xref: /openbmc/linux/fs/super.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43 
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 	"sb_writers",
46 	"sb_pagefaults",
47 	"sb_internal",
48 };
49 
50 /*
51  * One thing we have to be careful of with a per-sb shrinker is that we don't
52  * drop the last active reference to the superblock from within the shrinker.
53  * If that happens we could trigger unregistering the shrinker from within the
54  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55  * take a passive reference to the superblock to avoid this from occurring.
56  */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 				      struct shrink_control *sc)
59 {
60 	struct super_block *sb;
61 	long	fs_objects = 0;
62 	long	total_objects;
63 	long	freed = 0;
64 	long	dentries;
65 	long	inodes;
66 
67 	sb = container_of(shrink, struct super_block, s_shrink);
68 
69 	/*
70 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
71 	 * to recurse into the FS that called us in clear_inode() and friends..
72 	 */
73 	if (!(sc->gfp_mask & __GFP_FS))
74 		return SHRINK_STOP;
75 
76 	if (!trylock_super(sb))
77 		return SHRINK_STOP;
78 
79 	if (sb->s_op->nr_cached_objects)
80 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81 
82 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 	total_objects = dentries + inodes + fs_objects + 1;
85 	if (!total_objects)
86 		total_objects = 1;
87 
88 	/* proportion the scan between the caches */
89 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92 
93 	/*
94 	 * prune the dcache first as the icache is pinned by it, then
95 	 * prune the icache, followed by the filesystem specific caches
96 	 *
97 	 * Ensure that we always scan at least one object - memcg kmem
98 	 * accounting uses this to fully empty the caches.
99 	 */
100 	sc->nr_to_scan = dentries + 1;
101 	freed = prune_dcache_sb(sb, sc);
102 	sc->nr_to_scan = inodes + 1;
103 	freed += prune_icache_sb(sb, sc);
104 
105 	if (fs_objects) {
106 		sc->nr_to_scan = fs_objects + 1;
107 		freed += sb->s_op->free_cached_objects(sb, sc);
108 	}
109 
110 	up_read(&sb->s_umount);
111 	return freed;
112 }
113 
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 				       struct shrink_control *sc)
116 {
117 	struct super_block *sb;
118 	long	total_objects = 0;
119 
120 	sb = container_of(shrink, struct super_block, s_shrink);
121 
122 	/*
123 	 * Don't call trylock_super as it is a potential
124 	 * scalability bottleneck. The counts could get updated
125 	 * between super_cache_count and super_cache_scan anyway.
126 	 * Call to super_cache_count with shrinker_rwsem held
127 	 * ensures the safety of call to list_lru_shrink_count() and
128 	 * s_op->nr_cached_objects().
129 	 */
130 	if (sb->s_op && sb->s_op->nr_cached_objects)
131 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
132 
133 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135 
136 	total_objects = vfs_pressure_ratio(total_objects);
137 	return total_objects;
138 }
139 
140 static void destroy_super_work(struct work_struct *work)
141 {
142 	struct super_block *s = container_of(work, struct super_block,
143 							destroy_work);
144 	int i;
145 
146 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 	kfree(s);
149 }
150 
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 	struct super_block *s = container_of(head, struct super_block, rcu);
154 	INIT_WORK(&s->destroy_work, destroy_super_work);
155 	schedule_work(&s->destroy_work);
156 }
157 
158 /**
159  *	destroy_super	-	frees a superblock
160  *	@s: superblock to free
161  *
162  *	Frees a superblock.
163  */
164 static void destroy_super(struct super_block *s)
165 {
166 	list_lru_destroy(&s->s_dentry_lru);
167 	list_lru_destroy(&s->s_inode_lru);
168 	security_sb_free(s);
169 	WARN_ON(!list_empty(&s->s_mounts));
170 	put_user_ns(s->s_user_ns);
171 	kfree(s->s_subtype);
172 	call_rcu(&s->rcu, destroy_super_rcu);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 
197 	if (security_sb_alloc(s))
198 		goto fail;
199 
200 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 					sb_writers_name[i],
203 					&type->s_writers_key[i]))
204 			goto fail;
205 	}
206 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 	s->s_bdi = &noop_backing_dev_info;
208 	s->s_flags = flags;
209 	if (s->s_user_ns != &init_user_ns)
210 		s->s_iflags |= SB_I_NODEV;
211 	INIT_HLIST_NODE(&s->s_instances);
212 	INIT_HLIST_BL_HEAD(&s->s_anon);
213 	mutex_init(&s->s_sync_lock);
214 	INIT_LIST_HEAD(&s->s_inodes);
215 	spin_lock_init(&s->s_inode_list_lock);
216 	INIT_LIST_HEAD(&s->s_inodes_wb);
217 	spin_lock_init(&s->s_inode_wblist_lock);
218 
219 	if (list_lru_init_memcg(&s->s_dentry_lru))
220 		goto fail;
221 	if (list_lru_init_memcg(&s->s_inode_lru))
222 		goto fail;
223 
224 	init_rwsem(&s->s_umount);
225 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 	/*
227 	 * sget() can have s_umount recursion.
228 	 *
229 	 * When it cannot find a suitable sb, it allocates a new
230 	 * one (this one), and tries again to find a suitable old
231 	 * one.
232 	 *
233 	 * In case that succeeds, it will acquire the s_umount
234 	 * lock of the old one. Since these are clearly distrinct
235 	 * locks, and this object isn't exposed yet, there's no
236 	 * risk of deadlocks.
237 	 *
238 	 * Annotate this by putting this lock in a different
239 	 * subclass.
