xref: /openbmc/linux/fs/super.c (revision b04b4f78)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
44 
45 
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
48 
49 /**
50  *	alloc_super	-	create new superblock
51  *	@type:	filesystem type superblock should belong to
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		if (security_sb_alloc(s)) {
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		}
67 		INIT_LIST_HEAD(&s->s_dirty);
68 		INIT_LIST_HEAD(&s->s_io);
69 		INIT_LIST_HEAD(&s->s_more_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		INIT_LIST_HEAD(&s->s_dentry_lru);
75 		INIT_LIST_HEAD(&s->s_async_list);
76 		init_rwsem(&s->s_umount);
77 		mutex_init(&s->s_lock);
78 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
79 		/*
80 		 * The locking rules for s_lock are up to the
81 		 * filesystem. For example ext3fs has different
82 		 * lock ordering than usbfs:
83 		 */
84 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
85 		/*
86 		 * sget() can have s_umount recursion.
87 		 *
88 		 * When it cannot find a suitable sb, it allocates a new
89 		 * one (this one), and tries again to find a suitable old
90 		 * one.
91 		 *
92 		 * In case that succeeds, it will acquire the s_umount
93 		 * lock of the old one. Since these are clearly distrinct
94 		 * locks, and this object isn't exposed yet, there's no
95 		 * risk of deadlocks.
96 		 *
97 		 * Annotate this by putting this lock in a different
98 		 * subclass.
99 		 */
100 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 		s->s_count = S_BIAS;
102 		atomic_set(&s->s_active, 1);
103 		mutex_init(&s->s_vfs_rename_mutex);
104 		mutex_init(&s->s_dquot.dqio_mutex);
105 		mutex_init(&s->s_dquot.dqonoff_mutex);
106 		init_rwsem(&s->s_dquot.dqptr_sem);
107 		init_waitqueue_head(&s->s_wait_unfrozen);
108 		s->s_maxbytes = MAX_NON_LFS;
109 		s->dq_op = sb_dquot_ops;
110 		s->s_qcop = sb_quotactl_ops;
111 		s->s_op = &default_op;
112 		s->s_time_gran = 1000000000;
113 	}
114 out:
115 	return s;
116 }
117 
118 /**
119  *	destroy_super	-	frees a superblock
120  *	@s: superblock to free
121  *
122  *	Frees a superblock.
123  */
124 static inline void destroy_super(struct super_block *s)
125 {
126 	security_sb_free(s);
127 	kfree(s->s_subtype);
128 	kfree(s->s_options);
129 	kfree(s);
130 }
131 
132 /* Superblock refcounting  */
133 
134 /*
135  * Drop a superblock's refcount.  Returns non-zero if the superblock was
136  * destroyed.  The caller must hold sb_lock.
137  */
138 static int __put_super(struct super_block *sb)
139 {
140 	int ret = 0;
141 
142 	if (!--sb->s_count) {
143 		destroy_super(sb);
144 		ret = 1;
145 	}
146 	return ret;
147 }
148 
149 /*
150  * Drop a superblock's refcount.
151  * Returns non-zero if the superblock is about to be destroyed and
152  * at least is already removed from super_blocks list, so if we are
153  * making a loop through super blocks then we need to restart.
154  * The caller must hold sb_lock.
155  */
156 int __put_super_and_need_restart(struct super_block *sb)
157 {
158 	/* check for race with generic_shutdown_super() */
159 	if (list_empty(&sb->s_list)) {
160 		/* super block is removed, need to restart... */
161 		__put_super(sb);
162 		return 1;
163 	}
164 	/* can't be the last, since s_list is still in use */
165 	sb->s_count--;
166 	BUG_ON(sb->s_count == 0);
167 	return 0;
168 }
169 
170 /**
171  *	put_super	-	drop a temporary reference to superblock
172  *	@sb: superblock in question
173  *
174  *	Drops a temporary reference, frees superblock if there's no
175  *	references left.
