xref: /openbmc/linux/fs/super.c (revision b3b77c8c)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/quotaops.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/writeback.h>		/* for the emergency remount stuff */
31 #include <linux/idr.h>
32 #include <linux/mutex.h>
33 #include <linux/backing-dev.h>
34 #include "internal.h"
35 
36 
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
39 
40 /**
41  *	alloc_super	-	create new superblock
42  *	@type:	filesystem type superblock should belong to
43  *
44  *	Allocates and initializes a new &struct super_block.  alloc_super()
45  *	returns a pointer new superblock or %NULL if allocation had failed.
46  */
47 static struct super_block *alloc_super(struct file_system_type *type)
48 {
49 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
50 	static const struct super_operations default_op;
51 
52 	if (s) {
53 		if (security_sb_alloc(s)) {
54 			kfree(s);
55 			s = NULL;
56 			goto out;
57 		}
58 		INIT_LIST_HEAD(&s->s_files);
59 		INIT_LIST_HEAD(&s->s_instances);
60 		INIT_HLIST_HEAD(&s->s_anon);
61 		INIT_LIST_HEAD(&s->s_inodes);
62 		INIT_LIST_HEAD(&s->s_dentry_lru);
63 		init_rwsem(&s->s_umount);
64 		mutex_init(&s->s_lock);
65 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
66 		/*
67 		 * The locking rules for s_lock are up to the
68 		 * filesystem. For example ext3fs has different
69 		 * lock ordering than usbfs:
70 		 */
71 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
72 		/*
73 		 * sget() can have s_umount recursion.
74 		 *
75 		 * When it cannot find a suitable sb, it allocates a new
76 		 * one (this one), and tries again to find a suitable old
77 		 * one.
78 		 *
79 		 * In case that succeeds, it will acquire the s_umount
80 		 * lock of the old one. Since these are clearly distrinct
81 		 * locks, and this object isn't exposed yet, there's no
82 		 * risk of deadlocks.
83 		 *
84 		 * Annotate this by putting this lock in a different
85 		 * subclass.
86 		 */
87 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
88 		s->s_count = 1;
89 		atomic_set(&s->s_active, 1);
90 		mutex_init(&s->s_vfs_rename_mutex);
91 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
92 		mutex_init(&s->s_dquot.dqio_mutex);
93 		mutex_init(&s->s_dquot.dqonoff_mutex);
94 		init_rwsem(&s->s_dquot.dqptr_sem);
95 		init_waitqueue_head(&s->s_wait_unfrozen);
96 		s->s_maxbytes = MAX_NON_LFS;
97 		s->dq_op = sb_dquot_ops;
98 		s->s_qcop = sb_quotactl_ops;
99 		s->s_op = &default_op;
100 		s->s_time_gran = 1000000000;
101 	}
102 out:
103 	return s;
104 }
105 
106 /**
107  *	destroy_super	-	frees a superblock
108  *	@s: superblock to free
109  *
110  *	Frees a superblock.
111  */
112 static inline void destroy_super(struct super_block *s)
113 {
114 	security_sb_free(s);
115 	kfree(s->s_subtype);
116 	kfree(s->s_options);
117 	kfree(s);
118 }
119 
120 /* Superblock refcounting  */
121 
122 /*
123  * Drop a superblock's refcount.  The caller must hold sb_lock.
124  */
125 void __put_super(struct super_block *sb)
126 {
127 	if (!--sb->s_count) {
128 		list_del_init(&sb->s_list);
129 		destroy_super(sb);
130 	}
131 }
132 
133 /**
134  *	put_super	-	drop a temporary reference to superblock
135  *	@sb: superblock in question
136  *
137  *	Drops a temporary reference, frees superblock if there's no
138  *	references left.
139  */
140 void put_super(struct super_block *sb)
141 {
142 	spin_lock(&sb_lock);
143 	__put_super(sb);
144 	spin_unlock(&sb_lock);
145 }
146 
147 
148 /**
149  *	deactivate_locked_super	-	drop an active reference to superblock
150  *	@s: superblock to deactivate
151  *
152  *	Drops an active reference to superblock, converting it into a temprory
153  *	one if there is no other active references left.  In that case we
154  *	tell fs driver to shut it down and drop the temporary reference we
155  *	had just acquired.