240 	 */
241 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 	s->s_count = 1;
243 	atomic_set(&s->s_active, 1);
244 	mutex_init(&s->s_vfs_rename_mutex);
245 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 	init_rwsem(&s->s_dquot.dqio_sem);
247 	s->s_maxbytes = MAX_NON_LFS;
248 	s->s_op = &default_op;
249 	s->s_time_gran = 1000000000;
250 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
251 
252 	s->s_shrink.seeks = DEFAULT_SEEKS;
253 	s->s_shrink.scan_objects = super_cache_scan;
254 	s->s_shrink.count_objects = super_cache_count;
255 	s->s_shrink.batch = 1024;
256 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 	return s;
258 
259 fail:
260 	destroy_super(s);
261 	return NULL;
262 }
263 
264 /* Superblock refcounting  */
265 
266 /*
267  * Drop a superblock's refcount.  The caller must hold sb_lock.
268  */
269 static void __put_super(struct super_block *sb)
270 {
271 	if (!--sb->s_count) {
272 		list_del_init(&sb->s_list);
273 		destroy_super(sb);
274 	}
275 }
276 
277 /**
278  *	put_super	-	drop a temporary reference to superblock
279  *	@sb: superblock in question
280  *
281  *	Drops a temporary reference, frees superblock if there's no
282  *	references left.
283  */
284 static void put_super(struct super_block *sb)
285 {
286 	spin_lock(&sb_lock);
287 	__put_super(sb);
288 	spin_unlock(&sb_lock);
289 }
290 
291 
292 /**
293  *	deactivate_locked_super	-	drop an active reference to superblock
294  *	@s: superblock to deactivate
295  *
296  *	Drops an active reference to superblock, converting it into a temporary
297  *	one if there is no other active references left.  In that case we
298  *	tell fs driver to shut it down and drop the temporary reference we
299  *	had just acquired.
300  *
301  *	Caller holds exclusive lock on superblock; that lock is released.
302  */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 	struct file_system_type *fs = s->s_type;
306 	if (atomic_dec_and_test(&s->s_active)) {
307 		cleancache_invalidate_fs(s);
308 		unregister_shrinker(&s->s_shrink);
309 		fs->kill_sb(s);
310 
311 		/*
312 		 * Since list_lru_destroy() may sleep, we cannot call it from
313 		 * put_super(), where we hold the sb_lock. Therefore we destroy
314 		 * the lru lists right now.
315 		 */
316 		list_lru_destroy(&s->s_dentry_lru);
317 		list_lru_destroy(&s->s_inode_lru);
318 
319 		put_filesystem(fs);
320 		put_super(s);
321 	} else {
322 		up_write(&s->s_umount);
323 	}
324 }
325 
326 EXPORT_SYMBOL(deactivate_locked_super);
327 
328 /**
329  *	deactivate_super	-	drop an active reference to superblock
330  *	@s: superblock to deactivate
331  *
332  *	Variant of deactivate_locked_super(), except that superblock is *not*
333  *	locked by caller.  If we are going to drop the final active reference,
334  *	lock will be acquired prior to that.
335  */
336 void deactivate_super(struct super_block *s)
337 {
338         if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 		down_write(&s->s_umount);
340 		deactivate_locked_super(s);
341 	}
342 }
343 
344 EXPORT_SYMBOL(deactivate_super);
345 
346 /**
347  *	grab_super - acquire an active reference
348  *	@s: reference we are trying to make active
349  *
350  *	Tries to acquire an active reference.  grab_super() is used when we
351  * 	had just found a superblock in super_blocks or fs_type->fs_supers
352  *	and want to turn it into a full-blown active reference.  grab_super()
353  *	is called with sb_lock held and drops it.  Returns 1 in case of
354  *	success, 0 if we had failed (superblock contents was already dead or
355  *	dying when grab_super() had been called).  Note that this is only
356  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
357  *	of their type), so increment of ->s_count is OK here.
358  */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 	s->s_count++;
362 	spin_unlock(&sb_lock);
363 	down_write(&s->s_umount);
364 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 		put_super(s);
366 		return 1;
367 	}
368 	up_write(&s->s_umount);
369 	put_super(s);
370 	return 0;
371 }
372 
373 /*
374  *	trylock_super - try to grab ->s_umount shared
375  *	@sb: reference we are trying to grab
376  *
377  *	Try to prevent fs shutdown.  This is used in places where we
378  *	cannot take an active reference but we need to ensure that the
379  *	filesystem is not shut down while we are working on it. It returns
380  *	false if we cannot acquire s_umount or if we lose the race and
381  *	filesystem already got into shutdown, and returns true with the s_umount
382  *	lock held in read mode in case of success. On successful return,
383  *	the caller must drop the s_umount lock when done.
384  *
385  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386  *	The reason why it's safe is that we are OK with doing trylock instead
387  *	of down_read().  There's a couple of places that are OK with that, but
388  *	it's very much not a general-purpose interface.
389  */
390 bool trylock_super(struct super_block *sb)
391 {
392 	if (down_read_trylock(&sb->s_umount)) {
393 		if (!hlist_unhashed(&sb->s_instances) &&
394 		    sb->s_root && (sb->s_flags & SB_BORN))
395 			return true;
396 		up_read(&sb->s_umount);
397 	}
398 
399 	return false;
400 }
401 
402 /**
403  *	generic_shutdown_super	-	common helper for ->kill_sb()
404  *	@sb: superblock to kill
405  *
406  *	generic_shutdown_super() does all fs-independent work on superblock
407  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
408  *	that need destruction out of superblock, call generic_shutdown_super()
409  *	and release aforementioned objects.  Note: dentries and inodes _are_
410  *	taken care of and do not need specific handling.
411  *
412  *	Upon calling this function, the filesystem may no longer alter or
413  *	rearrange the set of dentries belonging to this super_block, nor may it
414  *	change the attachments of dentries to inodes.