176  */
177 static void put_super(struct super_block *sb)
178 {
179 	spin_lock(&sb_lock);
180 	__put_super(sb);
181 	spin_unlock(&sb_lock);
182 }
183 
184 
185 /**
186  *	deactivate_super	-	drop an active reference to superblock
187  *	@s: superblock to deactivate
188  *
189  *	Drops an active reference to superblock, acquiring a temprory one if
190  *	there is no active references left.  In that case we lock superblock,
191  *	tell fs driver to shut it down and drop the temporary reference we
192  *	had just acquired.
193  */
194 void deactivate_super(struct super_block *s)
195 {
196 	struct file_system_type *fs = s->s_type;
197 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 		s->s_count -= S_BIAS-1;
199 		spin_unlock(&sb_lock);
200 		vfs_dq_off(s, 0);
201 		down_write(&s->s_umount);
202 		fs->kill_sb(s);
203 		put_filesystem(fs);
204 		put_super(s);
205 	}
206 }
207 
208 EXPORT_SYMBOL(deactivate_super);
209 
210 /**
211  *	deactivate_locked_super	-	drop an active reference to superblock
212  *	@s: superblock to deactivate
213  *
214  *	Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
215  *	it does not unlock it until it's all over.  As the result, it's safe to
216  *	use to dispose of new superblock on ->get_sb() failure exits - nobody
217  *	will see the sucker until it's all over.  Equivalent using up_write +
218  *	deactivate_super is safe for that purpose only if superblock is either
219  *	safe to use or has NULL ->s_root when we unlock.
220  */
221 void deactivate_locked_super(struct super_block *s)
222 {
223 	struct file_system_type *fs = s->s_type;
224 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
225 		s->s_count -= S_BIAS-1;
226 		spin_unlock(&sb_lock);
227 		vfs_dq_off(s, 0);
228 		fs->kill_sb(s);
229 		put_filesystem(fs);
230 		put_super(s);
231 	} else {
232 		up_write(&s->s_umount);
233 	}
234 }
235 
236 EXPORT_SYMBOL(deactivate_locked_super);
237 
238 /**
239  *	grab_super - acquire an active reference
240  *	@s: reference we are trying to make active
241  *
242  *	Tries to acquire an active reference.  grab_super() is used when we
243  * 	had just found a superblock in super_blocks or fs_type->fs_supers
244  *	and want to turn it into a full-blown active reference.  grab_super()
245  *	is called with sb_lock held and drops it.  Returns 1 in case of
246  *	success, 0 if we had failed (superblock contents was already dead or
247  *	dying when grab_super() had been called).
248  */
249 static int grab_super(struct super_block *s) __releases(sb_lock)
250 {
251 	s->s_count++;
252 	spin_unlock(&sb_lock);
253 	down_write(&s->s_umount);
254 	if (s->s_root) {
255 		spin_lock(&sb_lock);
256 		if (s->s_count > S_BIAS) {
257 			atomic_inc(&s->s_active);
258 			s->s_count--;
259 			spin_unlock(&sb_lock);
260 			return 1;
261 		}
262 		spin_unlock(&sb_lock);
263 	}
264 	up_write(&s->s_umount);
265 	put_super(s);
266 	yield();
267 	return 0;
268 }
269 
270 /*
271  * Superblock locking.  We really ought to get rid of these two.
272  */
273 void lock_super(struct super_block * sb)
274 {
275 	get_fs_excl();
276 	mutex_lock(&sb->s_lock);
277 }
278 
279 void unlock_super(struct super_block * sb)
280 {
281 	put_fs_excl();
282 	mutex_unlock(&sb->s_lock);
283 }
284 
285 EXPORT_SYMBOL(lock_super);
286 EXPORT_SYMBOL(unlock_super);
287 
288 /*
289  * Write out and wait upon all dirty data associated with this
290  * superblock.  Filesystem data as well as the underlying block
291  * device.  Takes the superblock lock.  Requires a second blkdev
292  * flush by the caller to complete the operation.
