xref: /openbmc/linux/fs/super.c (revision a2cce7a9)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!trylock_super(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79 
80 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90 
91 	/*
92 	 * prune the dcache first as the icache is pinned by it, then
93 	 * prune the icache, followed by the filesystem specific caches
94 	 *
95 	 * Ensure that we always scan at least one object - memcg kmem
96 	 * accounting uses this to fully empty the caches.
97 	 */
98 	sc->nr_to_scan = dentries + 1;
99 	freed = prune_dcache_sb(sb, sc);
100 	sc->nr_to_scan = inodes + 1;
101 	freed += prune_icache_sb(sb, sc);
102 
103 	if (fs_objects) {
104 		sc->nr_to_scan = fs_objects + 1;
105 		freed += sb->s_op->free_cached_objects(sb, sc);
106 	}
107 
108 	up_read(&sb->s_umount);
109 	return freed;
110 }
111 
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 				       struct shrink_control *sc)
114 {
115 	struct super_block *sb;
116 	long	total_objects = 0;
117 
118 	sb = container_of(shrink, struct super_block, s_shrink);
119 
120 	/*
121 	 * Don't call trylock_super as it is a potential
122 	 * scalability bottleneck. The counts could get updated
123 	 * between super_cache_count and super_cache_scan anyway.
124 	 * Call to super_cache_count with shrinker_rwsem held
125 	 * ensures the safety of call to list_lru_shrink_count() and
126 	 * s_op->nr_cached_objects().
127 	 */
128 	if (sb->s_op && sb->s_op->nr_cached_objects)
129 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130 
131 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133 
134 	total_objects = vfs_pressure_ratio(total_objects);
135 	return total_objects;
136 }
137 
138 static void destroy_super_work(struct work_struct *work)
139 {
140 	struct super_block *s = container_of(work, struct super_block,
141 							destroy_work);
142 	int i;
143 
144 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
145 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146 	kfree(s);
147 }
148 
149 static void destroy_super_rcu(struct rcu_head *head)
150 {
151 	struct super_block *s = container_of(head, struct super_block, rcu);
152 	INIT_WORK(&s->destroy_work, destroy_super_work);
153 	schedule_work(&s->destroy_work);
154 }
155 
156 /**
157  *	destroy_super	-	frees a superblock
158  *	@s: superblock to free
159  *
160  *	Frees a superblock.
161  */
162 static void destroy_super(struct super_block *s)
163 {
164 	list_lru_destroy(&s->s_dentry_lru);
165 	list_lru_destroy(&s->s_inode_lru);
166 	security_sb_free(s);
167 	WARN_ON(!list_empty(&s->s_mounts));
168 	kfree(s->s_subtype);
169 	kfree(s->s_options);
170 	call_rcu(&s->rcu, destroy_super_rcu);
171 }
172 
173 /**
174  *	alloc_super	-	create new superblock
175  *	@type:	filesystem type superblock should belong to
176  *	@flags: the mount flags
177  *
178  *	Allocates and initializes a new &struct super_block.  alloc_super()
179  *	returns a pointer new superblock or %NULL if allocation had failed.
180  */
181 static struct super_block *alloc_super(struct file_system_type *type, int flags)
182 {
183 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
184 	static const struct super_operations default_op;
185 	int i;
186 
187 	if (!s)
188 		return NULL;
189 
190 	INIT_LIST_HEAD(&s->s_mounts);
191 
192 	if (security_sb_alloc(s))
193 		goto fail;
194 
195 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197 					sb_writers_name[i],
198 					&type->s_writers_key[i]))
199 			goto fail;
200 	}
201 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
202 	s->s_bdi = &noop_backing_dev_info;
203 	s->s_flags = flags;
204 	INIT_HLIST_NODE(&s->s_instances);
205 	INIT_HLIST_BL_HEAD(&s->s_anon);
206 	mutex_init(&s->s_sync_lock);
207 	INIT_LIST_HEAD(&s->s_inodes);
208 	spin_lock_init(&s->s_inode_list_lock);
209 
210 	if (list_lru_init_memcg(&s->s_dentry_lru))
211 		goto fail;
212 	if (list_lru_init_memcg(&s->s_inode_lru))
213 		goto fail;
214 
215 	init_rwsem(&s->s_umount);
216 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
217 	/*
218 	 * sget() can have s_umount recursion.