415  */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 	const struct super_operations *sop = sb->s_op;
419 
420 	if (sb->s_root) {
421 		shrink_dcache_for_umount(sb);
422 		sync_filesystem(sb);
423 		sb->s_flags &= ~SB_ACTIVE;
424 
425 		fsnotify_unmount_inodes(sb);
426 		cgroup_writeback_umount();
427 
428 		evict_inodes(sb);
429 
430 		if (sb->s_dio_done_wq) {
431 			destroy_workqueue(sb->s_dio_done_wq);
432 			sb->s_dio_done_wq = NULL;
433 		}
434 
435 		if (sop->put_super)
436 			sop->put_super(sb);
437 
438 		if (!list_empty(&sb->s_inodes)) {
439 			printk("VFS: Busy inodes after unmount of %s. "
440 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
441 			   sb->s_id);
442 		}
443 	}
444 	spin_lock(&sb_lock);
445 	/* should be initialized for __put_super_and_need_restart() */
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 	up_write(&sb->s_umount);
449 	if (sb->s_bdi != &noop_backing_dev_info) {
450 		bdi_put(sb->s_bdi);
451 		sb->s_bdi = &noop_backing_dev_info;
452 	}
453 }
454 
455 EXPORT_SYMBOL(generic_shutdown_super);
456 
457 /**
458  *	sget_userns -	find or create a superblock
459  *	@type:	filesystem type superblock should belong to
460  *	@test:	comparison callback
461  *	@set:	setup callback
462  *	@flags:	mount flags
463  *	@user_ns: User namespace for the super_block
464  *	@data:	argument to each of them
465  */
466 struct super_block *sget_userns(struct file_system_type *type,
467 			int (*test)(struct super_block *,void *),
468 			int (*set)(struct super_block *,void *),
469 			int flags, struct user_namespace *user_ns,
470 			void *data)
471 {
472 	struct super_block *s = NULL;
473 	struct super_block *old;
474 	int err;
475 
476 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
477 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
478 	    !capable(CAP_SYS_ADMIN))
479 		return ERR_PTR(-EPERM);
480 retry:
481 	spin_lock(&sb_lock);
482 	if (test) {
483 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
484 			if (!test(old, data))
485 				continue;
486 			if (user_ns != old->s_user_ns) {
487 				spin_unlock(&sb_lock);
488 				if (s) {
489 					up_write(&s->s_umount);
490 					destroy_super(s);
491 				}
492 				return ERR_PTR(-EBUSY);
493 			}
494 			if (!grab_super(old))
495 				goto retry;
496 			if (s) {
497 				up_write(&s->s_umount);
498 				destroy_super(s);
499 				s = NULL;
500 			}
501 			return old;
502 		}
503 	}
504 	if (!s) {
505 		spin_unlock(&sb_lock);
506 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
507 		if (!s)
508 			return ERR_PTR(-ENOMEM);
509 		goto retry;
510 	}
511 
512 	err = set(s, data);
513 	if (err) {
514 		spin_unlock(&sb_lock);
515 		up_write(&s->s_umount);
516 		destroy_super(s);
517 		return ERR_PTR(err);
518 	}
519 	s->s_type = type;
520 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
521 	list_add_tail(&s->s_list, &super_blocks);
522 	hlist_add_head(&s->s_instances, &type->fs_supers);
523 	spin_unlock(&sb_lock);
524 	get_filesystem(type);
525 	register_shrinker(&s->s_shrink);
526 	return s;
527 }
528 
529 EXPORT_SYMBOL(sget_userns);
530 
531 /**
532  *	sget	-	find or create a superblock
533  *	@type:	  filesystem type superblock should belong to
534  *	@test:	  comparison callback
535  *	@set:	  setup callback
536  *	@flags:	  mount flags
537  *	@data:	  argument to each of them
538  */
539 struct super_block *sget(struct file_system_type *type,
540 			int (*test)(struct super_block *,void *),
541 			int (*set)(struct super_block *,void *),
542 			int flags,
543 			void *data)
544 {
545 	struct user_namespace *user_ns = current_user_ns();
546 
547 	/* We don't yet pass the user namespace of the parent
548 	 * mount through to here so always use &init_user_ns
549 	 * until that changes.
550 	 */
551 	if (flags & SB_SUBMOUNT)
552 		user_ns = &init_user_ns;
553 
554 	/* Ensure the requestor has permissions over the target filesystem */
555 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
556 		return ERR_PTR(-EPERM);
557 
558 	return sget_userns(type, test, set, flags, user_ns, data);
559 }
560 
561 EXPORT_SYMBOL(sget);
562 
563 void drop_super(struct super_block *sb)
564 {
565 	up_read(&sb->s_umount);
566 	put_super(sb);
567 }
568 
569 EXPORT_SYMBOL(drop_super);
570 
571 void drop_super_exclusive(struct super_block *sb)
572 {
573 	up_write(&sb->s_umount);
574 	put_super(sb);
575 }
576 EXPORT_SYMBOL(drop_super_exclusive);
577 
578 /**
579  *	iterate_supers - call function for all active superblocks
580  *	@f: function to call
581  *	@arg: argument to pass to it
582  *
583  *	Scans the superblock list and calls given function, passing it
584  *	locked superblock and given argument.