293  */
294 void __fsync_super(struct super_block *sb)
295 {
296 	sync_inodes_sb(sb, 0);
297 	vfs_dq_sync(sb);
298 	lock_super(sb);
299 	if (sb->s_dirt && sb->s_op->write_super)
300 		sb->s_op->write_super(sb);
301 	unlock_super(sb);
302 	if (sb->s_op->sync_fs)
303 		sb->s_op->sync_fs(sb, 1);
304 	sync_blockdev(sb->s_bdev);
305 	sync_inodes_sb(sb, 1);
306 }
307 
308 /*
309  * Write out and wait upon all dirty data associated with this
310  * superblock.  Filesystem data as well as the underlying block
311  * device.  Takes the superblock lock.
312  */
313 int fsync_super(struct super_block *sb)
314 {
315 	__fsync_super(sb);
316 	return sync_blockdev(sb->s_bdev);
317 }
318 EXPORT_SYMBOL_GPL(fsync_super);
319 
320 /**
321  *	generic_shutdown_super	-	common helper for ->kill_sb()
322  *	@sb: superblock to kill
323  *
324  *	generic_shutdown_super() does all fs-independent work on superblock
325  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
326  *	that need destruction out of superblock, call generic_shutdown_super()
327  *	and release aforementioned objects.  Note: dentries and inodes _are_
328  *	taken care of and do not need specific handling.
329  *
330  *	Upon calling this function, the filesystem may no longer alter or
331  *	rearrange the set of dentries belonging to this super_block, nor may it
332  *	change the attachments of dentries to inodes.
333  */
334 void generic_shutdown_super(struct super_block *sb)
335 {
336 	const struct super_operations *sop = sb->s_op;
337 
338 
339 	if (sb->s_root) {
340 		shrink_dcache_for_umount(sb);
341 		fsync_super(sb);
342 		lock_super(sb);
343 		sb->s_flags &= ~MS_ACTIVE;
344 
345 		/*
346 		 * wait for asynchronous fs operations to finish before going further
347 		 */
348 		async_synchronize_full_domain(&sb->s_async_list);
349 
350 		/* bad name - it should be evict_inodes() */
351 		invalidate_inodes(sb);
352 		lock_kernel();
353 
354 		if (sop->write_super && sb->s_dirt)
355 			sop->write_super(sb);
356 		if (sop->put_super)
357 			sop->put_super(sb);
358 
359 		/* Forget any remaining inodes */
360 		if (invalidate_inodes(sb)) {
361 			printk("VFS: Busy inodes after unmount of %s. "
362 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
363 			   sb->s_id);
364 		}
365 
366 		unlock_kernel();
367 		unlock_super(sb);
368 	}
369 	spin_lock(&sb_lock);
370 	/* should be initialized for __put_super_and_need_restart() */
371 	list_del_init(&sb->s_list);
372 	list_del(&sb->s_instances);
373 	spin_unlock(&sb_lock);
374 	up_write(&sb->s_umount);
375 }
376 
377 EXPORT_SYMBOL(generic_shutdown_super);
378 
379 /**
380  *	sget	-	find or create a superblock
381  *	@type:	filesystem type superblock should belong to
382  *	@test:	comparison callback
383  *	@set:	setup callback
384  *	@data:	argument to each of them
385  */
386 struct super_block *sget(struct file_system_type *type,
387 			int (*test)(struct super_block *,void *),
388 			int (*set)(struct super_block *,void *),
389 			void *data)
390 {
391 	struct super_block *s = NULL;
392 	struct super_block *old;
393 	int err;
394 
395 retry:
396 	spin_lock(&sb_lock);
397 	if (test) {
398 		list_for_each_entry(old, &type->fs_supers, s_instances) {
399 			if (!test(old, data))
400 				continue;
401 			if (!grab_super(old))
402 				goto retry;
403 			if (s) {
404 				up_write(&s->s_umount);
405 				destroy_super(s);
406 			}
407 			return old;
408 		}
409 	}
410 	if (!s) {
411 		spin_unlock(&sb_lock);
412 		s = alloc_super(type);
413 		if (!s)
414 			return ERR_PTR(-ENOMEM);
415 		goto retry;
416 	}
417 
418 	err = set(s, data);
419 	if (err) {
420 		spin_unlock(&sb_lock);
421 		up_write(&s->s_umount);
422 		destroy_super(s);
423 		return ERR_PTR(err);
424 	}
425 	s->s_type = type;
426 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
427 	list_add_tail(&s->s_list, &super_blocks);
428 	list_add(&s->s_instances, &type->fs_supers);
429 	spin_unlock(&sb_lock);
430 	get_filesystem(type);
431 	return s;
432 }
433 
434 EXPORT_SYMBOL(sget);
435 
436 void drop_super(struct super_block *sb)
437 {
438 	up_read(&sb->s_umount);
439 	put_super(sb);
440 }
441 
442 EXPORT_SYMBOL(drop_super);
443 
444 static inline void write_super(struct super_block *sb)
445 {
446 	lock_super(sb);
447 	if (sb->s_root && sb->s_dirt)
448 		if (sb->s_op->write_super)
449 			sb->s_op->write_super(sb);
450 	unlock_super(sb);
451 }
452 
453 /*
454  * Note: check the dirty flag before waiting, so we don't
455  * hold up the sync while mounting a device. (The newly
456  * mounted device won't need syncing.)