156  *
157  *	Caller holds exclusive lock on superblock; that lock is released.
158  */
159 void deactivate_locked_super(struct super_block *s)
160 {
161 	struct file_system_type *fs = s->s_type;
162 	if (atomic_dec_and_test(&s->s_active)) {
163 		vfs_dq_off(s, 0);
164 		fs->kill_sb(s);
165 		put_filesystem(fs);
166 		put_super(s);
167 	} else {
168 		up_write(&s->s_umount);
169 	}
170 }
171 
172 EXPORT_SYMBOL(deactivate_locked_super);
173 
174 /**
175  *	deactivate_super	-	drop an active reference to superblock
176  *	@s: superblock to deactivate
177  *
178  *	Variant of deactivate_locked_super(), except that superblock is *not*
179  *	locked by caller.  If we are going to drop the final active reference,
180  *	lock will be acquired prior to that.
181  */
182 void deactivate_super(struct super_block *s)
183 {
184         if (!atomic_add_unless(&s->s_active, -1, 1)) {
185 		down_write(&s->s_umount);
186 		deactivate_locked_super(s);
187 	}
188 }
189 
190 EXPORT_SYMBOL(deactivate_super);
191 
192 /**
193  *	grab_super - acquire an active reference
194  *	@s: reference we are trying to make active
195  *
196  *	Tries to acquire an active reference.  grab_super() is used when we
197  * 	had just found a superblock in super_blocks or fs_type->fs_supers
198  *	and want to turn it into a full-blown active reference.  grab_super()
199  *	is called with sb_lock held and drops it.  Returns 1 in case of
200  *	success, 0 if we had failed (superblock contents was already dead or
201  *	dying when grab_super() had been called).
202  */
203 static int grab_super(struct super_block *s) __releases(sb_lock)
204 {
205 	if (atomic_inc_not_zero(&s->s_active)) {
206 		spin_unlock(&sb_lock);
207 		return 1;
208 	}
209 	/* it's going away */
210 	s->s_count++;
211 	spin_unlock(&sb_lock);
212 	/* wait for it to die */
213 	down_write(&s->s_umount);
214 	up_write(&s->s_umount);
215 	put_super(s);
216 	return 0;
217 }
218 
219 /*
220  * Superblock locking.  We really ought to get rid of these two.
221  */
222 void lock_super(struct super_block * sb)
223 {
224 	get_fs_excl();
225 	mutex_lock(&sb->s_lock);
226 }
227 
228 void unlock_super(struct super_block * sb)
229 {
230 	put_fs_excl();
231 	mutex_unlock(&sb->s_lock);
232 }
233 
234 EXPORT_SYMBOL(lock_super);
235 EXPORT_SYMBOL(unlock_super);
236 
237 /**
238  *	generic_shutdown_super	-	common helper for ->kill_sb()
239  *	@sb: superblock to kill
240  *
241  *	generic_shutdown_super() does all fs-independent work on superblock
242  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
243  *	that need destruction out of superblock, call generic_shutdown_super()
244  *	and release aforementioned objects.  Note: dentries and inodes _are_
245  *	taken care of and do not need specific handling.
246  *
247  *	Upon calling this function, the filesystem may no longer alter or
248  *	rearrange the set of dentries belonging to this super_block, nor may it
249  *	change the attachments of dentries to inodes.