219 	 *
220 	 * When it cannot find a suitable sb, it allocates a new
221 	 * one (this one), and tries again to find a suitable old
222 	 * one.
223 	 *
224 	 * In case that succeeds, it will acquire the s_umount
225 	 * lock of the old one. Since these are clearly distrinct
226 	 * locks, and this object isn't exposed yet, there's no
227 	 * risk of deadlocks.
228 	 *
229 	 * Annotate this by putting this lock in a different
230 	 * subclass.
231 	 */
232 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
233 	s->s_count = 1;
234 	atomic_set(&s->s_active, 1);
235 	mutex_init(&s->s_vfs_rename_mutex);
236 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
237 	mutex_init(&s->s_dquot.dqio_mutex);
238 	mutex_init(&s->s_dquot.dqonoff_mutex);
239 	s->s_maxbytes = MAX_NON_LFS;
240 	s->s_op = &default_op;
241 	s->s_time_gran = 1000000000;
242 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
243 
244 	s->s_shrink.seeks = DEFAULT_SEEKS;
245 	s->s_shrink.scan_objects = super_cache_scan;
246 	s->s_shrink.count_objects = super_cache_count;
247 	s->s_shrink.batch = 1024;
248 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
249 	return s;
250 
251 fail:
252 	destroy_super(s);
253 	return NULL;
254 }
255 
256 /* Superblock refcounting  */
257 
258 /*
259  * Drop a superblock's refcount.  The caller must hold sb_lock.
260  */
261 static void __put_super(struct super_block *sb)
262 {
263 	if (!--sb->s_count) {
264 		list_del_init(&sb->s_list);
265 		destroy_super(sb);
266 	}
267 }
268 
269 /**
270  *	put_super	-	drop a temporary reference to superblock
271  *	@sb: superblock in question
272  *
273  *	Drops a temporary reference, frees superblock if there's no
274  *	references left.
275  */
276 static void put_super(struct super_block *sb)
277 {
278 	spin_lock(&sb_lock);
279 	__put_super(sb);
280 	spin_unlock(&sb_lock);
281 }
282 
283 
284 /**
285  *	deactivate_locked_super	-	drop an active reference to superblock
286  *	@s: superblock to deactivate
287  *
288  *	Drops an active reference to superblock, converting it into a temprory
289  *	one if there is no other active references left.  In that case we
290  *	tell fs driver to shut it down and drop the temporary reference we
291  *	had just acquired.
292  *
293  *	Caller holds exclusive lock on superblock; that lock is released.
294  */
295 void deactivate_locked_super(struct super_block *s)
296 {
297 	struct file_system_type *fs = s->s_type;
298 	if (atomic_dec_and_test(&s->s_active)) {
299 		cleancache_invalidate_fs(s);
300 		unregister_shrinker(&s->s_shrink);
301 		fs->kill_sb(s);
302 
303 		/*
304 		 * Since list_lru_destroy() may sleep, we cannot call it from
305 		 * put_super(), where we hold the sb_lock. Therefore we destroy
306 		 * the lru lists right now.
307 		 */
308 		list_lru_destroy(&s->s_dentry_lru);
309 		list_lru_destroy(&s->s_inode_lru);
310 
311 		put_filesystem(fs);
312 		put_super(s);
313 	} else {
314 		up_write(&s->s_umount);
315 	}
316 }
317 
318 EXPORT_SYMBOL(deactivate_locked_super);
319 
320 /**
321  *	deactivate_super	-	drop an active reference to superblock
322  *	@s: superblock to deactivate
323  *
324  *	Variant of deactivate_locked_super(), except that superblock is *not*
325  *	locked by caller.  If we are going to drop the final active reference,
326  *	lock will be acquired prior to that.