457  */
458 void sync_supers(void)
459 {
460 	struct super_block *sb;
461 
462 	spin_lock(&sb_lock);
463 restart:
464 	list_for_each_entry(sb, &super_blocks, s_list) {
465 		if (sb->s_dirt) {
466 			sb->s_count++;
467 			spin_unlock(&sb_lock);
468 			down_read(&sb->s_umount);
469 			write_super(sb);
470 			up_read(&sb->s_umount);
471 			spin_lock(&sb_lock);
472 			if (__put_super_and_need_restart(sb))
473 				goto restart;
474 		}
475 	}
476 	spin_unlock(&sb_lock);
477 }
478 
479 /*
480  * Call the ->sync_fs super_op against all filesystems which are r/w and
481  * which implement it.
482  *
483  * This operation is careful to avoid the livelock which could easily happen
484  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
485  * is used only here.  We set it against all filesystems and then clear it as
486  * we sync them.  So redirtied filesystems are skipped.
487  *
488  * But if process A is currently running sync_filesystems and then process B
489  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
490  * flags again, which will cause process A to resync everything.  Fix that with
491  * a local mutex.
492  *
493  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
494  */
495 void sync_filesystems(int wait)
496 {
497 	struct super_block *sb;
498 	static DEFINE_MUTEX(mutex);
499 
500 	mutex_lock(&mutex);		/* Could be down_interruptible */
501 	spin_lock(&sb_lock);
502 	list_for_each_entry(sb, &super_blocks, s_list) {
503 		if (!sb->s_op->sync_fs)
504 			continue;
505 		if (sb->s_flags & MS_RDONLY)
506 			continue;
507 		sb->s_need_sync_fs = 1;
508 	}
509 
510 restart:
511 	list_for_each_entry(sb, &super_blocks, s_list) {
512 		if (!sb->s_need_sync_fs)
513 			continue;
514 		sb->s_need_sync_fs = 0;
515 		if (sb->s_flags & MS_RDONLY)
516 			continue;	/* hm.  Was remounted r/o meanwhile */
517 		sb->s_count++;
518 		spin_unlock(&sb_lock);
519 		down_read(&sb->s_umount);
520 		async_synchronize_full_domain(&sb->s_async_list);
521 		if (sb->s_root && (wait || sb->s_dirt))
522 			sb->s_op->sync_fs(sb, wait);
523 		up_read(&sb->s_umount);
524 		/* restart only when sb is no longer on the list */
525 		spin_lock(&sb_lock);
526 		if (__put_super_and_need_restart(sb))
527 			goto restart;
528 	}
529 	spin_unlock(&sb_lock);
530 	mutex_unlock(&mutex);
531 }
532 
533 /**
534  *	get_super - get the superblock of a device
535  *	@bdev: device to get the superblock for
536  *
537  *	Scans the superblock list and finds the superblock of the file system
538  *	mounted on the device given. %NULL is returned if no match is found.