585  */
586 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
587 {
588 	struct super_block *sb, *p = NULL;
589 
590 	spin_lock(&sb_lock);
591 	list_for_each_entry(sb, &super_blocks, s_list) {
592 		if (hlist_unhashed(&sb->s_instances))
593 			continue;
594 		sb->s_count++;
595 		spin_unlock(&sb_lock);
596 
597 		down_read(&sb->s_umount);
598 		if (sb->s_root && (sb->s_flags & SB_BORN))
599 			f(sb, arg);
600 		up_read(&sb->s_umount);
601 
602 		spin_lock(&sb_lock);
603 		if (p)
604 			__put_super(p);
605 		p = sb;
606 	}
607 	if (p)
608 		__put_super(p);
609 	spin_unlock(&sb_lock);
610 }
611 
612 /**
613  *	iterate_supers_type - call function for superblocks of given type
614  *	@type: fs type
615  *	@f: function to call
616  *	@arg: argument to pass to it
617  *
618  *	Scans the superblock list and calls given function, passing it
619  *	locked superblock and given argument.
620  */
621 void iterate_supers_type(struct file_system_type *type,
622 	void (*f)(struct super_block *, void *), void *arg)
623 {
624 	struct super_block *sb, *p = NULL;
625 
626 	spin_lock(&sb_lock);
627 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
628 		sb->s_count++;
629 		spin_unlock(&sb_lock);
630 
631 		down_read(&sb->s_umount);
632 		if (sb->s_root && (sb->s_flags & SB_BORN))
633 			f(sb, arg);
634 		up_read(&sb->s_umount);
635 
636 		spin_lock(&sb_lock);
637 		if (p)
638 			__put_super(p);
639 		p = sb;
640 	}
641 	if (p)
642 		__put_super(p);
643 	spin_unlock(&sb_lock);
644 }
645 
646 EXPORT_SYMBOL(iterate_supers_type);
647 
648 static struct super_block *__get_super(struct block_device *bdev, bool excl)
649 {
650 	struct super_block *sb;
651 
652 	if (!bdev)
653 		return NULL;
654 
655 	spin_lock(&sb_lock);
656 rescan:
657 	list_for_each_entry(sb, &super_blocks, s_list) {
658 		if (hlist_unhashed(&sb->s_instances))
659 			continue;
660 		if (sb->s_bdev == bdev) {
661 			sb->s_count++;
662 			spin_unlock(&sb_lock);
663 			if (!excl)
664 				down_read(&sb->s_umount);
665 			else
666 				down_write(&sb->s_umount);
667 			/* still alive? */
668 			if (sb->s_root && (sb->s_flags & SB_BORN))
669 				return sb;
670 			if (!excl)
671 				up_read(&sb->s_umount);
672 			else
673 				up_write(&sb->s_umount);
674 			/* nope, got unmounted */
675 			spin_lock(&sb_lock);
676 			__put_super(sb);
677 			goto rescan;
678 		}
679 	}
680 	spin_unlock(&sb_lock);
681 	return NULL;
682 }
683 
684 /**
685  *	get_super - get the superblock of a device
686  *	@bdev: device to get the superblock for
687  *
688  *	Scans the superblock list and finds the superblock of the file system
689  *	mounted on the device given. %NULL is returned if no match is found.
690  */
691 struct super_block *get_super(struct block_device *bdev)
692 {
693 	return __get_super(bdev, false);
694 }
695 EXPORT_SYMBOL(get_super);
696 
697 static struct super_block *__get_super_thawed(struct block_device *bdev,
698 					      bool excl)
699 {
700 	while (1) {
701 		struct super_block *s = __get_super(bdev, excl);
702 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
703 			return s;
704 		if (!excl)
705 			up_read(&s->s_umount);
706 		else
707 			up_write(&s->s_umount);
708 		wait_event(s->s_writers.wait_unfrozen,
709 			   s->s_writers.frozen == SB_UNFROZEN);
710 		put_super(s);
711 	}
712 }
713 
714 /**
715  *	get_super_thawed - get thawed superblock of a device
716  *	@bdev: device to get the superblock for
717  *
718  *	Scans the superblock list and finds the superblock of the file system
719  *	mounted on the device. The superblock is returned once it is thawed
720  *	(or immediately if it was not frozen). %NULL is returned if no match
721  *	is found.
722  */
723 struct super_block *get_super_thawed(struct block_device *bdev)
724 {
725 	return __get_super_thawed(bdev, false);
726 }
727 EXPORT_SYMBOL(get_super_thawed);
728 
729 /**
730  *	get_super_exclusive_thawed - get thawed superblock of a device
731  *	@bdev: device to get the superblock for
732  *
733  *	Scans the superblock list and finds the superblock of the file system
734  *	mounted on the device. The superblock is returned once it is thawed
735  *	(or immediately if it was not frozen) and s_umount semaphore is held
736  *	in exclusive mode. %NULL is returned if no match is found.
737  */
738 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
739 {
740 	return __get_super_thawed(bdev, true);
741 }
742 EXPORT_SYMBOL(get_super_exclusive_thawed);
743 
744 /**
745  * get_active_super - get an active reference to the superblock of a device
746  * @bdev: device to get the superblock for
747  *
748  * Scans the superblock list and finds the superblock of the file system
749  * mounted on the device given.  Returns the superblock with an active
750  * reference or %NULL if none was found.
751  */
752 struct super_block *get_active_super(struct block_device *bdev)
753 {
754 	struct super_block *sb;
755 
756 	if (!bdev)
757 		return NULL;
758 
759 restart:
760 	spin_lock(&sb_lock);
761 	list_for_each_entry(sb, &super_blocks, s_list) {
762 		if (hlist_unhashed(&sb->s_instances))
763 			continue;
764 		if (sb->s_bdev == bdev) {
765 			if (!grab_super(sb))
766 				goto restart;
767 			up_write(&sb->s_umount);
768 			return sb;
769 		}
770 	}
771 	spin_unlock(&sb_lock);
772 	return NULL;
773 }
774 
775 struct super_block *user_get_super(dev_t dev)
776 {
777 	struct super_block *sb;
778 
779 	spin_lock(&sb_lock);
780 rescan:
781 	list_for_each_entry(sb, &super_blocks, s_list) {
782 		if (hlist_unhashed(&sb->s_instances))
783 			continue;
784 		if (sb->s_dev ==  dev) {
785 			sb->s_count++;
786 			spin_unlock(&sb_lock);
787 			down_read(&sb->s_umount);
788 			/* still alive? */
789 			if (sb->s_root && (sb->s_flags & SB_BORN))
790 				return sb;
791 			up_read(&sb->s_umount);
792 			/* nope, got unmounted */
793 			spin_lock(&sb_lock);
794 			__put_super(sb);
795 			goto rescan;
796 		}
797 	}
798 	spin_unlock(&sb_lock);
799 	return NULL;
800 }
801 
802 /**
803  *	do_remount_sb - asks filesystem to change mount options.