250  */
251 void generic_shutdown_super(struct super_block *sb)
252 {
253 	const struct super_operations *sop = sb->s_op;
254 
255 
256 	if (sb->s_root) {
257 		shrink_dcache_for_umount(sb);
258 		sync_filesystem(sb);
259 		get_fs_excl();
260 		sb->s_flags &= ~MS_ACTIVE;
261 
262 		/* bad name - it should be evict_inodes() */
263 		invalidate_inodes(sb);
264 
265 		if (sop->put_super)
266 			sop->put_super(sb);
267 
268 		/* Forget any remaining inodes */
269 		if (invalidate_inodes(sb)) {
270 			printk("VFS: Busy inodes after unmount of %s. "
271 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
272 			   sb->s_id);
273 		}
274 		put_fs_excl();
275 	}
276 	spin_lock(&sb_lock);
277 	/* should be initialized for __put_super_and_need_restart() */
278 	list_del_init(&sb->s_instances);
279 	spin_unlock(&sb_lock);
280 	up_write(&sb->s_umount);
281 }
282 
283 EXPORT_SYMBOL(generic_shutdown_super);
284 
285 /**
286  *	sget	-	find or create a superblock
287  *	@type:	filesystem type superblock should belong to
288  *	@test:	comparison callback
289  *	@set:	setup callback
290  *	@data:	argument to each of them
291  */
292 struct super_block *sget(struct file_system_type *type,
293 			int (*test)(struct super_block *,void *),
294 			int (*set)(struct super_block *,void *),
295 			void *data)
296 {
297 	struct super_block *s = NULL;
298 	struct super_block *old;
299 	int err;
300 
301 retry:
302 	spin_lock(&sb_lock);
303 	if (test) {
304 		list_for_each_entry(old, &type->fs_supers, s_instances) {
305 			if (!test(old, data))
306 				continue;
307 			if (!grab_super(old))
308 				goto retry;
309 			if (s) {
310 				up_write(&s->s_umount);
311 				destroy_super(s);
312 			}
313 			down_write(&old->s_umount);
314 			return old;
315 		}
316 	}
317 	if (!s) {
318 		spin_unlock(&sb_lock);
319 		s = alloc_super(type);
320 		if (!s)
321 			return ERR_PTR(-ENOMEM);
322 		goto retry;
323 	}
324 
325 	err = set(s, data);
326 	if (err) {
327 		spin_unlock(&sb_lock);
328 		up_write(&s->s_umount);
329 		destroy_super(s);
330 		return ERR_PTR(err);
331 	}
332 	s->s_type = type;
333 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
334 	list_add_tail(&s->s_list, &super_blocks);
335 	list_add(&s->s_instances, &type->fs_supers);
336 	spin_unlock(&sb_lock);
337 	get_filesystem(type);
338 	return s;
339 }
340 
341 EXPORT_SYMBOL(sget);
342 
343 void drop_super(struct super_block *sb)
344 {
345 	up_read(&sb->s_umount);
346 	put_super(sb);
347 }
348 
349 EXPORT_SYMBOL(drop_super);
350 
351 /**
352  * sync_supers - helper for periodic superblock writeback
353  *
354  * Call the write_super method if present on all dirty superblocks in
355  * the system.  This is for the periodic writeback used by most older
356  * filesystems.  For data integrity superblock writeback use
357  * sync_filesystems() instead.
358  *
359  * Note: check the dirty flag before waiting, so we don't
360  * hold up the sync while mounting a device. (The newly
361  * mounted device won't need syncing.)
362  */
363 void sync_supers(void)
364 {
365 	struct super_block *sb, *n;
366 
367 	spin_lock(&sb_lock);
368 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
369 		if (list_empty(&sb->s_instances))
370 			continue;
371 		if (sb->s_op->write_super && sb->s_dirt) {
372 			sb->s_count++;
373 			spin_unlock(&sb_lock);
374 
375 			down_read(&sb->s_umount);
376 			if (sb->s_root && sb->s_dirt)
377 				sb->s_op->write_super(sb);
378 			up_read(&sb->s_umount);
379 
380 			spin_lock(&sb_lock);
381 			__put_super(sb);
382 		}
383 	}
384 	spin_unlock(&sb_lock);
385 }
386 
387 /**
388  *	iterate_supers - call function for all active superblocks
389  *	@f: function to call
390  *	@arg: argument to pass to it
391  *
392  *	Scans the superblock list and calls given function, passing it
393  *	locked superblock and given argument.