327  */
328 void deactivate_super(struct super_block *s)
329 {
330         if (!atomic_add_unless(&s->s_active, -1, 1)) {
331 		down_write(&s->s_umount);
332 		deactivate_locked_super(s);
333 	}
334 }
335 
336 EXPORT_SYMBOL(deactivate_super);
337 
338 /**
339  *	grab_super - acquire an active reference
340  *	@s: reference we are trying to make active
341  *
342  *	Tries to acquire an active reference.  grab_super() is used when we
343  * 	had just found a superblock in super_blocks or fs_type->fs_supers
344  *	and want to turn it into a full-blown active reference.  grab_super()
345  *	is called with sb_lock held and drops it.  Returns 1 in case of
346  *	success, 0 if we had failed (superblock contents was already dead or
347  *	dying when grab_super() had been called).  Note that this is only
348  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
349  *	of their type), so increment of ->s_count is OK here.
350  */
351 static int grab_super(struct super_block *s) __releases(sb_lock)
352 {
353 	s->s_count++;
354 	spin_unlock(&sb_lock);
355 	down_write(&s->s_umount);
356 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
357 		put_super(s);
358 		return 1;
359 	}
360 	up_write(&s->s_umount);
361 	put_super(s);
362 	return 0;
363 }
364 
365 /*
366  *	trylock_super - try to grab ->s_umount shared
367  *	@sb: reference we are trying to grab
368  *
369  *	Try to prevent fs shutdown.  This is used in places where we
370  *	cannot take an active reference but we need to ensure that the
371  *	filesystem is not shut down while we are working on it. It returns
372  *	false if we cannot acquire s_umount or if we lose the race and
373  *	filesystem already got into shutdown, and returns true with the s_umount
374  *	lock held in read mode in case of success. On successful return,
375  *	the caller must drop the s_umount lock when done.
376  *
377  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378  *	The reason why it's safe is that we are OK with doing trylock instead
379  *	of down_read().  There's a couple of places that are OK with that, but
380  *	it's very much not a general-purpose interface.
381  */
382 bool trylock_super(struct super_block *sb)
383 {
384 	if (down_read_trylock(&sb->s_umount)) {
385 		if (!hlist_unhashed(&sb->s_instances) &&
386 		    sb->s_root && (sb->s_flags & MS_BORN))
387 			return true;
388 		up_read(&sb->s_umount);
389 	}
390 
391 	return false;
392 }
393 
394 /**
395  *	generic_shutdown_super	-	common helper for ->kill_sb()
396  *	@sb: superblock to kill
397  *
398  *	generic_shutdown_super() does all fs-independent work on superblock
399  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
400  *	that need destruction out of superblock, call generic_shutdown_super()
401  *	and release aforementioned objects.  Note: dentries and inodes _are_
402  *	taken care of and do not need specific handling.
403  *
404  *	Upon calling this function, the filesystem may no longer alter or
405  *	rearrange the set of dentries belonging to this super_block, nor may it
406  *	change the attachments of dentries to inodes.
407  */
408 void generic_shutdown_super(struct super_block *sb)
409 {
410 	const struct super_operations *sop = sb->s_op;
411 
412 	if (sb->s_root) {
413 		shrink_dcache_for_umount(sb);
414 		sync_filesystem(sb);
415 		sb->s_flags &= ~MS_ACTIVE;
416 
417 		fsnotify_unmount_inodes(sb);
418 
419 		evict_inodes(sb);
420 
421 		if (sb->s_dio_done_wq) {
422 			destroy_workqueue(sb->s_dio_done_wq);
423 			sb->s_dio_done_wq = NULL;
424 		}
425 
426 		if (sop->put_super)
427 			sop->put_super(sb);
428 
429 		if (!list_empty(&sb->s_inodes)) {
430 			printk("VFS: Busy inodes after unmount of %s. "
431 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
432 			   sb->s_id);
433 		}
434 	}
435 	spin_lock(&sb_lock);
436 	/* should be initialized for __put_super_and_need_restart() */