804  *	@sb:	superblock in question
805  *	@sb_flags: revised superblock flags
806  *	@data:	the rest of options
807  *      @force: whether or not to force the change
808  *
809  *	Alters the mount options of a mounted file system.
810  */
811 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
812 {
813 	int retval;
814 	int remount_ro;
815 
816 	if (sb->s_writers.frozen != SB_UNFROZEN)
817 		return -EBUSY;
818 
819 #ifdef CONFIG_BLOCK
820 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
821 		return -EACCES;
822 #endif
823 
824 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
825 
826 	if (remount_ro) {
827 		if (!hlist_empty(&sb->s_pins)) {
828 			up_write(&sb->s_umount);
829 			group_pin_kill(&sb->s_pins);
830 			down_write(&sb->s_umount);
831 			if (!sb->s_root)
832 				return 0;
833 			if (sb->s_writers.frozen != SB_UNFROZEN)
834 				return -EBUSY;
835 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
836 		}
837 	}
838 	shrink_dcache_sb(sb);
839 
840 	/* If we are remounting RDONLY and current sb is read/write,
841 	   make sure there are no rw files opened */
842 	if (remount_ro) {
843 		if (force) {
844 			sb->s_readonly_remount = 1;
845 			smp_wmb();
846 		} else {
847 			retval = sb_prepare_remount_readonly(sb);
848 			if (retval)
849 				return retval;
850 		}
851 	}
852 
853 	if (sb->s_op->remount_fs) {
854 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
855 		if (retval) {
856 			if (!force)
857 				goto cancel_readonly;
858 			/* If forced remount, go ahead despite any errors */
859 			WARN(1, "forced remount of a %s fs returned %i\n",
860 			     sb->s_type->name, retval);
861 		}
862 	}
863 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
864 	/* Needs to be ordered wrt mnt_is_readonly() */
865 	smp_wmb();
866 	sb->s_readonly_remount = 0;
867 
868 	/*
869 	 * Some filesystems modify their metadata via some other path than the
870 	 * bdev buffer cache (eg. use a private mapping, or directories in
871 	 * pagecache, etc). Also file data modifications go via their own
872 	 * mappings. So If we try to mount readonly then copy the filesystem
873 	 * from bdev, we could get stale data, so invalidate it to give a best
874 	 * effort at coherency.
875 	 */
876 	if (remount_ro && sb->s_bdev)
877 		invalidate_bdev(sb->s_bdev);
878 	return 0;
879 
880 cancel_readonly:
881 	sb->s_readonly_remount = 0;
882 	return retval;
883 }
884 
885 static void do_emergency_remount(struct work_struct *work)
886 {
887 	struct super_block *sb, *p = NULL;
888 
889 	spin_lock(&sb_lock);
890 	list_for_each_entry(sb, &super_blocks, s_list) {
891 		if (hlist_unhashed(&sb->s_instances))
892 			continue;
893 		sb->s_count++;
894 		spin_unlock(&sb_lock);
895 		down_write(&sb->s_umount);
896 		if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
897 		    !sb_rdonly(sb)) {
898 			/*
899 			 * What lock protects sb->s_flags??
900 			 */
901 			do_remount_sb(sb, SB_RDONLY, NULL, 1);
902 		}
903 		up_write(&sb->s_umount);
904 		spin_lock(&sb_lock);
905 		if (p)
906 			__put_super(p);
907 		p = sb;
908 	}
909 	if (p)
910 		__put_super(p);
911 	spin_unlock(&sb_lock);
912 	kfree(work);
913 	printk("Emergency Remount complete\n");
914 }
915 
916 void emergency_remount(void)
917 {
918 	struct work_struct *work;
919 
920 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
921 	if (work) {
922 		INIT_WORK(work, do_emergency_remount);
923 		schedule_work(work);
924 	}
925 }
926 
927 /*
928  * Unnamed block devices are dummy devices used by virtual
929  * filesystems which don't use real block-devices.  -- jrs
930  */
931 
932 static DEFINE_IDA(unnamed_dev_ida);
933 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
934 /* Many userspace utilities consider an FSID of 0 invalid.
935  * Always return at least 1 from get_anon_bdev.
