); 292 security_sb_free(s); 293 put_user_ns(s->s_user_ns); 294 kfree(s->s_subtype); 295 call_rcu(&s->rcu, destroy_super_rcu); 296 } 297 } 298 299 /** 300 * put_super - drop a temporary reference to superblock 301 * @sb: superblock in question 302 * 303 * Drops a temporary reference, frees superblock if there's no 304 * references left. 305 */ 306 static void put_super(struct super_block *sb) 307 { 308 spin_lock(&sb_lock); 309 __put_super(sb); 310 spin_unlock(&sb_lock); 311 } 312 313 314 /** 315 * deactivate_locked_super - drop an active reference to superblock 316 * @s: superblock to deactivate 317 * 318 * Drops an active reference to superblock, converting it into a temporary 319 * one if there is no other active references left. In that case we 320 * tell fs driver to shut it down and drop the temporary reference we 321 * had just acquired. 322 * 323 * Caller holds exclusive lock on superblock; that lock is released. 324 */ 325 void deactivate_locked_super(struct super_block *s) 326 { 327 struct file_system_type *fs = s->s_type; 328 if (atomic_dec_and_test(&s->s_active)) { 329 cleancache_invalidate_fs(s); 330 unregister_shrinker(&s->s_shrink); 331 fs->kill_sb(s); 332 333 /* 334 * Since list_lru_destroy() may sleep, we cannot call it from 335 * put_super(), where we hold the sb_lock. Therefore we destroy 336 * the lru lists right now. 337 */ 338 list_lru_destroy(&s->s_dentry_lru); 339 list_lru_destroy(&s->s_inode_lru); 340 341 put_filesystem(fs); 342 put_super(s); 343 } else { 344 up_write(&s->s_umount); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_locked_super); 349 350 /** 351 * deactivate_super - drop an active reference to superblock 352 * @s: superblock to deactivate 353 * 354 * Variant of deactivate_locked_super(), except that superblock is *not* 355 * locked by caller. If we are going to drop the final active reference, 356 * lock will be acquired prior to that. 357 */ 358 void deactivate_super(struct super_block *s) 359 { 360 if (!atomic_add_unless(&s->s_active, -1, 1)) { 361 down_write(&s->s_umount); 362 deactivate_locked_super(s); 363 } 364 } 365 366 EXPORT_SYMBOL(deactivate_super); 367 368 /** 369 * grab_super - acquire an active reference 370 * @s: reference we are trying to make active 371 * 372 * Tries to acquire an active reference. grab_super() is used when we 373 * had just found a superblock in super_blocks or fs_type->fs_supers 374 * and want to turn it into a full-blown active reference. grab_super() 375 * is called with sb_lock held and drops it. Returns 1 in case of 376 * success, 0 if we had failed (superblock contents was already dead or 377 * dying when grab_super() had been called). Note that this is only 378 * called for superblocks not in rundown mode (== ones still on ->fs_supers 379 * of their type), so increment of ->s_count is OK here. 380 */ 381 static int grab_super(struct super_block *s) __releases(sb_lock) 382 { 383 s->s_count++; 384 spin_unlock(&sb_lock); 385 down_write(&s->s_umount); 386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 387 put_super(s); 388 return 1; 389 } 390 up_write(&s->s_umount); 391 put_super(s); 392 return 0; 393 } 394 395 /* 396 * trylock_super - try to grab ->s_umount shared 397 * @sb: reference we are trying to grab 398 * 399 * Try to prevent fs shutdown. This is used in places where we 400 * cannot take an active reference but we need to ensure that the 401 * filesystem is not shut down while we are working on it. It returns 402 * false if we cannot acquire s_umount or if we lose the race and 403 * filesystem already got into shutdown, and returns true with the s_umount 404 * lock held in read mode in case of success. On successful return, 405 * the caller must drop the s_umount lock when done. 406 * 407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 408 * The reason why it's safe is that we are OK with doing trylock instead 409 * of down_read(). There's a couple of places that are OK with that, but 410 * it's very much not a general-purpose interface. 411 */ 412 bool trylock_super(struct super_block *sb) 413 { 414 if (down_read_trylock(&sb->s_umount)) { 415 if (!hlist_unhashed(&sb->s_instances) && 416 sb->s_root && (sb->s_flags & SB_BORN)) 417 return true; 418 up_read(&sb->s_umount); 419 } 420 421 return false; 422 } 423 424 /** 425 * generic_shutdown_super - common helper for ->kill_sb() 426 * @sb: superblock to kill 427 * 428 * generic_shutdown_super() does all fs-independent work on superblock 429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 430 * that need destruction out of superblock, call generic_shutdown_super() 431 * and release aforementioned objects. Note: dentries and inodes _are_ 432 * taken care of and do not need specific handling. 433 * 434 * Upon calling this function, the filesystem may no longer alter or 435 * rearrange the set of dentries belonging to this super_block, nor may it 436 * change the attachments of dentries to inodes. 