539  */
540 
541 struct super_block * get_super(struct block_device *bdev)
542 {
543 	struct super_block *sb;
544 
545 	if (!bdev)
546 		return NULL;
547 
548 	spin_lock(&sb_lock);
549 rescan:
550 	list_for_each_entry(sb, &super_blocks, s_list) {
551 		if (sb->s_bdev == bdev) {
552 			sb->s_count++;
553 			spin_unlock(&sb_lock);
554 			down_read(&sb->s_umount);
555 			if (sb->s_root)
556 				return sb;
557 			up_read(&sb->s_umount);
558 			/* restart only when sb is no longer on the list */
559 			spin_lock(&sb_lock);
560 			if (__put_super_and_need_restart(sb))
561 				goto rescan;
562 		}
563 	}
564 	spin_unlock(&sb_lock);
565 	return NULL;
566 }
567 
568 EXPORT_SYMBOL(get_super);
569 
570 struct super_block * user_get_super(dev_t dev)
571 {
572 	struct super_block *sb;
573 
574 	spin_lock(&sb_lock);
575 rescan:
576 	list_for_each_entry(sb, &super_blocks, s_list) {
577 		if (sb->s_dev ==  dev) {
578 			sb->s_count++;
579 			spin_unlock(&sb_lock);
580 			down_read(&sb->s_umount);
581 			if (sb->s_root)
582 				return sb;
583 			up_read(&sb->s_umount);
584 			/* restart only when sb is no longer on the list */
585 			spin_lock(&sb_lock);
586 			if (__put_super_and_need_restart(sb))
587 				goto rescan;
588 		}
589 	}
590 	spin_unlock(&sb_lock);
591 	return NULL;
592 }
593 
594 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
595 {
596         struct super_block *s;
597         struct ustat tmp;
598         struct kstatfs sbuf;
599 	int err = -EINVAL;
600 
601         s = user_get_super(new_decode_dev(dev));
602         if (s == NULL)
603                 goto out;
604 	err = vfs_statfs(s->s_root, &sbuf);
605 	drop_super(s);
606 	if (err)
607 		goto out;
608 
609         memset(&tmp,0,sizeof(struct ustat));
610         tmp.f_tfree = sbuf.f_bfree;
611         tmp.f_tinode = sbuf.f_ffree;
612 
613         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
614 out:
615 	return err;
616 }
617 
618 /**
619  *	mark_files_ro - mark all files read-only
620  *	@sb: superblock in question
621  *
622  *	All files are marked read-only.  We don't care about pending
623  *	delete files so this should be used in 'force' mode only.
624  */
625 
626 static void mark_files_ro(struct super_block *sb)
627 {
628 	struct file *f;
629 
630 retry:
631 	file_list_lock();
632 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
633 		struct vfsmount *mnt;
634 		if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
635 		       continue;
636 		if (!file_count(f))
637 			continue;
638 		if (!(f->f_mode & FMODE_WRITE))
639 			continue;
640 		f->f_mode &= ~FMODE_WRITE;
641 		if (file_check_writeable(f) != 0)
642 			continue;
643 		file_release_write(f);
644 		mnt = mntget(f->f_path.mnt);
645 		file_list_unlock();
646 		/*
647 		 * This can sleep, so we can't hold
648 		 * the file_list_lock() spinlock.
649 		 */
650 		mnt_drop_write(mnt);
651 		mntput(mnt);
652 		goto retry;
653 	}
654 	file_list_unlock();
655 }
656 
657 /**
658  *	do_remount_sb - asks filesystem to change mount options.
659  *	@sb:	superblock in question
660  *	@flags:	numeric part of options
661  *	@data:	the rest of options
662  *      @force: whether or not to force the change
663  *
664  *	Alters the mount options of a mounted file system.