394  */
395 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
396 {
397 	struct super_block *sb, *n;
398 
399 	spin_lock(&sb_lock);
400 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
401 		if (list_empty(&sb->s_instances))
402 			continue;
403 		sb->s_count++;
404 		spin_unlock(&sb_lock);
405 
406 		down_read(&sb->s_umount);
407 		if (sb->s_root)
408 			f(sb, arg);
409 		up_read(&sb->s_umount);
410 
411 		spin_lock(&sb_lock);
412 		__put_super(sb);
413 	}
414 	spin_unlock(&sb_lock);
415 }
416 
417 /**
418  *	get_super - get the superblock of a device
419  *	@bdev: device to get the superblock for
420  *
421  *	Scans the superblock list and finds the superblock of the file system
422  *	mounted on the device given. %NULL is returned if no match is found.
423  */
424 
425 struct super_block *get_super(struct block_device *bdev)
426 {
427 	struct super_block *sb;
428 
429 	if (!bdev)
430 		return NULL;
431 
432 	spin_lock(&sb_lock);
433 rescan:
434 	list_for_each_entry(sb, &super_blocks, s_list) {
435 		if (list_empty(&sb->s_instances))
436 			continue;
437 		if (sb->s_bdev == bdev) {
438 			sb->s_count++;
439 			spin_unlock(&sb_lock);
440 			down_read(&sb->s_umount);
441 			/* still alive? */
442 			if (sb->s_root)
443 				return sb;
444 			up_read(&sb->s_umount);
445 			/* nope, got unmounted */
446 			spin_lock(&sb_lock);
447 			__put_super(sb);
448 			goto rescan;
449 		}
450 	}
451 	spin_unlock(&sb_lock);
452 	return NULL;
453 }
454 
455 EXPORT_SYMBOL(get_super);
456 
457 /**
458  * get_active_super - get an active reference to the superblock of a device
459  * @bdev: device to get the superblock for
460  *
461  * Scans the superblock list and finds the superblock of the file system
462  * mounted on the device given.  Returns the superblock with an active
463  * reference or %NULL if none was found.
464  */
465 struct super_block *get_active_super(struct block_device *bdev)
466 {
467 	struct super_block *sb;
468 
469 	if (!bdev)
470 		return NULL;
471 
472 restart:
473 	spin_lock(&sb_lock);
474 	list_for_each_entry(sb, &super_blocks, s_list) {
475 		if (list_empty(&sb->s_instances))
476 			continue;
477 		if (sb->s_bdev == bdev) {
478 			if (grab_super(sb)) /* drops sb_lock */
479 				return sb;
480 			else
481 				goto restart;
482 		}
483 	}
484 	spin_unlock(&sb_lock);
485 	return NULL;
486 }
487 
488 struct super_block *user_get_super(dev_t dev)
489 {
490 	struct super_block *sb;
491 
492 	spin_lock(&sb_lock);
493 rescan:
494 	list_for_each_entry(sb, &super_blocks, s_list) {
495 		if (list_empty(&sb->s_instances))
496 			continue;
497 		if (sb->s_dev ==  dev) {
498 			sb->s_count++;
499 			spin_unlock(&sb_lock);
500 			down_read(&sb->s_umount);
501 			/* still alive? */
502 			if (sb->s_root)
503 				return sb;
504 			up_read(&sb->s_umount);
505 			/* nope, got unmounted */
506 			spin_lock(&sb_lock);
507 			__put_super(sb);
508 			goto rescan;
509 		}
510 	}
511 	spin_unlock(&sb_lock);
512 	return NULL;
513 }
514 
515 /**
516  *	do_remount_sb - asks filesystem to change mount options.
517  *	@sb:	superblock in question
518  *	@flags:	numeric part of options
519  *	@data:	the rest of options
520  *      @force: whether or not to force the change
521  *
522  *	Alters the mount options of a mounted file system.