437 */ 438 void generic_shutdown_super(struct super_block *sb) 439 { 440 const struct super_operations *sop = sb->s_op; 441 442 if (sb->s_root) { 443 shrink_dcache_for_umount(sb); 444 sync_filesystem(sb); 445 sb->s_flags &= ~SB_ACTIVE; 446 447 fsnotify_sb_delete(sb); 448 cgroup_writeback_umount(); 449 450 evict_inodes(sb); 451 452 if (sb->s_dio_done_wq) { 453 destroy_workqueue(sb->s_dio_done_wq); 454 sb->s_dio_done_wq = NULL; 455 } 456 457 if (sop->put_super) 458 sop->put_super(sb); 459 460 if (!list_empty(&sb->s_inodes)) { 461 printk("VFS: Busy inodes after unmount of %s. " 462 "Self-destruct in 5 seconds. Have a nice day...\n", 463 sb->s_id); 464 } 465 } 466 spin_lock(&sb_lock); 467 /* should be initialized for __put_super_and_need_restart() */ 468 hlist_del_init(&sb->s_instances); 469 spin_unlock(&sb_lock); 470 up_write(&sb->s_umount); 471 if (sb->s_bdi != &noop_backing_dev_info) { 472 bdi_put(sb->s_bdi); 473 sb->s_bdi = &noop_backing_dev_info; 474 } 475 } 476 477 EXPORT_SYMBOL(generic_shutdown_super); 478 479 bool mount_capable(struct fs_context *fc) 480 { 481 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 482 return capable(CAP_SYS_ADMIN); 483 else 484 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 485 } 486 487 /** 488 * sget_fc - Find or create a superblock 489 * @fc: Filesystem context. 490 * @test: Comparison callback 491 * @set: Setup callback 492 * 493 * Find or create a superblock using the parameters stored in the filesystem 494 * context and the two callback functions. 495 * 496 * If an extant superblock is matched, then that will be returned with an 497 * elevated reference count that the caller must transfer or discard. 498 * 499 * If no match is made, a new superblock will be allocated and basic 500 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 501 * the set() callback will be invoked), the superblock will be published and it 502 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 503 * as yet unset. 504 */ 505 struct super_block *sget_fc(struct fs_context *fc, 506 int (*test)(struct super_block *, struct fs_context *), 507 int (*set)(struct super_block *, struct fs_context *)) 508 { 509 struct super_block *s = NULL; 510 struct super_block *old; 511 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 512 int err; 513 514 retry: 515 spin_lock(&sb_lock); 516 if (test) { 517 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 518 if (test(old, fc)) 519 goto share_extant_sb; 520 } 521 } 522 if (!s) { 523 spin_unlock(&sb_lock); 524 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 525 if (!s) 526 return ERR_PTR(-ENOMEM); 527 goto retry; 528 } 529 530 s->s_fs_info = fc->s_fs_info; 531 err = set(s, fc); 532 if (err) { 533 s->s_fs_info = NULL; 534 spin_unlock(&sb_lock); 535 destroy_unused_super(s); 536 return ERR_PTR(err); 537 } 538 fc->s_fs_info = NULL; 539 s->s_type = fc->fs_type; 540 s->s_iflags |= fc->s_iflags; 541 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 542 list_add_tail(&s->s_list, &super_blocks); 543 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 544 spin_unlock(&sb_lock); 545 get_filesystem(s->s_type); 546 register_shrinker_prepared(&s->s_shrink); 547 return s; 548 549 share_extant_sb: 550 if (user_ns != old->s_user_ns) { 551 spin_unlock(&sb_lock); 552 destroy_unused_super(s); 553 return ERR_PTR(-EBUSY); 554 } 555 if (!grab_super(old)) 556 goto retry; 557 destroy_unused_super(s); 558 return old; 559 } 560 EXPORT_SYMBOL(sget_fc); 561 562 /** 563 * sget - find or create a superblock 564 * @type: filesystem type superblock should belong to 565 * @test: comparison callback 566 * @set: setup callback 567 * @flags: mount flags 568 * @data: argument to each of them 569 */ 570 struct super_block *sget(struct file_system_type *type, 571 int (*test)(struct super_block *,void *), 572 int (*set)(struct super_block *,void *), 573 int flags, 574 void *data) 575 { 576 struct user_namespace *user_ns = current_user_ns(); 577 struct super_block *s = NULL; 578 struct super_block *old; 579 int err; 580 581 /* We don't yet pass the user namespace of the parent 582 * mount through to here so always use &init_user_ns 583 * until that changes. 584 */ 585 if (flags & SB_SUBMOUNT) 586 user_ns = &init_user_ns; 587 588 retry: 589 spin_lock(&sb_lock); 590 if (test) { 591 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 592 if (!test(old, data)) 593 continue; 594 if (user_ns != old->s_user_ns) { 595 spin_unlock(&sb_lock); 596 destroy_unused_super(s); 597 return ERR_PTR(-EBUSY); 598 } 599 if (!grab_super(old)) 600 goto retry; 601 destroy_unused_super(s); 602 return old; 603 } 604 } 605 if (!s) { 606 spin_unlock(&sb_lock); 607 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 608 if (!s) 609 return ERR_PTR(-ENOMEM); 610 goto retry; 611 } 612 613 err = set(s, data); 614 if (err) { 615 spin_unlock(&sb_lock); 616 destroy_unused_super(s); 617 return ERR_PTR(err); 618 } 619 s->s_type = type; 620 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 621 list_add_tail(&s->s_list, &super_blocks); 622 hlist_add_head(&s->s_instances, &type->fs_supers); 623 spin_unlock(&sb_lock); 624 get_filesystem(type); 625 register_shrinker_prepared(&s->s_shrink); 626 return s; 627 } 628 EXPORT_SYMBOL(sget); 629 630 void drop_super(struct super_block *sb) 631 { 632 up_read(&sb->s_umount); 633 put_super(sb); 634 } 635 636 EXPORT_SYMBOL(drop_super); 637 638 void drop_super_exclusive(struct super_block *sb) 639 { 640 up_write(&sb->s_umount); 641 put_super(sb); 642 } 643 EXPORT_SYMBOL(drop_super_exclusive); 644 645 static void __iterate_supers(void (*f)(struct super_block *)) 646 { 647 struct super_block *sb, *p = NULL; 648 649 spin_lock(&sb_lock); 650 list_for_each_entry(sb, &super_blocks, s_list) { 651 if (hlist_unhashed(&sb->s_instances)) 652 continue; 653 sb->s_count++; 654 spin_unlock(&sb_lock); 655 656 f(sb); 657 658 spin_lock(&sb_lock); 659 if (p) 660 __put_super(p); 661 p = sb; 662 } 663 if (p) 664 __put_super(p); 665 spin_unlock(&sb_lock); 666 } 667 /** 668 * iterate_supers - call function for all active superblocks 669 * @f: function to call 670 * @arg: argument to pass to it 671 * 672 * Scans the superblock list and calls given function, passing it 673 * locked superblock and given argument. 674 */ 675 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 676 { 677 struct super_block *sb, *p = NULL; 678 679 spin_lock(&sb_lock); 680 list_for_each_entry(sb, &super_blocks, s_list) { 681 if (hlist_unhashed(&sb->s_instances)) 682 continue; 683 sb->s_count++; 684 spin_unlock(&sb_lock); 685 686 down_read(&sb->s_umount); 687 if (sb->s_root && (sb->s_flags & SB_BORN)) 688 f(sb, arg); 689 up_read(&sb->s_umount); 690 691 spin_lock(&sb_lock); 692 if (p) 693 __put_super(p); 694 p = sb; 695 } 696 if (p) 697 __put_super(p); 698 spin_unlock(&sb_lock); 699 } 700 701 /** 702 * iterate_supers_type - call function for superblocks of given type 703 * @type: fs type 704 * @f: function to call 705 * @arg: argument to pass to it 706 * 707 * Scans the superblock list and calls given function, passing it 708 * locked superblock and given argument. 709 */ 710 void iterate_supers_type(struct file_system_type *type, 711 void (*f)(struct super_block *, void *), void *arg) 712 { 713 struct super_block *sb, *p = NULL; 714 715 spin_lock(&sb_lock); 716 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 717 sb->s_count++; 718 spin_unlock(&sb_lock); 719 720 down_read(&sb->s_umount); 721 if (sb->s_root && (sb->s_flags & SB_BORN)) 722 f(sb, arg); 723 up_read(&sb->s_umount); 724 725 spin_lock(&sb_lock); 726 if (p) 727 __put_super(p); 728 p = sb; 729 } 730 if (p) 731 __put_super(p); 732 spin_unlock(&sb_lock); 733 } 734 735 EXPORT_SYMBOL(iterate_supers_type); 736 737 static struct super_block *__get_super(struct block_device *bdev, bool excl) 738 { 739 struct super_block *sb; 740 741 if (!bdev) 742 return NULL; 743 744 spin_lock(&sb_lock); 745 rescan: 746 list_for_each_entry(sb, &super_blocks, s_list) { 747 if (hlist_unhashed(&sb->s_instances)) 748 continue; 749 if (sb->s_bdev == bdev) { 750 sb->s_count++; 751 spin_unlock(&sb_lock); 752 if (!excl) 753 down_read(&sb->s_umount); 754 else 755 down_write(&sb->s_umount); 756 /* still alive? */ 757 if (sb->s_root && (sb->s_flags & SB_BORN)) 758 return sb; 759 if (!excl) 760 up_read(&sb->s_umount); 761 else 762 up_write(&sb->s_umount); 763 /* nope, got unmounted */ 764 spin_lock(&sb_lock); 765 __put_super(sb); 766 goto rescan; 767 } 768 } 769 spin_unlock(&sb_lock); 770 return NULL; 771 } 772 773 /** 774 * get_super - get the superblock of a device 775 * @bdev: device to get the superblock for 776 * 777 * Scans the superblock list and finds the superblock of the file system 778 * mounted on the device given. %NULL is returned if no match is found. 779 */ 780 struct super_block *get_super(struct block_device *bdev) 781 { 782 return __get_super(bdev, false); 783 } 784 EXPORT_SYMBOL(get_super); 785 786 static struct super_block *__get_super_thawed(struct block_device *bdev, 787 bool excl) 788 { 789 while (1) { 790 struct super_block *s = __get_super(bdev, excl); 791 if (!s || s->s_writers.frozen == SB_UNFROZEN) 792 return s; 793 if (!excl) 794 up_read(&s->s_umount); 795 else 796 up_write(&s->s_umount); 797 wait_event(s->s_writers.wait_unfrozen, 798 s->s_writers.frozen == SB_UNFROZEN); 799 put_super(s); 800 } 801 } 802 803 /** 804 * get_super_thawed - get thawed superblock of a device 805 * @bdev: device to get the superblock for 806 * 807 * Scans the superblock list and finds the superblock of the file system 808 * mounted on the device. The superblock is returned once it is thawed 809 * (or immediately if it was not frozen). %NULL is returned if no match 810 * is found. 811 */ 812 struct super_block *get_super_thawed(struct block_device *bdev) 813 { 814 return __get_super_thawed(bdev, false); 815 } 816 EXPORT_SYMBOL(get_super_thawed); 817 818 /** 819 * get_super_exclusive_thawed - get thawed superblock of a device 820 * @bdev: device to get the superblock for 821 * 822 * Scans the superblock list and finds the superblock of the file system 823 * mounted on the device. The superblock is returned once it is thawed 824 * (or immediately if it was not frozen) and s_umount semaphore is held 825 * in exclusive mode. %NULL is returned if no match is found. 