665  */
666 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
667 {
668 	int retval;
669 	int remount_rw;
670 
671 #ifdef CONFIG_BLOCK
672 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
673 		return -EACCES;
674 #endif
675 	if (flags & MS_RDONLY)
676 		acct_auto_close(sb);
677 	shrink_dcache_sb(sb);
678 	fsync_super(sb);
679 
680 	/* If we are remounting RDONLY and current sb is read/write,
681 	   make sure there are no rw files opened */
682 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
683 		if (force)
684 			mark_files_ro(sb);
685 		else if (!fs_may_remount_ro(sb))
686 			return -EBUSY;
687 		retval = vfs_dq_off(sb, 1);
688 		if (retval < 0 && retval != -ENOSYS)
689 			return -EBUSY;
690 	}
691 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
692 
693 	if (sb->s_op->remount_fs) {
694 		lock_super(sb);
695 		retval = sb->s_op->remount_fs(sb, &flags, data);
696 		unlock_super(sb);
697 		if (retval)
698 			return retval;
699 	}
700 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
701 	if (remount_rw)
702 		vfs_dq_quota_on_remount(sb);
703 	return 0;
704 }
705 
706 static void do_emergency_remount(struct work_struct *work)
707 {
708 	struct super_block *sb;
709 
710 	spin_lock(&sb_lock);
711 	list_for_each_entry(sb, &super_blocks, s_list) {
712 		sb->s_count++;
713 		spin_unlock(&sb_lock);
714 		down_read(&sb->s_umount);
715 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
716 			/*
717 			 * ->remount_fs needs lock_kernel().
718 			 *
719 			 * What lock protects sb->s_flags??
720 			 */
721 			lock_kernel();
722 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
723 			unlock_kernel();
724 		}
725 		drop_super(sb);
726 		spin_lock(&sb_lock);
727 	}
728 	spin_unlock(&sb_lock);
729 	kfree(work);
730 	printk("Emergency Remount complete\n");
731 }
732 
733 void emergency_remount(void)
734 {
735 	struct work_struct *work;
736 
737 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
738 	if (work) {
739 		INIT_WORK(work, do_emergency_remount);
740 		schedule_work(work);
741 	}
742 }
743 
744 /*
745  * Unnamed block devices are dummy devices used by virtual
746  * filesystems which don't use real block-devices.  -- jrs
747  */
748 
749 static DEFINE_IDA(unnamed_dev_ida);
750 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
751 
752 int set_anon_super(struct super_block *s, void *data)
753 {
754 	int dev;
755 	int error;
756 
757  retry:
758 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
759 		return -ENOMEM;
760 	spin_lock(&unnamed_dev_lock);
761 	error = ida_get_new(&unnamed_dev_ida, &dev);
762 	spin_unlock(&unnamed_dev_lock);
763 	if (error == -EAGAIN)
764 		/* We raced and lost with another CPU. */
765 		goto retry;
766 	else if (error)
767 		return -EAGAIN;
768 
769 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
770 		spin_lock(&unnamed_dev_lock);
771 		ida_remove(&unnamed_dev_ida, dev);
772 		spin_unlock(&unnamed_dev_lock);
773 		return -EMFILE;
774 	}
775 	s->s_dev = MKDEV(0, dev & MINORMASK);
776 	return 0;
777 }
778 
779 EXPORT_SYMBOL(set_anon_super);
780 
781 void kill_anon_super(struct super_block *sb)
782 {
783 	int slot = MINOR(sb->s_dev);
784 
785 	generic_shutdown_super(sb);
786 	spin_lock(&unnamed_dev_lock);
787 	ida_remove(&unnamed_dev_ida, slot);
788 	spin_unlock(&unnamed_dev_lock);
789 }
790 
791 EXPORT_SYMBOL(kill_anon_super);
792 
793 void kill_litter_super(struct super_block *sb)
794 {
795 	if (sb->s_root)
796 		d_genocide(sb->s_root);
797 	kill_anon_super(sb);
798 }
799 
800 EXPORT_SYMBOL(kill_litter_super);