523  */
524 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
525 {
526 	int retval;
527 	int remount_rw, remount_ro;
528 
529 	if (sb->s_frozen != SB_UNFROZEN)
530 		return -EBUSY;
531 
532 #ifdef CONFIG_BLOCK
533 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
534 		return -EACCES;
535 #endif
536 
537 	if (flags & MS_RDONLY)
538 		acct_auto_close(sb);
539 	shrink_dcache_sb(sb);
540 	sync_filesystem(sb);
541 
542 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
543 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
544 
545 	/* If we are remounting RDONLY and current sb is read/write,
546 	   make sure there are no rw files opened */
547 	if (remount_ro) {
548 		if (force)
549 			mark_files_ro(sb);
550 		else if (!fs_may_remount_ro(sb))
551 			return -EBUSY;
552 		retval = vfs_dq_off(sb, 1);
553 		if (retval < 0 && retval != -ENOSYS)
554 			return -EBUSY;
555 	}
556 
557 	if (sb->s_op->remount_fs) {
558 		retval = sb->s_op->remount_fs(sb, &flags, data);
559 		if (retval)
560 			return retval;
561 	}
562 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
563 	if (remount_rw)
564 		vfs_dq_quota_on_remount(sb);
565 	/*
566 	 * Some filesystems modify their metadata via some other path than the
567 	 * bdev buffer cache (eg. use a private mapping, or directories in
568 	 * pagecache, etc). Also file data modifications go via their own
569 	 * mappings. So If we try to mount readonly then copy the filesystem
570 	 * from bdev, we could get stale data, so invalidate it to give a best
571 	 * effort at coherency.
572 	 */
573 	if (remount_ro && sb->s_bdev)
574 		invalidate_bdev(sb->s_bdev);
575 	return 0;
576 }
577 
578 static void do_emergency_remount(struct work_struct *work)
579 {
580 	struct super_block *sb, *n;
581 
582 	spin_lock(&sb_lock);
583 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
584 		if (list_empty(&sb->s_instances))
585 			continue;
586 		sb->s_count++;
587 		spin_unlock(&sb_lock);
588 		down_write(&sb->s_umount);
589 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
590 			/*
591 			 * What lock protects sb->s_flags??
592 			 */
593 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
594 		}
595 		up_write(&sb->s_umount);
596 		spin_lock(&sb_lock);
597 		__put_super(sb);
598 	}
599 	spin_unlock(&sb_lock);
600 	kfree(work);
601 	printk("Emergency Remount complete\n");
602 }
603 
604 void emergency_remount(void)
605 {
606 	struct work_struct *work;
607 
608 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
609 	if (work) {
610 		INIT_WORK(work, do_emergency_remount);
611 		schedule_work(work);
612 	}
613 }
614 
615 /*
616  * Unnamed block devices are dummy devices used by virtual
617  * filesystems which don't use real block-devices.  -- jrs
618  */
619 
620 static DEFINE_IDA(unnamed_dev_ida);
621 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
622 static int unnamed_dev_start = 0; /* don't bother trying below it */
623 
624 int set_anon_super(struct super_block *s, void *data)
625 {
626 	int dev;
627 	int error;
628 
629  retry:
630 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
631 		return -ENOMEM;
632 	spin_lock(&unnamed_dev_lock);
633 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
634 	if (!error)
635 		unnamed_dev_start = dev + 1;
636 	spin_unlock(&unnamed_dev_lock);
637 	if (error == -EAGAIN)
638 		/* We raced and lost with another CPU. */
639 		goto retry;
640 	else if (error)
641 		return -EAGAIN;
642 
643 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
644 		spin_lock(&unnamed_dev_lock);
645 		ida_remove(&unnamed_dev_ida, dev);
646 		if (unnamed_dev_start > dev)
647 			unnamed_dev_start = dev;
648 		spin_unlock(&unnamed_dev_lock);
649 		return -EMFILE;
650 	}
651 	s->s_dev = MKDEV(0, dev & MINORMASK);
652 	s->s_bdi = &noop_backing_dev_info;
653 	return 0;