826 */ 827 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 828 { 829 return __get_super_thawed(bdev, true); 830 } 831 EXPORT_SYMBOL(get_super_exclusive_thawed); 832 833 /** 834 * get_active_super - get an active reference to the superblock of a device 835 * @bdev: device to get the superblock for 836 * 837 * Scans the superblock list and finds the superblock of the file system 838 * mounted on the device given. Returns the superblock with an active 839 * reference or %NULL if none was found. 840 */ 841 struct super_block *get_active_super(struct block_device *bdev) 842 { 843 struct super_block *sb; 844 845 if (!bdev) 846 return NULL; 847 848 restart: 849 spin_lock(&sb_lock); 850 list_for_each_entry(sb, &super_blocks, s_list) { 851 if (hlist_unhashed(&sb->s_instances)) 852 continue; 853 if (sb->s_bdev == bdev) { 854 if (!grab_super(sb)) 855 goto restart; 856 up_write(&sb->s_umount); 857 return sb; 858 } 859 } 860 spin_unlock(&sb_lock); 861 return NULL; 862 } 863 864 struct super_block *user_get_super(dev_t dev) 865 { 866 struct super_block *sb; 867 868 spin_lock(&sb_lock); 869 rescan: 870 list_for_each_entry(sb, &super_blocks, s_list) { 871 if (hlist_unhashed(&sb->s_instances)) 872 continue; 873 if (sb->s_dev == dev) { 874 sb->s_count++; 875 spin_unlock(&sb_lock); 876 down_read(&sb->s_umount); 877 /* still alive? */ 878 if (sb->s_root && (sb->s_flags & SB_BORN)) 879 return sb; 880 up_read(&sb->s_umount); 881 /* nope, got unmounted */ 882 spin_lock(&sb_lock); 883 __put_super(sb); 884 goto rescan; 885 } 886 } 887 spin_unlock(&sb_lock); 888 return NULL; 889 } 890 891 /** 892 * reconfigure_super - asks filesystem to change superblock parameters 893 * @fc: The superblock and configuration 894 * 895 * Alters the configuration parameters of a live superblock. 896 */ 897 int reconfigure_super(struct fs_context *fc) 898 { 899 struct super_block *sb = fc->root->d_sb; 900 int retval; 901 bool remount_ro = false; 902 bool force = fc->sb_flags & SB_FORCE; 903 904 if (fc->sb_flags_mask & ~MS_RMT_MASK) 905 return -EINVAL; 906 if (sb->s_writers.frozen != SB_UNFROZEN) 907 return -EBUSY; 908 909 retval = security_sb_remount(sb, fc->security); 910 if (retval) 911 return retval; 912 913 if (fc->sb_flags_mask & SB_RDONLY) { 914 #ifdef CONFIG_BLOCK 915 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 916 return -EACCES; 917 #endif 918 919 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 920 } 921 922 if (remount_ro) { 923 if (!hlist_empty(&sb->s_pins)) { 924 up_write(&sb->s_umount); 925 group_pin_kill(&sb->s_pins); 926 down_write(&sb->s_umount); 927 if (!sb->s_root) 928 return 0; 929 if (sb->s_writers.frozen != SB_UNFROZEN) 930 return -EBUSY; 931 remount_ro = !sb_rdonly(sb); 932 } 933 } 934 shrink_dcache_sb(sb); 935 936 /* If we are reconfiguring to RDONLY and current sb is read/write, 937 * make sure there are no files open for writing. 938 */ 939 if (remount_ro) { 940 if (force) { 941 sb->s_readonly_remount = 1; 942 smp_wmb(); 943 } else { 944 retval = sb_prepare_remount_readonly(sb); 945 if (retval) 946 return retval; 947 } 948 } 949 950 if (fc->ops->reconfigure) { 951 retval = fc->ops->reconfigure(fc); 952 if (retval) { 953 if (!force) 954 goto cancel_readonly; 955 /* If forced remount, go ahead despite any errors */ 956 WARN(1, "forced remount of a %s fs returned %i\n", 957 sb->s_type->name, retval); 958 } 959 } 960 961 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 962 (fc->sb_flags & fc->sb_flags_mask))); 963 /* Needs to be ordered wrt mnt_is_readonly() */ 964 smp_wmb(); 965 sb->s_readonly_remount = 0; 966 967 /* 968 * Some filesystems modify their metadata via some other path than the 969 * bdev buffer cache (eg. use a private mapping, or directories in 970 * pagecache, etc). Also file data modifications go via their own 971 * mappings. So If we try to mount readonly then copy the filesystem 972 * from bdev, we could get stale data, so invalidate it to give a best 973 * effort at coherency. 974 */ 975 if (remount_ro && sb->s_bdev) 976 invalidate_bdev(sb->s_bdev); 977 return 0; 978 979 cancel_readonly: 980 sb->s_readonly_remount = 0; 981 return retval; 982 } 983 984 static void do_emergency_remount_callback(struct super_block *sb) 985 { 986 down_write(&sb->s_umount); 987 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 988 !sb_rdonly(sb)) { 989 struct fs_context *fc; 990 991 fc = fs_context_for_reconfigure(sb->s_root, 992 SB_RDONLY | SB_FORCE, SB_RDONLY); 993 if (!IS_ERR(fc)) { 994 if (parse_monolithic_mount_data(fc, NULL) == 0) 995 (void)reconfigure_super(fc); 996 put_fs_context(fc); 997 } 998 } 999 up_write(&sb->s_umount); 1000 } 1001 1002 static void do_emergency_remount(struct work_struct *work) 1003 { 1004 __iterate_supers(do_emergency_remount_callback); 1005 kfree(work); 1006 printk("Emergency Remount complete\n"); 1007 } 1008 1009 void emergency_remount(void) 1010 { 1011 struct work_struct *work; 1012 1013 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1014 if (work) { 1015 INIT_WORK(work, do_emergency_remount); 1016 schedule_work(work); 1017 } 1018 } 1019 1020 static void do_thaw_all_callback(struct super_block *sb) 1021 { 1022 down_write(&sb->s_umount); 1023 if (sb->s_root && sb->s_flags & SB_BORN) { 1024 emergency_thaw_bdev(sb); 1025 thaw_super_locked(sb); 1026 } else { 1027 up_write(&sb->s_umount); 1028 } 1029 } 1030 1031 static void do_thaw_all(struct work_struct *work) 1032 { 1033 __iterate_supers(do_thaw_all_callback); 1034 kfree(work); 1035 printk(KERN_WARNING "Emergency Thaw complete\n"); 1036 } 1037 1038 /** 1039 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1040 * 1041 * Used for emergency unfreeze of all filesystems via SysRq 1042 */ 1043 void emergency_thaw_all(void) 1044 { 1045 struct work_struct *work; 1046 1047 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1048 if (work) { 1049 INIT_WORK(work, do_thaw_all); 1050 schedule_work(work); 1051 } 1052 } 1053 1054 static DEFINE_IDA(unnamed_dev_ida); 1055 1056 /** 1057 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1058 * @p: Pointer to a dev_t. 1059 * 1060 * Filesystems which don't use real block devices can call this function 1061 * to allocate a virtual block device. 1062 * 1063 * Context: Any context. Frequently called while holding sb_lock. 1064 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1065 * or -ENOMEM if memory allocation failed. 1066 */ 1067 int get_anon_bdev(dev_t *p) 1068 { 1069 int dev; 1070 1071 /* 1072 * Many userspace utilities consider an FSID of 0 invalid. 1073 * Always return at least 1 from get_anon_bdev. 1074 */ 1075 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1076 GFP_ATOMIC); 1077 if (dev == -ENOSPC) 1078 dev = -EMFILE; 1079 if (dev < 0) 1080 return dev; 1081 1082 *p = MKDEV(0, dev); 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(get_anon_bdev); 1086 1087 void free_anon_bdev(dev_t dev) 1088 { 1089 ida_free(&unnamed_dev_ida, MINOR(dev)); 1090 } 1091 EXPORT_SYMBOL(free_anon_bdev); 1092 1093 int set_anon_super(struct super_block *s, void *data) 1094 { 1095 return get_anon_bdev(&s->s_dev); 1096 } 1097 EXPORT_SYMBOL(set_anon_super); 1098 1099 void kill_anon_super(struct super_block *sb) 1100 { 1101 dev_t dev = sb->s_dev; 1102 generic_shutdown_super(sb); 1103 free_anon_bdev(dev); 1104 } 1105 EXPORT_SYMBOL(kill_anon_super); 1106 1107 void kill_litter_super(struct super_block *sb) 1108 { 1109 if (sb->s_root) 1110 d_genocide(sb->s_root); 1111 kill_anon_super(sb); 1112 } 1113 EXPORT_SYMBOL(kill_litter_super); 1114 1115 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1116 { 1117 return set_anon_super(sb, NULL); 1118 } 1119 EXPORT_SYMBOL(set_anon_super_fc); 1120 1121 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1122 { 1123 return sb->s_fs_info == fc->s_fs_info; 1124 } 1125 1126 static int test_single_super(struct super_block *s, struct fs_context *fc) 1127 { 1128 return 1; 1129 } 1130 1131 /** 1132 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1133 * @fc: The filesystem context holding the parameters 1134 * @keying: How to distinguish superblocks 1135 * @fill_super: Helper to initialise a new superblock 1136 * 1137 * Search for a superblock and create a new one if not found. The search 1138 * criterion is controlled by @keying. If the search fails, a new superblock 1139 * is created and @fill_super() is called to initialise it. 1140 * 1141 * @keying can take one of a number of values: 1142 * 1143 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1144 * system. This is typically used for special system filesystems. 1145 * 1146 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1147 * distinct keys (where the key is in s_fs_info). Searching for the same 1148 * key again will turn up the superblock for that key. 1149 * 1150 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1151 * unkeyed. Each call will get a new superblock. 1152 * 1153 * A permissions check is made by sget_fc() unless we're getting a superblock 1154 * for a kernel-internal mount or a submount. 1155 */ 1156 int vfs_get_super(struct fs_context *fc, 1157 enum vfs_get_super_keying keying, 1158 int (*fill_super)(struct super_block *sb, 1159 struct fs_context *fc)) 1160 { 1161 int (*test)(struct super_block *, struct fs_context *); 1162 struct super_block *sb; 1163 1164 switch (keying) { 1165 case vfs_get_single_super: 1166 test = test_single_super; 1167 break; 1168 case vfs_get_keyed_super: 1169 test = test_keyed_super; 1170 break; 1171 case vfs_get_independent_super: 1172 test = NULL; 1173 break; 1174 default: 1175 BUG(); 1176 } 1177 1178 sb = sget_fc(fc, test, set_anon_super_fc); 1179 if (IS_ERR(sb)) 1180 return PTR_ERR(sb); 1181 1182 if (!sb->s_root) { 1183 int err = fill_super(sb, fc); 1184 if (err) { 1185 deactivate_locked_super(sb); 1186 return err; 1187 } 1188 1189 sb->s_flags |= SB_ACTIVE; 1190 } 1191 1192 BUG_ON(fc->root); 1193 fc->root = dget(sb->s_root); 1194 return 0; 1195 } 1196 EXPORT_SYMBOL(vfs_get_super); 1197 1198 int get_tree_nodev(struct fs_context *fc, 1199 int (*fill_super)(struct super_block *sb, 1200 struct fs_context *fc)) 1201 { 1202 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1203 } 1204 EXPORT_SYMBOL(get_tree_nodev); 1205 1206 int get_tree_single(struct fs_context *fc, 1207 int (*fill_super)(struct super_block *sb, 1208 struct fs_context *fc)) 1209 { 1210 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1211 } 1212 EXPORT_SYMBOL(get_tree_single); 1213 1214 #ifdef CONFIG_BLOCK 1215 static int set_bdev_super(struct super_block *s, void *data) 1216 { 1217 s->s_bdev = data; 1218 s->s_dev = s->s_bdev->bd_dev; 1219 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1220 1221 return 0; 1222 } 1223 1224 static int test_bdev_super(struct super_block *s, void *data) 1225 { 1226 return (void *)s->s_bdev == data; 1227 } 1228 1229 struct dentry *mount_bdev(struct file_system_type *fs_type, 1230 int flags, const char *dev_name, void *data, 1231 int (*fill_super)(struct super_block *, void *, int)) 1232 { 1233 struct block_device *bdev; 1234 struct super_block *s; 1235 fmode_t mode = FMODE_READ | FMODE_EXCL; 1236 int error = 0; 1237 1238 if (!(flags & SB_RDONLY)) 1239 mode |= FMODE_WRITE; 1240 1241 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1242 if (IS_ERR(bdev)) 1243 return ERR_CAST(bdev); 1244 1245 /* 1246 * once the super is inserted into the list by sget, s_umount 1247 * will protect the lockfs code from trying to start a snapshot 1248 * while we are mounting 1249 */ 1250 mutex_lock(&bdev->bd_fsfreeze_mutex); 1251 if (bdev->bd_fsfreeze_count > 0) { 1252 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1253 error = -EBUSY; 1254 goto error_bdev; 1255 } 1256 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1257 bdev); 1258 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1259 if (IS_ERR(s)) 1260 goto error_s; 1261 1262 if (s->s_root) { 1263 if ((flags ^ s->s_flags) & SB_RDONLY) { 1264 deactivate_locked_super(s); 1265 error = -EBUSY; 1266 goto error_bdev; 1267 } 1268 1269 /* 1270 * s_umount nests inside bd_mutex during 1271 * __invalidate_device(). blkdev_put() acquires 1272 * bd_mutex and can't be called under s_umount. Drop 1273 * s_umount temporarily. This is safe as we're 1274 * holding an active reference. 1275 */ 1276 up_write(&s->s_umount); 1277 blkdev_put(bdev, mode); 1278 down_write(&s->s_umount); 1279 } else { 1280 s->s_mode = mode; 1281 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1282 sb_set_blocksize(s, block_size(bdev)); 1283 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1284 if (error) { 1285 deactivate_locked_super(s); 1286 goto error; 1287 } 1288 1289 s->s_flags |= SB_ACTIVE; 1290 bdev->bd_super = s; 1291 } 1292 1293 return dget(s->s_root); 1294 1295 error_s: 1296 error = PTR_ERR(s); 1297 error_bdev: 1298 blkdev_put(bdev, mode); 1299 error: 1300 return ERR_PTR(error); 1301 } 1302 EXPORT_SYMBOL(mount_bdev); 1303 1304 void kill_block_super(struct super_block *sb) 1305 { 1306 struct block_device *bdev = sb->s_bdev; 1307 fmode_t mode = sb->s_mode; 1308 1309 bdev->bd_super = NULL; 1310 generic_shutdown_super(sb); 1311 sync_blockdev(bdev); 1312 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1313 blkdev_put(bdev, mode | FMODE_EXCL); 1314 } 1315 1316 EXPORT_SYMBOL(kill_block_super); 1317 #endif 1318 1319 struct dentry *mount_nodev(struct file_system_type *fs_type, 1320 int flags, void *data, 1321 int (*fill_super)(struct super_block *, void *, int)) 1322 { 1323 int error; 1324 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1325 1326 if (IS_ERR(s)) 1327 return ERR_CAST(s); 1328 1329 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1330 if (error) { 1331 deactivate_locked_super(s); 1332 return ERR_PTR(error); 1333 } 1334 s->s_flags |= SB_ACTIVE; 1335 return dget(s->s_root); 1336 } 1337 EXPORT_SYMBOL(mount_nodev); 1338 1339 static int reconfigure_single(struct super_block *s, 1340 int flags, void *data) 1341 { 1342 struct fs_context *fc; 1343 int ret; 1344 1345 /* The caller really need to be passing fc down into mount_single(), 1346 * then a chunk of this can be removed. [Bollocks -- AV] 1347 * Better yet, reconfiguration shouldn't happen, but rather the second 1348 * mount should be rejected if the parameters are not compatible. 1349 */ 1350 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1351 if (IS_ERR(fc)) 1352 return PTR_ERR(fc); 1353 1354 ret = parse_monolithic_mount_data(fc, data); 1355 if (ret < 0) 1356 goto out; 1357 1358 ret = reconfigure_super(fc); 1359 out: 1360 put_fs_context(fc); 1361 return ret; 1362 } 1363 1364 static int compare_single(struct super_block *s, void *p) 1365 { 1366 return 1; 1367 } 1368 1369 struct dentry *mount_single(struct file_system_type *fs_type, 1370 int flags, void *data, 1371 int (*fill_super)(struct super_block *, void *, int)) 1372 { 1373 struct super_block *s; 1374 int error; 1375 1376 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1377 if (IS_ERR(s)) 1378 return ERR_CAST(s); 1379 if (!s->s_root) { 1380 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1381 if (!error) 1382 s->s_flags |= SB_ACTIVE; 1383 } else { 1384 error = reconfigure_single(s, flags, data); 1385 } 1386 if (unlikely(error)) { 1387 deactivate_locked_super(s); 1388 return ERR_PTR(error); 1389 } 1390 return dget(s->s_root); 1391 } 1392 EXPORT_SYMBOL(mount_single); 1393 1394 /** 1395 * vfs_get_tree - Get the mountable root 1396 * @fc: The superblock configuration context. 