801 
802 static int ns_test_super(struct super_block *sb, void *data)
803 {
804 	return sb->s_fs_info == data;
805 }
806 
807 static int ns_set_super(struct super_block *sb, void *data)
808 {
809 	sb->s_fs_info = data;
810 	return set_anon_super(sb, NULL);
811 }
812 
813 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
814 	int (*fill_super)(struct super_block *, void *, int),
815 	struct vfsmount *mnt)
816 {
817 	struct super_block *sb;
818 
819 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
820 	if (IS_ERR(sb))
821 		return PTR_ERR(sb);
822 
823 	if (!sb->s_root) {
824 		int err;
825 		sb->s_flags = flags;
826 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
827 		if (err) {
828 			deactivate_locked_super(sb);
829 			return err;
830 		}
831 
832 		sb->s_flags |= MS_ACTIVE;
833 	}
834 
835 	simple_set_mnt(mnt, sb);
836 	return 0;
837 }
838 
839 EXPORT_SYMBOL(get_sb_ns);
840 
841 #ifdef CONFIG_BLOCK
842 static int set_bdev_super(struct super_block *s, void *data)
843 {
844 	s->s_bdev = data;
845 	s->s_dev = s->s_bdev->bd_dev;
846 	return 0;
847 }
848 
849 static int test_bdev_super(struct super_block *s, void *data)
850 {
851 	return (void *)s->s_bdev == data;
852 }
853 
854 int get_sb_bdev(struct file_system_type *fs_type,
855 	int flags, const char *dev_name, void *data,
856 	int (*fill_super)(struct super_block *, void *, int),
857 	struct vfsmount *mnt)
858 {
859 	struct block_device *bdev;
860 	struct super_block *s;
861 	fmode_t mode = FMODE_READ;
862 	int error = 0;
863 
864 	if (!(flags & MS_RDONLY))
865 		mode |= FMODE_WRITE;
866 
867 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
868 	if (IS_ERR(bdev))
869 		return PTR_ERR(bdev);
870 
871 	/*
872 	 * once the super is inserted into the list by sget, s_umount
873 	 * will protect the lockfs code from trying to start a snapshot
874 	 * while we are mounting
875 	 */
876 	down(&bdev->bd_mount_sem);
877 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
878 	up(&bdev->bd_mount_sem);
879 	if (IS_ERR(s))
880 		goto error_s;
881 
882 	if (s->s_root) {
883 		if ((flags ^ s->s_flags) & MS_RDONLY) {
884 			deactivate_locked_super(s);
885 			error = -EBUSY;
886 			goto error_bdev;
887 		}
888 
889 		close_bdev_exclusive(bdev, mode);
890 	} else {
891 		char b[BDEVNAME_SIZE];
892 
893 		s->s_flags = flags;
894 		s->s_mode = mode;
895 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
896 		sb_set_blocksize(s, block_size(bdev));
897 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
898 		if (error) {
899 			deactivate_locked_super(s);
900 			goto error;
901 		}
902 
903 		s->s_flags |= MS_ACTIVE;
904 		bdev->bd_super = s;
905 	}
906 
907 	simple_set_mnt(mnt, s);
908 	return 0;
909 
910 error_s:
911 	error = PTR_ERR(s);
912 error_bdev:
913 	close_bdev_exclusive(bdev, mode);
914 error:
915 	return error;
916 }
917 
918 EXPORT_SYMBOL(get_sb_bdev);
919 
920 void kill_block_super(struct super_block *sb)
921 {
922 	struct block_device *bdev = sb->s_bdev;
923 	fmode_t mode = sb->s_mode;
924 
925 	bdev->bd_super = NULL;
926 	generic_shutdown_super(sb);
927 	sync_blockdev(bdev);
928 	close_bdev_exclusive(bdev, mode);
929 }
930 
931 EXPORT_SYMBOL(kill_block_super);
932 #endif
933 
934 int get_sb_nodev(struct file_system_type *fs_type,
935 	int flags, void *data,
936 	int (*fill_super)(struct super_block *, void *, int),
937 	struct vfsmount *mnt)
938 {
939 	int error;
940 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
941 
942 	if (IS_ERR(s))
943 		return PTR_ERR(s);
944 