654 }
655 
656 EXPORT_SYMBOL(set_anon_super);
657 
658 void kill_anon_super(struct super_block *sb)
659 {
660 	int slot = MINOR(sb->s_dev);
661 
662 	generic_shutdown_super(sb);
663 	spin_lock(&unnamed_dev_lock);
664 	ida_remove(&unnamed_dev_ida, slot);
665 	if (slot < unnamed_dev_start)
666 		unnamed_dev_start = slot;
667 	spin_unlock(&unnamed_dev_lock);
668 }
669 
670 EXPORT_SYMBOL(kill_anon_super);
671 
672 void kill_litter_super(struct super_block *sb)
673 {
674 	if (sb->s_root)
675 		d_genocide(sb->s_root);
676 	kill_anon_super(sb);
677 }
678 
679 EXPORT_SYMBOL(kill_litter_super);
680 
681 static int ns_test_super(struct super_block *sb, void *data)
682 {
683 	return sb->s_fs_info == data;
684 }
685 
686 static int ns_set_super(struct super_block *sb, void *data)
687 {
688 	sb->s_fs_info = data;
689 	return set_anon_super(sb, NULL);
690 }
691 
692 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
693 	int (*fill_super)(struct super_block *, void *, int),
694 	struct vfsmount *mnt)
695 {
696 	struct super_block *sb;
697 
698 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
699 	if (IS_ERR(sb))
700 		return PTR_ERR(sb);
701 
702 	if (!sb->s_root) {
703 		int err;
704 		sb->s_flags = flags;
705 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
706 		if (err) {
707 			deactivate_locked_super(sb);
708 			return err;
709 		}
710 
711 		sb->s_flags |= MS_ACTIVE;
712 	}
713 
714 	simple_set_mnt(mnt, sb);
715 	return 0;
716 }
717 
718 EXPORT_SYMBOL(get_sb_ns);
719 
720 #ifdef CONFIG_BLOCK
721 static int set_bdev_super(struct super_block *s, void *data)
722 {
723 	s->s_bdev = data;
724 	s->s_dev = s->s_bdev->bd_dev;
725 
726 	/*
727 	 * We set the bdi here to the queue backing, file systems can
728 	 * overwrite this in ->fill_super()
729 	 */
730 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
731 	return 0;
732 }
733 
734 static int test_bdev_super(struct super_block *s, void *data)
735 {
736 	return (void *)s->s_bdev == data;
737 }
738 
739 int get_sb_bdev(struct file_system_type *fs_type,
740 	int flags, const char *dev_name, void *data,
741 	int (*fill_super)(struct super_block *, void *, int),
742 	struct vfsmount *mnt)
743 {
744 	struct block_device *bdev;
745 	struct super_block *s;
746 	fmode_t mode = FMODE_READ;
747 	int error = 0;
748 
749 	if (!(flags & MS_RDONLY))
750 		mode |= FMODE_WRITE;
751 
752 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
753 	if (IS_ERR(bdev))
754 		return PTR_ERR(bdev);
755 
756 	/*
757 	 * once the super is inserted into the list by sget, s_umount
758 	 * will protect the lockfs code from trying to start a snapshot
759 	 * while we are mounting
760 	 */
761 	mutex_lock(&bdev->bd_fsfreeze_mutex);
762 	if (bdev->bd_fsfreeze_count > 0) {
763 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
764 		error = -EBUSY;
765 		goto error_bdev;
766 	}
767 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
768 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
769 	if (IS_ERR(s))
770 		goto error_s;
771 
772 	if (s->s_root) {
773 		if ((flags ^ s->s_flags) & MS_RDONLY) {
774 			deactivate_locked_super(s);
775 			error = -EBUSY;
776 			goto error_bdev;
777 		}
778 
779 		close_bdev_exclusive(bdev, mode);
780 	} else {
781 		char b[BDEVNAME_SIZE];
782 
783 		s->s_flags = flags;
784 		s->s_mode = mode;
785 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
786 		sb_set_blocksize(s, block_size(bdev));
787 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
788 		if (error) {
789 			deactivate_locked_super(s);
790 			goto error;
791 		}
792 
793 		s->s_flags |= MS_ACTIVE;
794 		bdev->bd_super = s;
795 	}
796 
797 	simple_set_mnt(mnt, s);
798 	return 0;
799 
800 error_s:
801 	error = PTR_ERR(s);
802 error_bdev:
803 	close_bdev_exclusive(bdev, mode);
804 error:
805 	return error;
806 }