1397 * 1398 * The filesystem is invoked to get or create a superblock which can then later 1399 * be used for mounting. The filesystem places a pointer to the root to be 1400 * used for mounting in @fc->root. 1401 */ 1402 int vfs_get_tree(struct fs_context *fc) 1403 { 1404 struct super_block *sb; 1405 int error; 1406 1407 if (fc->root) 1408 return -EBUSY; 1409 1410 /* Get the mountable root in fc->root, with a ref on the root and a ref 1411 * on the superblock. 1412 */ 1413 error = fc->ops->get_tree(fc); 1414 if (error < 0) 1415 return error; 1416 1417 if (!fc->root) { 1418 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1419 fc->fs_type->name); 1420 /* We don't know what the locking state of the superblock is - 1421 * if there is a superblock. 1422 */ 1423 BUG(); 1424 } 1425 1426 sb = fc->root->d_sb; 1427 WARN_ON(!sb->s_bdi); 1428 1429 if (fc->subtype && !sb->s_subtype) { 1430 sb->s_subtype = fc->subtype; 1431 fc->subtype = NULL; 1432 } 1433 1434 /* 1435 * Write barrier is for super_cache_count(). We place it before setting 1436 * SB_BORN as the data dependency between the two functions is the 1437 * superblock structure contents that we just set up, not the SB_BORN 1438 * flag. 1439 */ 1440 smp_wmb(); 1441 sb->s_flags |= SB_BORN; 1442 1443 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1444 if (unlikely(error)) { 1445 fc_drop_locked(fc); 1446 return error; 1447 } 1448 1449 /* 1450 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1451 * but s_maxbytes was an unsigned long long for many releases. Throw 1452 * this warning for a little while to try and catch filesystems that 1453 * violate this rule. 1454 */ 1455 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1456 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(vfs_get_tree); 1461 1462 /* 1463 * Setup private BDI for given superblock. It gets automatically cleaned up 1464 * in generic_shutdown_super(). 1465 */ 1466 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1467 { 1468 struct backing_dev_info *bdi; 1469 int err; 1470 va_list args; 1471 1472 bdi = bdi_alloc(GFP_KERNEL); 1473 if (!bdi) 1474 return -ENOMEM; 1475 1476 bdi->name = sb->s_type->name; 1477 1478 va_start(args, fmt); 1479 err = bdi_register_va(bdi, fmt, args); 1480 va_end(args); 1481 if (err) { 1482 bdi_put(bdi); 1483 return err; 1484 } 1485 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1486 sb->s_bdi = bdi; 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL(super_setup_bdi_name); 1491 1492 /* 1493 * Setup private BDI for given superblock. I gets automatically cleaned up 1494 * in generic_shutdown_super(). 1495 */ 1496 int super_setup_bdi(struct super_block *sb) 1497 { 1498 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1499 1500 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1501 atomic_long_inc_return(&bdi_seq)); 1502 } 1503 EXPORT_SYMBOL(super_setup_bdi); 1504 1505 /* 1506 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1507 * instead. 1508 */ 1509 void __sb_end_write(struct super_block *sb, int level) 1510 { 1511 percpu_up_read(sb->s_writers.rw_sem + level-1); 1512 } 1513 EXPORT_SYMBOL(__sb_end_write); 1514 1515 /* 1516 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1517 * instead. 1518 */ 1519 int __sb_start_write(struct super_block *sb, int level, bool wait) 1520 { 1521 bool force_trylock = false; 1522 int ret = 1; 1523 1524 #ifdef CONFIG_LOCKDEP 1525 /* 1526 * We want lockdep to tell us about possible deadlocks with freezing 1527 * but it's it bit tricky to properly instrument it. Getting a freeze 1528 * protection works as getting a read lock but there are subtle 1529 * problems. XFS for example gets freeze protection on internal level 1530 * twice in some cases, which is OK only because we already hold a 1531 * freeze protection also on higher level. Due to these cases we have 1532 * to use wait == F (trylock mode) which must not fail. 1533 */ 1534 if (wait) { 1535 int i; 1536 1537 for (i = 0; i < level - 1; i++) 1538 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1539 force_trylock = true; 1540 break; 1541 } 1542 } 1543 #endif 1544 if (wait && !force_trylock) 1545 percpu_down_read(sb->s_writers.rw_sem + level-1); 1546 else 1547 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1548 1549 WARN_ON(force_trylock && !ret); 1550 return ret; 1551 } 1552 EXPORT_SYMBOL(__sb_start_write); 1553 1554 /** 1555 * sb_wait_write - wait until all writers to given file system finish 1556 * @sb: the super for which we wait 1557 * @level: type of writers we wait for (normal vs page fault) 1558 * 1559 * This function waits until there are no writers of given type to given file 1560 * system. 1561 */ 1562 static void sb_wait_write(struct super_block *sb, int level) 1563 { 1564 percpu_down_write(sb->s_writers.rw_sem + level-1); 1565 } 1566 1567 /* 1568 * We are going to return to userspace and forget about these locks, the 1569 * ownership goes to the caller of thaw_super() which does unlock(). 