437 	hlist_del_init(&sb->s_instances);
438 	spin_unlock(&sb_lock);
439 	up_write(&sb->s_umount);
440 }
441 
442 EXPORT_SYMBOL(generic_shutdown_super);
443 
444 /**
445  *	sget	-	find or create a superblock
446  *	@type:	filesystem type superblock should belong to
447  *	@test:	comparison callback
448  *	@set:	setup callback
449  *	@flags:	mount flags
450  *	@data:	argument to each of them
451  */
452 struct super_block *sget(struct file_system_type *type,
453 			int (*test)(struct super_block *,void *),
454 			int (*set)(struct super_block *,void *),
455 			int flags,
456 			void *data)
457 {
458 	struct super_block *s = NULL;
459 	struct super_block *old;
460 	int err;
461 
462 retry:
463 	spin_lock(&sb_lock);
464 	if (test) {
465 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
466 			if (!test(old, data))
467 				continue;
468 			if (!grab_super(old))
469 				goto retry;
470 			if (s) {
471 				up_write(&s->s_umount);
472 				destroy_super(s);
473 				s = NULL;
474 			}
475 			return old;
476 		}
477 	}
478 	if (!s) {
479 		spin_unlock(&sb_lock);
480 		s = alloc_super(type, flags);
481 		if (!s)
482 			return ERR_PTR(-ENOMEM);
483 		goto retry;
484 	}
485 
486 	err = set(s, data);
487 	if (err) {
488 		spin_unlock(&sb_lock);
489 		up_write(&s->s_umount);
490 		destroy_super(s);
491 		return ERR_PTR(err);
492 	}
493 	s->s_type = type;
494 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
495 	list_add_tail(&s->s_list, &super_blocks);
496 	hlist_add_head(&s->s_instances, &type->fs_supers);
497 	spin_unlock(&sb_lock);
498 	get_filesystem(type);
499 	register_shrinker(&s->s_shrink);
500 	return s;
501 }
502 
503 EXPORT_SYMBOL(sget);
504 
505 void drop_super(struct super_block *sb)
506 {
507 	up_read(&sb->s_umount);
508 	put_super(sb);
509 }
510 
511 EXPORT_SYMBOL(drop_super);
512 
513 /**
514  *	iterate_supers - call function for all active superblocks
515  *	@f: function to call
516  *	@arg: argument to pass to it
517  *
518  *	Scans the superblock list and calls given function, passing it
519  *	locked superblock and given argument.
520  */
521 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
522 {
523 	struct super_block *sb, *p = NULL;
524 
525 	spin_lock(&sb_lock);
526 	list_for_each_entry(sb, &super_blocks, s_list) {
527 		if (hlist_unhashed(&sb->s_instances))
528 			continue;
529 		sb->s_count++;
530 		spin_unlock(&sb_lock);
531 
532 		down_read(&sb->s_umount);
533 		if (sb->s_root && (sb->s_flags & MS_BORN))
534 			f(sb, arg);
535 		up_read(&sb->s_umount);
536 
537 		spin_lock(&sb_lock);
538 		if (p)
539 			__put_super(p);
540 		p = sb;
541 	}
542 	if (p)
543 		__put_super(p);
544 	spin_unlock(&sb_lock);
545 }
546 
547 /**
548  *	iterate_supers_type - call function for superblocks of given type
549  *	@type: fs type
550  *	@f: function to call
551  *	@arg: argument to pass to it
552  *
553  *	Scans the superblock list and calls given function, passing it
554  *	locked superblock and given argument.
555  */
556 void iterate_supers_type(struct file_system_type *type,
557 	void (*f)(struct super_block *, void *), void *arg)
558 {
559 	struct super_block *sb, *p = NULL;
560 
561 	spin_lock(&sb_lock);
562 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
563 		sb->s_count++;
564 		spin_unlock(&sb_lock);
565 
566 		down_read(&sb->s_umount);
567 		if (sb->s_root && (sb->s_flags & MS_BORN))
568 			f(sb, arg);
569 		up_read(&sb->s_umount);
570 
571 		spin_lock(&sb_lock);
572 		if (p)
573 			__put_super(p);
574 		p = sb;
575 	}
576 	if (p)
577 		__put_super(p);
578 	spin_unlock(&sb_lock);
579 }
580 
581 EXPORT_SYMBOL(iterate_supers_type);
582 
583 /**
584  *	get_super - get the superblock of a device
585  *	@bdev: device to get the superblock for
586  *
587  *	Scans the superblock list and finds the superblock of the file system
588  *	mounted on the device given. %NULL is returned if no match is found.