945 	s->s_flags = flags;
946 
947 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
948 	if (error) {
949 		deactivate_locked_super(s);
950 		return error;
951 	}
952 	s->s_flags |= MS_ACTIVE;
953 	simple_set_mnt(mnt, s);
954 	return 0;
955 }
956 
957 EXPORT_SYMBOL(get_sb_nodev);
958 
959 static int compare_single(struct super_block *s, void *p)
960 {
961 	return 1;
962 }
963 
964 int get_sb_single(struct file_system_type *fs_type,
965 	int flags, void *data,
966 	int (*fill_super)(struct super_block *, void *, int),
967 	struct vfsmount *mnt)
968 {
969 	struct super_block *s;
970 	int error;
971 
972 	s = sget(fs_type, compare_single, set_anon_super, NULL);
973 	if (IS_ERR(s))
974 		return PTR_ERR(s);
975 	if (!s->s_root) {
976 		s->s_flags = flags;
977 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
978 		if (error) {
979 			deactivate_locked_super(s);
980 			return error;
981 		}
982 		s->s_flags |= MS_ACTIVE;
983 	}
984 	do_remount_sb(s, flags, data, 0);
985 	simple_set_mnt(mnt, s);
986 	return 0;
987 }
988 
989 EXPORT_SYMBOL(get_sb_single);
990 
991 struct vfsmount *
992 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
993 {
994 	struct vfsmount *mnt;
995 	char *secdata = NULL;
996 	int error;
997 
998 	if (!type)
999 		return ERR_PTR(-ENODEV);
1000 
1001 	error = -ENOMEM;
1002 	mnt = alloc_vfsmnt(name);
1003 	if (!mnt)
1004 		goto out;
1005 
1006 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1007 		secdata = alloc_secdata();
1008 		if (!secdata)
1009 			goto out_mnt;
1010 
1011 		error = security_sb_copy_data(data, secdata);
1012 		if (error)
1013 			goto out_free_secdata;
1014 	}
1015 
1016 	error = type->get_sb(type, flags, name, data, mnt);
1017 	if (error < 0)
1018 		goto out_free_secdata;
1019 	BUG_ON(!mnt->mnt_sb);
1020 
1021  	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1022  	if (error)
1023  		goto out_sb;
1024 
1025 	mnt->mnt_mountpoint = mnt->mnt_root;
1026 	mnt->mnt_parent = mnt;
1027 	up_write(&mnt->mnt_sb->s_umount);
1028 	free_secdata(secdata);
1029 	return mnt;
1030 out_sb:
1031 	dput(mnt->mnt_root);
1032 	deactivate_locked_super(mnt->mnt_sb);
1033 out_free_secdata:
1034 	free_secdata(secdata);
1035 out_mnt:
1036 	free_vfsmnt(mnt);
1037 out:
1038 	return ERR_PTR(error);
1039 }
1040 
1041 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1042 
1043 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1044 {
1045 	int err;
1046 	const char *subtype = strchr(fstype, '.');
1047 	if (subtype) {
1048 		subtype++;
1049 		err = -EINVAL;
1050 		if (!subtype[0])
1051 			goto err;
1052 	} else
1053 		subtype = "";
1054 
1055 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1056 	err = -ENOMEM;
1057 	if (!mnt->mnt_sb->s_subtype)
1058 		goto err;
1059 	return mnt;
1060 
1061  err:
1062 	mntput(mnt);
1063 	return ERR_PTR(err);
1064 }
1065 
1066 struct vfsmount *
1067 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1068 {
1069 	struct file_system_type *type = get_fs_type(fstype);
1070 	struct vfsmount *mnt;
1071 	if (!type)
1072 		return ERR_PTR(-ENODEV);
1073 	mnt = vfs_kern_mount(type, flags, name, data);
1074 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1075 	    !mnt->mnt_sb->s_subtype)
1076 		mnt = fs_set_subtype(mnt, fstype);
1077 	put_filesystem(type);
1078 	return mnt;
1079 }
1080 EXPORT_SYMBOL_GPL(do_kern_mount);
1081 
1082 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1083 {
1084 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1085 }
1086 
1087 EXPORT_SYMBOL_GPL(kern_mount_data);
1088