936  */
937 static int unnamed_dev_start = 1;
938 
939 int get_anon_bdev(dev_t *p)
940 {
941 	int dev;
942 	int error;
943 
944  retry:
945 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
946 		return -ENOMEM;
947 	spin_lock(&unnamed_dev_lock);
948 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
949 	if (!error)
950 		unnamed_dev_start = dev + 1;
951 	spin_unlock(&unnamed_dev_lock);
952 	if (error == -EAGAIN)
953 		/* We raced and lost with another CPU. */
954 		goto retry;
955 	else if (error)
956 		return -EAGAIN;
957 
958 	if (dev >= (1 << MINORBITS)) {
959 		spin_lock(&unnamed_dev_lock);
960 		ida_remove(&unnamed_dev_ida, dev);
961 		if (unnamed_dev_start > dev)
962 			unnamed_dev_start = dev;
963 		spin_unlock(&unnamed_dev_lock);
964 		return -EMFILE;
965 	}
966 	*p = MKDEV(0, dev & MINORMASK);
967 	return 0;
968 }
969 EXPORT_SYMBOL(get_anon_bdev);
970 
971 void free_anon_bdev(dev_t dev)
972 {
973 	int slot = MINOR(dev);
974 	spin_lock(&unnamed_dev_lock);
975 	ida_remove(&unnamed_dev_ida, slot);
976 	if (slot < unnamed_dev_start)
977 		unnamed_dev_start = slot;
978 	spin_unlock(&unnamed_dev_lock);
979 }
980 EXPORT_SYMBOL(free_anon_bdev);
981 
982 int set_anon_super(struct super_block *s, void *data)
983 {
984 	return get_anon_bdev(&s->s_dev);
985 }
986 
987 EXPORT_SYMBOL(set_anon_super);
988 
989 void kill_anon_super(struct super_block *sb)
990 {
991 	dev_t dev = sb->s_dev;
992 	generic_shutdown_super(sb);
993 	free_anon_bdev(dev);
994 }
995 
996 EXPORT_SYMBOL(kill_anon_super);
997 
998 void kill_litter_super(struct super_block *sb)
999 {
1000 	if (sb->s_root)
1001 		d_genocide(sb->s_root);
1002 	kill_anon_super(sb);
1003 }
1004 
1005 EXPORT_SYMBOL(kill_litter_super);
1006 
1007 static int ns_test_super(struct super_block *sb, void *data)
1008 {
1009 	return sb->s_fs_info == data;
1010 }
1011 
1012 static int ns_set_super(struct super_block *sb, void *data)
1013 {
1014 	sb->s_fs_info = data;
1015 	return set_anon_super(sb, NULL);
1016 }
1017 
1018 struct dentry *mount_ns(struct file_system_type *fs_type,
1019 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1020 	int (*fill_super)(struct super_block *, void *, int))
1021 {
1022 	struct super_block *sb;
1023 
1024 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1025 	 * over the namespace.
1026 	 */
1027 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1028 		return ERR_PTR(-EPERM);
1029 
1030 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1031 			 user_ns, ns);
1032 	if (IS_ERR(sb))
1033 		return ERR_CAST(sb);
1034 
1035 	if (!sb->s_root) {
1036 		int err;
1037 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1038 		if (err) {
1039 			deactivate_locked_super(sb);
1040 			return ERR_PTR(err);
1041 		}
1042 
1043 		sb->s_flags |= SB_ACTIVE;
1044 	}
1045 
1046 	return dget(sb->s_root);
1047 }
1048 
1049 EXPORT_SYMBOL(mount_ns);
1050 
1051 #ifdef CONFIG_BLOCK
1052 static int set_bdev_super(struct super_block *s, void *data)
1053 {
1054 	s->s_bdev = data;
1055 	s->s_dev = s->s_bdev->bd_dev;
1056 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1057 
1058 	return 0;
1059 }
1060 
1061 static int test_bdev_super(struct super_block *s, void *data)
1062 {
1063 	return (void *)s->s_bdev == data;
1064 }
1065 
1066 struct dentry *mount_bdev(struct file_system_type *fs_type,
1067 	int flags, const char *dev_name, void *data,
1068 	int (*fill_super)(struct super_block *, void *, int))
1069 {
1070 	struct block_device *bdev;
1071 	struct super_block *s;
1072 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1073 	int error = 0;
1074 
1075 	if (!(flags & SB_RDONLY))
1076 		mode |= FMODE_WRITE;
1077 
1078 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1079 	if (IS_ERR(bdev))
1080 		return ERR_CAST(bdev);
1081 
1082 	/*
1083 	 * once the super is inserted into the list by sget, s_umount
1084 	 * will protect the lockfs code from trying to start a snapshot
1085 	 * while we are mounting
1086 	 */
1087 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1088 	if (bdev->bd_fsfreeze_count > 0) {
1089 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1090 		error = -EBUSY;
1091 		goto error_bdev;
1092 	}
1093 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1094 		 bdev);
1095 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1096 	if (IS_ERR(s))
1097 		goto error_s;
1098 
1099 	if (s->s_root) {
1100 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1101 			deactivate_locked_super(s);
1102 			error = -EBUSY;
1103 			goto error_bdev;
1104 		}
1105 
1106 		/*
1107 		 * s_umount nests inside bd_mutex during
1108 		 * __invalidate_device().  blkdev_put() acquires
1109 		 * bd_mutex and can't be called under s_umount.  Drop
1110 		 * s_umount temporarily.  This is safe as we're
1111 		 * holding an active reference.