589  */
590 
591 struct super_block *get_super(struct block_device *bdev)
592 {
593 	struct super_block *sb;
594 
595 	if (!bdev)
596 		return NULL;
597 
598 	spin_lock(&sb_lock);
599 rescan:
600 	list_for_each_entry(sb, &super_blocks, s_list) {
601 		if (hlist_unhashed(&sb->s_instances))
602 			continue;
603 		if (sb->s_bdev == bdev) {
604 			sb->s_count++;
605 			spin_unlock(&sb_lock);
606 			down_read(&sb->s_umount);
607 			/* still alive? */
608 			if (sb->s_root && (sb->s_flags & MS_BORN))
609 				return sb;
610 			up_read(&sb->s_umount);
611 			/* nope, got unmounted */
612 			spin_lock(&sb_lock);
613 			__put_super(sb);
614 			goto rescan;
615 		}
616 	}
617 	spin_unlock(&sb_lock);
618 	return NULL;
619 }
620 
621 EXPORT_SYMBOL(get_super);
622 
623 /**
624  *	get_super_thawed - get thawed superblock of a device
625  *	@bdev: device to get the superblock for
626  *
627  *	Scans the superblock list and finds the superblock of the file system
628  *	mounted on the device. The superblock is returned once it is thawed
629  *	(or immediately if it was not frozen). %NULL is returned if no match
630  *	is found.
631  */
632 struct super_block *get_super_thawed(struct block_device *bdev)
633 {
634 	while (1) {
635 		struct super_block *s = get_super(bdev);
636 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
637 			return s;
638 		up_read(&s->s_umount);
639 		wait_event(s->s_writers.wait_unfrozen,
640 			   s->s_writers.frozen == SB_UNFROZEN);
641 		put_super(s);
642 	}
643 }
644 EXPORT_SYMBOL(get_super_thawed);
645 
646 /**
647  * get_active_super - get an active reference to the superblock of a device
648  * @bdev: device to get the superblock for
649  *
650  * Scans the superblock list and finds the superblock of the file system
651  * mounted on the device given.  Returns the superblock with an active
652  * reference or %NULL if none was found.
653  */
654 struct super_block *get_active_super(struct block_device *bdev)
655 {
656 	struct super_block *sb;
657 
658 	if (!bdev)
659 		return NULL;
660 
661 restart:
662 	spin_lock(&sb_lock);
663 	list_for_each_entry(sb, &super_blocks, s_list) {
664 		if (hlist_unhashed(&sb->s_instances))
665 			continue;
666 		if (sb->s_bdev == bdev) {
667 			if (!grab_super(sb))
668 				goto restart;
669 			up_write(&sb->s_umount);
670 			return sb;
671 		}
672 	}
673 	spin_unlock(&sb_lock);
674 	return NULL;
675 }
676 
677 struct super_block *user_get_super(dev_t dev)
678 {
679 	struct super_block *sb;
680 
681 	spin_lock(&sb_lock);
682 rescan:
683 	list_for_each_entry(sb, &super_blocks, s_list) {
684 		if (hlist_unhashed(&sb->s_instances))
685 			continue;
686 		if (sb->s_dev ==  dev) {
687 			sb->s_count++;
688 			spin_unlock(&sb_lock);
689 			down_read(&sb->s_umount);
690 			/* still alive? */
691 			if (sb->s_root && (sb->s_flags & MS_BORN))
692 				return sb;
693 			up_read(&sb->s_umount);
694 			/* nope, got unmounted */
695 			spin_lock(&sb_lock);
696 			__put_super(sb);
697 			goto rescan;
698 		}
699 	}
700 	spin_unlock(&sb_lock);
701 	return NULL;
702 }
703 
704 /**
705  *	do_remount_sb - asks filesystem to change mount options.
706  *	@sb:	superblock in question
707  *	@flags:	numeric part of options
708  *	@data:	the rest of options
709  *      @force: whether or not to force the change
710  *
711  *	Alters the mount options of a mounted file system.