807 
808 EXPORT_SYMBOL(get_sb_bdev);
809 
810 void kill_block_super(struct super_block *sb)
811 {
812 	struct block_device *bdev = sb->s_bdev;
813 	fmode_t mode = sb->s_mode;
814 
815 	bdev->bd_super = NULL;
816 	generic_shutdown_super(sb);
817 	sync_blockdev(bdev);
818 	close_bdev_exclusive(bdev, mode);
819 }
820 
821 EXPORT_SYMBOL(kill_block_super);
822 #endif
823 
824 int get_sb_nodev(struct file_system_type *fs_type,
825 	int flags, void *data,
826 	int (*fill_super)(struct super_block *, void *, int),
827 	struct vfsmount *mnt)
828 {
829 	int error;
830 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
831 
832 	if (IS_ERR(s))
833 		return PTR_ERR(s);
834 
835 	s->s_flags = flags;
836 
837 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
838 	if (error) {
839 		deactivate_locked_super(s);
840 		return error;
841 	}
842 	s->s_flags |= MS_ACTIVE;
843 	simple_set_mnt(mnt, s);
844 	return 0;
845 }
846 
847 EXPORT_SYMBOL(get_sb_nodev);
848 
849 static int compare_single(struct super_block *s, void *p)
850 {
851 	return 1;
852 }
853 
854 int get_sb_single(struct file_system_type *fs_type,
855 	int flags, void *data,
856 	int (*fill_super)(struct super_block *, void *, int),
857 	struct vfsmount *mnt)
858 {
859 	struct super_block *s;
860 	int error;
861 
862 	s = sget(fs_type, compare_single, set_anon_super, NULL);
863 	if (IS_ERR(s))
864 		return PTR_ERR(s);
865 	if (!s->s_root) {
866 		s->s_flags = flags;
867 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
868 		if (error) {
869 			deactivate_locked_super(s);
870 			return error;
871 		}
872 		s->s_flags |= MS_ACTIVE;
873 	} else {
874 		do_remount_sb(s, flags, data, 0);
875 	}
876 	simple_set_mnt(mnt, s);
877 	return 0;
878 }
879 
880 EXPORT_SYMBOL(get_sb_single);
881 
882 struct vfsmount *
883 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
884 {
885 	struct vfsmount *mnt;
886 	char *secdata = NULL;
887 	int error;
888 
889 	if (!type)
890 		return ERR_PTR(-ENODEV);
891 
892 	error = -ENOMEM;
893 	mnt = alloc_vfsmnt(name);
894 	if (!mnt)
895 		goto out;
896 
897 	if (flags & MS_KERNMOUNT)
898 		mnt->mnt_flags = MNT_INTERNAL;
899 
900 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
901 		secdata = alloc_secdata();
902 		if (!secdata)
903 			goto out_mnt;
904 
905 		error = security_sb_copy_data(data, secdata);
906 		if (error)
907 			goto out_free_secdata;
908 	}
909 
910 	error = type->get_sb(type, flags, name, data, mnt);
911 	if (error < 0)
912 		goto out_free_secdata;
913 	BUG_ON(!mnt->mnt_sb);
914 	WARN_ON(!mnt->mnt_sb->s_bdi);
915 
916 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
917 	if (error)
918 		goto out_sb;
919 
920 	/*
921 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
922 	 * but s_maxbytes was an unsigned long long for many releases. Throw
923 	 * this warning for a little while to try and catch filesystems that
924 	 * violate this rule. This warning should be either removed or
925 	 * converted to a BUG() in 2.6.34.
926 	 */
927 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
928 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
929 
930 	mnt->mnt_mountpoint = mnt->mnt_root;
931 	mnt->mnt_parent = mnt;
932 	up_write(&mnt->mnt_sb->s_umount);
933 	free_secdata(secdata);
934 	return mnt;
935 out_sb:
936 	dput(mnt->mnt_root);
937 	deactivate_locked_super(mnt->mnt_sb);
938 out_free_secdata:
939 	free_secdata(secdata);
940 out_mnt:
941 	free_vfsmnt(mnt);
942 out:
943 	return ERR_PTR(error);
944 }
945 
946 EXPORT_SYMBOL_GPL(vfs_kern_mount);
947 
948 /**
949  * freeze_super -- lock the filesystem and force it into a consistent state
950  * @super: the super to lock
951  *
952  * Syncs the super to make sure the filesystem is consistent and calls the fs's
953  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
954  * -EBUSY.