1112 		 */
1113 		up_write(&s->s_umount);
1114 		blkdev_put(bdev, mode);
1115 		down_write(&s->s_umount);
1116 	} else {
1117 		s->s_mode = mode;
1118 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1119 		sb_set_blocksize(s, block_size(bdev));
1120 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1121 		if (error) {
1122 			deactivate_locked_super(s);
1123 			goto error;
1124 		}
1125 
1126 		s->s_flags |= SB_ACTIVE;
1127 		bdev->bd_super = s;
1128 	}
1129 
1130 	return dget(s->s_root);
1131 
1132 error_s:
1133 	error = PTR_ERR(s);
1134 error_bdev:
1135 	blkdev_put(bdev, mode);
1136 error:
1137 	return ERR_PTR(error);
1138 }
1139 EXPORT_SYMBOL(mount_bdev);
1140 
1141 void kill_block_super(struct super_block *sb)
1142 {
1143 	struct block_device *bdev = sb->s_bdev;
1144 	fmode_t mode = sb->s_mode;
1145 
1146 	bdev->bd_super = NULL;
1147 	generic_shutdown_super(sb);
1148 	sync_blockdev(bdev);
1149 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1150 	blkdev_put(bdev, mode | FMODE_EXCL);
1151 }
1152 
1153 EXPORT_SYMBOL(kill_block_super);
1154 #endif
1155 
1156 struct dentry *mount_nodev(struct file_system_type *fs_type,
1157 	int flags, void *data,
1158 	int (*fill_super)(struct super_block *, void *, int))
1159 {
1160 	int error;
1161 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1162 
1163 	if (IS_ERR(s))
1164 		return ERR_CAST(s);
1165 
1166 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1167 	if (error) {
1168 		deactivate_locked_super(s);
1169 		return ERR_PTR(error);
1170 	}
1171 	s->s_flags |= SB_ACTIVE;
1172 	return dget(s->s_root);
1173 }
1174 EXPORT_SYMBOL(mount_nodev);
1175 
1176 static int compare_single(struct super_block *s, void *p)
1177 {
1178 	return 1;
1179 }
1180 
1181 struct dentry *mount_single(struct file_system_type *fs_type,
1182 	int flags, void *data,
1183 	int (*fill_super)(struct super_block *, void *, int))
1184 {
1185 	struct super_block *s;
1186 	int error;
1187 
1188 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1189 	if (IS_ERR(s))
1190 		return ERR_CAST(s);
1191 	if (!s->s_root) {
1192 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1193 		if (error) {
1194 			deactivate_locked_super(s);
1195 			return ERR_PTR(error);
1196 		}
1197 		s->s_flags |= SB_ACTIVE;
1198 	} else {
1199 		do_remount_sb(s, flags, data, 0);
1200 	}
1201 	return dget(s->s_root);
1202 }
1203 EXPORT_SYMBOL(mount_single);
1204 
1205 struct dentry *
1206 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1207 {
1208 	struct dentry *root;
1209 	struct super_block *sb;
1210 	char *secdata = NULL;
1211 	int error = -ENOMEM;
1212 
1213 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1214 		secdata = alloc_secdata();
1215 		if (!secdata)
1216 			goto out;
1217 
1218 		error = security_sb_copy_data(data, secdata);
1219 		if (error)
1220 			goto out_free_secdata;
1221 	}
1222 
1223 	root = type->mount(type, flags, name, data);
1224 	if (IS_ERR(root)) {
1225 		error = PTR_ERR(root);
1226 		goto out_free_secdata;
1227 	}
1228 	sb = root->d_sb;
1229 	BUG_ON(!sb);
1230 	WARN_ON(!sb->s_bdi);
1231 	sb->s_flags |= SB_BORN;
1232 
1233 	error = security_sb_kern_mount(sb, flags, secdata);
1234 	if (error)
1235 		goto out_sb;
1236 
1237 	/*
1238 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1239 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1240 	 * this warning for a little while to try and catch filesystems that
1241 	 * violate this rule.
1242 	 */
1243 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1244 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1245 
1246 	up_write(&sb->s_umount);
1247 	free_secdata(secdata);
1248 	return root;
1249 out_sb:
1250 	dput(root);
1251 	deactivate_locked_super(sb);
1252 out_free_secdata:
1253 	free_secdata(secdata);
1254 out:
1255 	return ERR_PTR(error);
1256 }
1257 
1258 /*
1259  * Setup private BDI for given superblock. It gets automatically cleaned up
1260  * in generic_shutdown_super().
1261  */
1262 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1263 {
1264 	struct backing_dev_info *bdi;
1265 	int err;
1266 	va_list args;
1267 
1268 	bdi = bdi_alloc(GFP_KERNEL);
1269 	if (!bdi)
1270 		return -ENOMEM;
1271 
1272 	bdi->name = sb->s_type->name;
1273 
1274 	va_start(args, fmt);
1275 	err = bdi_register_va(bdi, fmt, args);
1276 	va_end(args);
1277 	if (err) {
1278 		bdi_put(bdi);
1279 		return err;
1280 	}
1281 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1282 	sb->s_bdi = bdi;
1283 
1284 	return 0;
1285 }
1286 EXPORT_SYMBOL(super_setup_bdi_name);
1287 
1288 /*
1289  * Setup private BDI for given superblock. I gets automatically cleaned up
1290  * in generic_shutdown_super().
1291  */
1292 int super_setup_bdi(struct super_block *sb)
1293 {
1294 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1295 
1296 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1297 				    atomic_long_inc_return(&bdi_seq));
1298 }
1299 EXPORT_SYMBOL(super_setup_bdi);
1300 
1301 /*
1302  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1303  * instead.
1304  */
1305 void __sb_end_write(struct super_block *sb, int level)
1306 {
1307 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1308 }
1309 EXPORT_SYMBOL(__sb_end_write);
1310 
1311 /*
1312  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1313  * instead.
1314  */
1315 int __sb_start_write(struct super_block *sb, int level, bool wait)
1316 {
1317 	bool force_trylock = false;
1318 	int ret = 1;
1319 
1320 #ifdef CONFIG_LOCKDEP
1321 	/*
1322 	 * We want lockdep to tell us about possible deadlocks with freezing
1323 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1324 	 * protection works as getting a read lock but there are subtle
1325 	 * problems. XFS for example gets freeze protection on internal level
1326 	 * twice in some cases, which is OK only because we already hold a
1327 	 * freeze protection also on higher level. Due to these cases we have
1328 	 * to use wait == F (trylock mode) which must not fail.