712  */
713 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
714 {
715 	int retval;
716 	int remount_ro;
717 
718 	if (sb->s_writers.frozen != SB_UNFROZEN)
719 		return -EBUSY;
720 
721 #ifdef CONFIG_BLOCK
722 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
723 		return -EACCES;
724 #endif
725 
726 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
727 
728 	if (remount_ro) {
729 		if (!hlist_empty(&sb->s_pins)) {
730 			up_write(&sb->s_umount);
731 			group_pin_kill(&sb->s_pins);
732 			down_write(&sb->s_umount);
733 			if (!sb->s_root)
734 				return 0;
735 			if (sb->s_writers.frozen != SB_UNFROZEN)
736 				return -EBUSY;
737 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
738 		}
739 	}
740 	shrink_dcache_sb(sb);
741 
742 	/* If we are remounting RDONLY and current sb is read/write,
743 	   make sure there are no rw files opened */
744 	if (remount_ro) {
745 		if (force) {
746 			sb->s_readonly_remount = 1;
747 			smp_wmb();
748 		} else {
749 			retval = sb_prepare_remount_readonly(sb);
750 			if (retval)
751 				return retval;
752 		}
753 	}
754 
755 	if (sb->s_op->remount_fs) {
756 		retval = sb->s_op->remount_fs(sb, &flags, data);
757 		if (retval) {
758 			if (!force)
759 				goto cancel_readonly;
760 			/* If forced remount, go ahead despite any errors */
761 			WARN(1, "forced remount of a %s fs returned %i\n",
762 			     sb->s_type->name, retval);
763 		}
764 	}
765 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
766 	/* Needs to be ordered wrt mnt_is_readonly() */
767 	smp_wmb();
768 	sb->s_readonly_remount = 0;
769 
770 	/*
771 	 * Some filesystems modify their metadata via some other path than the
772 	 * bdev buffer cache (eg. use a private mapping, or directories in
773 	 * pagecache, etc). Also file data modifications go via their own
774 	 * mappings. So If we try to mount readonly then copy the filesystem
775 	 * from bdev, we could get stale data, so invalidate it to give a best
776 	 * effort at coherency.
777 	 */
778 	if (remount_ro && sb->s_bdev)
779 		invalidate_bdev(sb->s_bdev);
780 	return 0;
781 
782 cancel_readonly:
783 	sb->s_readonly_remount = 0;
784 	return retval;
785 }
786 
787 static void do_emergency_remount(struct work_struct *work)
788 {
789 	struct super_block *sb, *p = NULL;
790 
791 	spin_lock(&sb_lock);
792 	list_for_each_entry(sb, &super_blocks, s_list) {
793 		if (hlist_unhashed(&sb->s_instances))
794 			continue;
795 		sb->s_count++;
796 		spin_unlock(&sb_lock);
797 		down_write(&sb->s_umount);
798 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
799 		    !(sb->s_flags & MS_RDONLY)) {
800 			/*
801 			 * What lock protects sb->s_flags??
802 			 */
803 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
804 		}
805 		up_write(&sb->s_umount);
806 		spin_lock(&sb_lock);
807 		if (p)
808 			__put_super(p);
809 		p = sb;
810 	}
811 	if (p)
812 		__put_super(p);
813 	spin_unlock(&sb_lock);
814 	kfree(work);
815 	printk("Emergency Remount complete\n");
816 }
817 
818 void emergency_remount(void)
819 {
820 	struct work_struct *work;
821 
822 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
823 	if (work) {
824 		INIT_WORK(work, do_emergency_remount);
825 		schedule_work(work);
826 	}
827 }
828 
829 /*
830  * Unnamed block devices are dummy devices used by virtual
831  * filesystems which don't use real block-devices.  -- jrs
832  */
833 
834 static DEFINE_IDA(unnamed_dev_ida);
835 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
836 /* Many userspace utilities consider an FSID of 0 invalid.
837  * Always return at least 1 from get_anon_bdev.