1570 */ 1571 static void lockdep_sb_freeze_release(struct super_block *sb) 1572 { 1573 int level; 1574 1575 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1576 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1577 } 1578 1579 /* 1580 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1581 */ 1582 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1583 { 1584 int level; 1585 1586 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1587 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1588 } 1589 1590 static void sb_freeze_unlock(struct super_block *sb) 1591 { 1592 int level; 1593 1594 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1595 percpu_up_write(sb->s_writers.rw_sem + level); 1596 } 1597 1598 /** 1599 * freeze_super - lock the filesystem and force it into a consistent state 1600 * @sb: the super to lock 1601 * 1602 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1603 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1604 * -EBUSY. 1605 * 1606 * During this function, sb->s_writers.frozen goes through these values: 1607 * 1608 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1609 * 1610 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1611 * writes should be blocked, though page faults are still allowed. We wait for 1612 * all writes to complete and then proceed to the next stage. 1613 * 1614 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1615 * but internal fs threads can still modify the filesystem (although they 1616 * should not dirty new pages or inodes), writeback can run etc. After waiting 1617 * for all running page faults we sync the filesystem which will clean all 1618 * dirty pages and inodes (no new dirty pages or inodes can be created when 1619 * sync is running). 1620 * 1621 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1622 * modification are blocked (e.g. XFS preallocation truncation on inode 1623 * reclaim). This is usually implemented by blocking new transactions for 1624 * filesystems that have them and need this additional guard. After all 1625 * internal writers are finished we call ->freeze_fs() to finish filesystem 1626 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1627 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1628 * 1629 * sb->s_writers.frozen is protected by sb->s_umount. 1630 */ 1631 int freeze_super(struct super_block *sb) 1632 { 1633 int ret; 1634 1635 atomic_inc(&sb->s_active); 1636 down_write(&sb->s_umount); 1637 if (sb->s_writers.frozen != SB_UNFROZEN) { 1638 deactivate_locked_super(sb); 1639 return -EBUSY; 1640 } 1641 1642 if (!(sb->s_flags & SB_BORN)) { 1643 up_write(&sb->s_umount); 1644 return 0; /* sic - it's "nothing to do" */ 1645 } 1646 1647 if (sb_rdonly(sb)) { 1648 /* Nothing to do really... */ 1649 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1650 up_write(&sb->s_umount); 1651 return 0; 1652 } 1653 1654 sb->s_writers.frozen = SB_FREEZE_WRITE; 1655 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1656 up_write(&sb->s_umount); 1657 sb_wait_write(sb, SB_FREEZE_WRITE); 1658 down_write(&sb->s_umount); 1659 1660 /* Now we go and block page faults... */ 1661 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1662 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1663 1664 /* All writers are done so after syncing there won't be dirty data */ 1665 sync_filesystem(sb); 1666 1667 /* Now wait for internal filesystem counter */ 1668 sb->s_writers.frozen = SB_FREEZE_FS; 1669 sb_wait_write(sb, SB_FREEZE_FS); 1670 1671 if (sb->s_op->freeze_fs) { 1672 ret = sb->s_op->freeze_fs(sb); 1673 if (ret) { 1674 printk(KERN_ERR 1675 "VFS:Filesystem freeze failed\n"); 1676 sb->s_writers.frozen = SB_UNFROZEN; 1677 sb_freeze_unlock(sb); 1678 wake_up(&sb->s_writers.wait_unfrozen); 1679 deactivate_locked_super(sb); 1680 return ret; 1681 } 1682 } 1683 /* 1684 * For debugging purposes so that fs can warn if it sees write activity 1685 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1686 */ 1687 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1688 lockdep_sb_freeze_release(sb); 1689 up_write(&sb->s_umount); 1690 return 0; 1691 } 1692 EXPORT_SYMBOL(freeze_super); 1693 1694 /** 1695 * thaw_super -- unlock filesystem 1696 * @sb: the super to thaw 1697 * 1698 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1699 */ 1700 static int thaw_super_locked(struct super_block *sb) 1701 { 1702 int error; 1703 1704 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1705 up_write(&sb->s_umount); 1706 return -EINVAL; 1707 } 1708 1709 if (sb_rdonly(sb)) { 1710 sb->s_writers.frozen = SB_UNFROZEN; 1711 goto out; 1712 } 1713 1714 lockdep_sb_freeze_acquire(sb); 1715 1716 if (sb->s_op->unfreeze_fs) { 1717 error = sb->s_op->unfreeze_fs(sb); 1718 if (error) { 1719 printk(KERN_ERR 1720 "VFS:Filesystem thaw failed\n"); 1721 lockdep_sb_freeze_release(sb); 1722 up_write(&sb->s_umount); 1723 return error; 1724 } 1725 } 1726 1727 sb->s_writers.frozen = SB_UNFROZEN; 1728 sb_freeze_unlock(sb); 1729 out: 1730 wake_up(&sb->s_writers.wait_unfrozen); 1731 deactivate_locked_super(sb); 1732 return 0; 1733 } 1734 1735 int thaw_super(struct super_block *sb) 1736 { 1737 down_write(&sb->s_umount); 1738 return thaw_super_locked(sb); 1739 } 1740 EXPORT_SYMBOL(thaw_super); 1741