1329 	 */
1330 	if (wait) {
1331 		int i;
1332 
1333 		for (i = 0; i < level - 1; i++)
1334 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1335 				force_trylock = true;
1336 				break;
1337 			}
1338 	}
1339 #endif
1340 	if (wait && !force_trylock)
1341 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1342 	else
1343 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1344 
1345 	WARN_ON(force_trylock && !ret);
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL(__sb_start_write);
1349 
1350 /**
1351  * sb_wait_write - wait until all writers to given file system finish
1352  * @sb: the super for which we wait
1353  * @level: type of writers we wait for (normal vs page fault)
1354  *
1355  * This function waits until there are no writers of given type to given file
1356  * system.
1357  */
1358 static void sb_wait_write(struct super_block *sb, int level)
1359 {
1360 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1361 }
1362 
1363 /*
1364  * We are going to return to userspace and forget about these locks, the
1365  * ownership goes to the caller of thaw_super() which does unlock().
1366  */
1367 static void lockdep_sb_freeze_release(struct super_block *sb)
1368 {
1369 	int level;
1370 
1371 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1372 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1373 }
1374 
1375 /*
1376  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1377  */
1378 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1379 {
1380 	int level;
1381 
1382 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1383 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1384 }
1385 
1386 static void sb_freeze_unlock(struct super_block *sb)
1387 {
1388 	int level;
1389 
1390 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1391 		percpu_up_write(sb->s_writers.rw_sem + level);
1392 }
1393 
1394 /**
1395  * freeze_super - lock the filesystem and force it into a consistent state
1396  * @sb: the super to lock
1397  *
1398  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1399  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1400  * -EBUSY.
1401  *
1402  * During this function, sb->s_writers.frozen goes through these values:
1403  *
1404  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1405  *
1406  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1407  * writes should be blocked, though page faults are still allowed. We wait for
1408  * all writes to complete and then proceed to the next stage.
1409  *
1410  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1411  * but internal fs threads can still modify the filesystem (although they
1412  * should not dirty new pages or inodes), writeback can run etc. After waiting
1413  * for all running page faults we sync the filesystem which will clean all
1414  * dirty pages and inodes (no new dirty pages or inodes can be created when
1415  * sync is running).
1416  *
1417  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1418  * modification are blocked (e.g. XFS preallocation truncation on inode
1419  * reclaim). This is usually implemented by blocking new transactions for
1420  * filesystems that have them and need this additional guard. After all
1421  * internal writers are finished we call ->freeze_fs() to finish filesystem
1422  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1423  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1424  *
1425  * sb->s_writers.frozen is protected by sb->s_umount.
1426  */
1427 int freeze_super(struct super_block *sb)
1428 {
1429 	int ret;
1430 
1431 	atomic_inc(&sb->s_active);
1432 	down_write(&sb->s_umount);
1433 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1434 		deactivate_locked_super(sb);
1435 		return -EBUSY;
1436 	}
1437 
1438 	if (!(sb->s_flags & SB_BORN)) {
1439 		up_write(&sb->s_umount);
1440 		return 0;	/* sic - it's "nothing to do" */
1441 	}
1442 
1443 	if (sb_rdonly(sb)) {
1444 		/* Nothing to do really... */
1445 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1446 		up_write(&sb->s_umount);
1447 		return 0;
1448 	}
1449 
1450 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1451 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1452 	up_write(&sb->s_umount);
1453 	sb_wait_write(sb, SB_FREEZE_WRITE);
1454 	down_write(&sb->s_umount);
1455 
1456 	/* Now we go and block page faults... */
1457 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1458 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1459 
1460 	/* All writers are done so after syncing there won't be dirty data */
1461 	sync_filesystem(sb);
1462 
1463 	/* Now wait for internal filesystem counter */
1464 	sb->s_writers.frozen = SB_FREEZE_FS;
1465 	sb_wait_write(sb, SB_FREEZE_FS);
1466 
1467 	if (sb->s_op->freeze_fs) {
1468 		ret = sb->s_op->freeze_fs(sb);
1469 		if (ret) {
1470 			printk(KERN_ERR
1471 				"VFS:Filesystem freeze failed\n");
1472 			sb->s_writers.frozen = SB_UNFROZEN;
1473 			sb_freeze_unlock(sb);
1474 			wake_up(&sb->s_writers.wait_unfrozen);
1475 			deactivate_locked_super(sb);
1476 			return ret;
1477 		}
1478 	}
1479 	/*
1480 	 * For debugging purposes so that fs can warn if it sees write activity
1481 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1482 	 */
1483 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1484 	lockdep_sb_freeze_release(sb);
1485 	up_write(&sb->s_umount);
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(freeze_super);
1489 
1490 /**
1491  * thaw_super -- unlock filesystem
1492  * @sb: the super to thaw
1493  *
1494  * Unlocks the filesystem and marks it writeable again after freeze_super().
1495  */
1496 int thaw_super(struct super_block *sb)
1497 {
1498 	int error;
1499 
1500 	down_write(&sb->s_umount);
1501 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1502 		up_write(&sb->s_umount);
1503 		return -EINVAL;
1504 	}
1505 
1506 	if (sb_rdonly(sb)) {
1507 		sb->s_writers.frozen = SB_UNFROZEN;
1508 		goto out;
1509 	}
1510 
1511 	lockdep_sb_freeze_acquire(sb);
1512 
1513 	if (sb->s_op->unfreeze_fs) {
1514 		error = sb->s_op->unfreeze_fs(sb);
1515 		if (error) {
1516 			printk(KERN_ERR
1517 				"VFS:Filesystem thaw failed\n");
1518 			lockdep_sb_freeze_release(sb);
1519 			up_write(&sb->s_umount);
1520 			return error;
1521 		}
1522 	}
1523 
1524 	sb->s_writers.frozen = SB_UNFROZEN;
1525 	sb_freeze_unlock(sb);
1526 out:
1527 	wake_up(&sb->s_writers.wait_unfrozen);
1528 	deactivate_locked_super(sb);
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL(thaw_super);
1532