838  */
839 static int unnamed_dev_start = 1;
840 
841 int get_anon_bdev(dev_t *p)
842 {
843 	int dev;
844 	int error;
845 
846  retry:
847 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
848 		return -ENOMEM;
849 	spin_lock(&unnamed_dev_lock);
850 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
851 	if (!error)
852 		unnamed_dev_start = dev + 1;
853 	spin_unlock(&unnamed_dev_lock);
854 	if (error == -EAGAIN)
855 		/* We raced and lost with another CPU. */
856 		goto retry;
857 	else if (error)
858 		return -EAGAIN;
859 
860 	if (dev >= (1 << MINORBITS)) {
861 		spin_lock(&unnamed_dev_lock);
862 		ida_remove(&unnamed_dev_ida, dev);
863 		if (unnamed_dev_start > dev)
864 			unnamed_dev_start = dev;
865 		spin_unlock(&unnamed_dev_lock);
866 		return -EMFILE;
867 	}
868 	*p = MKDEV(0, dev & MINORMASK);
869 	return 0;
870 }
871 EXPORT_SYMBOL(get_anon_bdev);
872 
873 void free_anon_bdev(dev_t dev)
874 {
875 	int slot = MINOR(dev);
876 	spin_lock(&unnamed_dev_lock);
877 	ida_remove(&unnamed_dev_ida, slot);
878 	if (slot < unnamed_dev_start)
879 		unnamed_dev_start = slot;
880 	spin_unlock(&unnamed_dev_lock);
881 }
882 EXPORT_SYMBOL(free_anon_bdev);
883 
884 int set_anon_super(struct super_block *s, void *data)
885 {
886 	return get_anon_bdev(&s->s_dev);
887 }
888 
889 EXPORT_SYMBOL(set_anon_super);
890 
891 void kill_anon_super(struct super_block *sb)
892 {
893 	dev_t dev = sb->s_dev;
894 	generic_shutdown_super(sb);
895 	free_anon_bdev(dev);
896 }
897 
898 EXPORT_SYMBOL(kill_anon_super);
899 
900 void kill_litter_super(struct super_block *sb)
901 {
902 	if (sb->s_root)
903 		d_genocide(sb->s_root);
904 	kill_anon_super(sb);
905 }
906 
907 EXPORT_SYMBOL(kill_litter_super);
908 
909 static int ns_test_super(struct super_block *sb, void *data)
910 {
911 	return sb->s_fs_info == data;
912 }
913 
914 static int ns_set_super(struct super_block *sb, void *data)
915 {
916 	sb->s_fs_info = data;
917 	return set_anon_super(sb, NULL);
918 }
919 
920 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
921 	void *data, int (*fill_super)(struct super_block *, void *, int))
922 {
923 	struct super_block *sb;
924 
925 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
926 	if (IS_ERR(sb))
927 		return ERR_CAST(sb);
928 
929 	if (!sb->s_root) {
930 		int err;
931 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
932 		if (err) {
933 			deactivate_locked_super(sb);
934 			return ERR_PTR(err);
935 		}
936 
937 		sb->s_flags |= MS_ACTIVE;
938 	}
939 
940 	return dget(sb->s_root);
941 }
942 
943 EXPORT_SYMBOL(mount_ns);
944 
945 #ifdef CONFIG_BLOCK
946 static int set_bdev_super(struct super_block *s, void *data)
947 {
948 	s->s_bdev = data;
949 	s->s_dev = s->s_bdev->bd_dev;
950 
951 	/*
952 	 * We set the bdi here to the queue backing, file systems can
953 	 * overwrite this in ->fill_super()
954 	 */
955 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
956 	return 0;
957 }
958 
959 static int test_bdev_super(struct super_block *s, void *data)
960 {
961 	return (void *)s->s_bdev == data;
962 }
963 
964 struct dentry *mount_bdev(struct file_system_type *fs_type,
965 	int flags, const char *dev_name, void *data,
966 	int (*fill_super)(struct super_block *, void *, int))
967 {
968 	struct block_device *bdev;
969 	struct super_block *s;
970 	fmode_t mode = FMODE_READ | FMODE_EXCL;
971 	int error = 0;
972 
973 	if (!(flags & MS_RDONLY))
974 		mode |= FMODE_WRITE;
975 
976 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
977 	if (IS_ERR(bdev))
978 		return ERR_CAST(bdev);
979 
980 	/*
981 	 * once the super is inserted into the list by sget, s_umount
982 	 * will protect the lockfs code from trying to start a snapshot
983 	 * while we are mounting
984 	 */
985 	mutex_lock(&bdev->bd_fsfreeze_mutex);
986 	if (bdev->bd_fsfreeze_count > 0) {
987 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
988 		error = -EBUSY;
989 		goto error_bdev;
990 	}
991 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
992 		 bdev);
993 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
994 	if (IS_ERR(s))
995 		goto error_s;
996 
997 	if (s->s_root) {
998 		if ((flags ^ s->s_flags) & MS_RDONLY) {
999 			deactivate_locked_super(s);
1000 			error = -EBUSY;
1001 			goto error_bdev;
1002 		}
1003 
1004 		/*
1005 		 * s_umount nests inside bd_mutex during
1006 		 * __invalidate_device().  blkdev_put() acquires
1007 		 * bd_mutex and can't be called under s_umount.  Drop
1008 		 * s_umount temporarily.  This is safe as we're
1009 		 * holding an active reference.