955  */
956 int freeze_super(struct super_block *sb)
957 {
958 	int ret;
959 
960 	atomic_inc(&sb->s_active);
961 	down_write(&sb->s_umount);
962 	if (sb->s_frozen) {
963 		deactivate_locked_super(sb);
964 		return -EBUSY;
965 	}
966 
967 	if (sb->s_flags & MS_RDONLY) {
968 		sb->s_frozen = SB_FREEZE_TRANS;
969 		smp_wmb();
970 		up_write(&sb->s_umount);
971 		return 0;
972 	}
973 
974 	sb->s_frozen = SB_FREEZE_WRITE;
975 	smp_wmb();
976 
977 	sync_filesystem(sb);
978 
979 	sb->s_frozen = SB_FREEZE_TRANS;
980 	smp_wmb();
981 
982 	sync_blockdev(sb->s_bdev);
983 	if (sb->s_op->freeze_fs) {
984 		ret = sb->s_op->freeze_fs(sb);
985 		if (ret) {
986 			printk(KERN_ERR
987 				"VFS:Filesystem freeze failed\n");
988 			sb->s_frozen = SB_UNFROZEN;
989 			deactivate_locked_super(sb);
990 			return ret;
991 		}
992 	}
993 	up_write(&sb->s_umount);
994 	return 0;
995 }
996 EXPORT_SYMBOL(freeze_super);
997 
998 /**
999  * thaw_super -- unlock filesystem
1000  * @sb: the super to thaw
1001  *
1002  * Unlocks the filesystem and marks it writeable again after freeze_super().
1003  */
1004 int thaw_super(struct super_block *sb)
1005 {
1006 	int error;
1007 
1008 	down_write(&sb->s_umount);
1009 	if (sb->s_frozen == SB_UNFROZEN) {
1010 		up_write(&sb->s_umount);
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (sb->s_flags & MS_RDONLY)
1015 		goto out;
1016 
1017 	if (sb->s_op->unfreeze_fs) {
1018 		error = sb->s_op->unfreeze_fs(sb);
1019 		if (error) {
1020 			printk(KERN_ERR
1021 				"VFS:Filesystem thaw failed\n");
1022 			sb->s_frozen = SB_FREEZE_TRANS;
1023 			up_write(&sb->s_umount);
1024 			return error;
1025 		}
1026 	}
1027 
1028 out:
1029 	sb->s_frozen = SB_UNFROZEN;
1030 	smp_wmb();
1031 	wake_up(&sb->s_wait_unfrozen);
1032 	deactivate_locked_super(sb);
1033 
1034 	return 0;
1035 }
1036 EXPORT_SYMBOL(thaw_super);
1037 
1038 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1039 {
1040 	int err;
1041 	const char *subtype = strchr(fstype, '.');
1042 	if (subtype) {
1043 		subtype++;
1044 		err = -EINVAL;
1045 		if (!subtype[0])
1046 			goto err;
1047 	} else
1048 		subtype = "";
1049 
1050 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1051 	err = -ENOMEM;
1052 	if (!mnt->mnt_sb->s_subtype)
1053 		goto err;
1054 	return mnt;
1055 
1056  err:
1057 	mntput(mnt);
1058 	return ERR_PTR(err);
1059 }
1060 
1061 struct vfsmount *
1062 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1063 {
1064 	struct file_system_type *type = get_fs_type(fstype);
1065 	struct vfsmount *mnt;
1066 	if (!type)
1067 		return ERR_PTR(-ENODEV);
1068 	mnt = vfs_kern_mount(type, flags, name, data);
1069 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1070 	    !mnt->mnt_sb->s_subtype)
1071 		mnt = fs_set_subtype(mnt, fstype);
1072 	put_filesystem(type);
1073 	return mnt;
1074 }
1075 EXPORT_SYMBOL_GPL(do_kern_mount);
1076 
1077 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1078 {
1079 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1080 }
1081 
1082 EXPORT_SYMBOL_GPL(kern_mount_data);
1083