1010 		 */
1011 		up_write(&s->s_umount);
1012 		blkdev_put(bdev, mode);
1013 		down_write(&s->s_umount);
1014 	} else {
1015 		char b[BDEVNAME_SIZE];
1016 
1017 		s->s_mode = mode;
1018 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1019 		sb_set_blocksize(s, block_size(bdev));
1020 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1021 		if (error) {
1022 			deactivate_locked_super(s);
1023 			goto error;
1024 		}
1025 
1026 		s->s_flags |= MS_ACTIVE;
1027 		bdev->bd_super = s;
1028 	}
1029 
1030 	return dget(s->s_root);
1031 
1032 error_s:
1033 	error = PTR_ERR(s);
1034 error_bdev:
1035 	blkdev_put(bdev, mode);
1036 error:
1037 	return ERR_PTR(error);
1038 }
1039 EXPORT_SYMBOL(mount_bdev);
1040 
1041 void kill_block_super(struct super_block *sb)
1042 {
1043 	struct block_device *bdev = sb->s_bdev;
1044 	fmode_t mode = sb->s_mode;
1045 
1046 	bdev->bd_super = NULL;
1047 	generic_shutdown_super(sb);
1048 	sync_blockdev(bdev);
1049 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1050 	blkdev_put(bdev, mode | FMODE_EXCL);
1051 }
1052 
1053 EXPORT_SYMBOL(kill_block_super);
1054 #endif
1055 
1056 struct dentry *mount_nodev(struct file_system_type *fs_type,
1057 	int flags, void *data,
1058 	int (*fill_super)(struct super_block *, void *, int))
1059 {
1060 	int error;
1061 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1062 
1063 	if (IS_ERR(s))
1064 		return ERR_CAST(s);
1065 
1066 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1067 	if (error) {
1068 		deactivate_locked_super(s);
1069 		return ERR_PTR(error);
1070 	}
1071 	s->s_flags |= MS_ACTIVE;
1072 	return dget(s->s_root);
1073 }
1074 EXPORT_SYMBOL(mount_nodev);
1075 
1076 static int compare_single(struct super_block *s, void *p)
1077 {
1078 	return 1;
1079 }
1080 
1081 struct dentry *mount_single(struct file_system_type *fs_type,
1082 	int flags, void *data,
1083 	int (*fill_super)(struct super_block *, void *, int))
1084 {
1085 	struct super_block *s;
1086 	int error;
1087 
1088 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1089 	if (IS_ERR(s))
1090 		return ERR_CAST(s);
1091 	if (!s->s_root) {
1092 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1093 		if (error) {
1094 			deactivate_locked_super(s);
1095 			return ERR_PTR(error);
1096 		}
1097 		s->s_flags |= MS_ACTIVE;
1098 	} else {
1099 		do_remount_sb(s, flags, data, 0);
1100 	}
1101 	return dget(s->s_root);
1102 }
1103 EXPORT_SYMBOL(mount_single);
1104 
1105 struct dentry *
1106 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1107 {
1108 	struct dentry *root;
1109 	struct super_block *sb;
1110 	char *secdata = NULL;
1111 	int error = -ENOMEM;
1112 
1113 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1114 		secdata = alloc_secdata();
1115 		if (!secdata)
1116 			goto out;
1117 
1118 		error = security_sb_copy_data(data, secdata);
1119 		if (error)
1120 			goto out_free_secdata;
1121 	}
1122 
1123 	root = type->mount(type, flags, name, data);
1124 	if (IS_ERR(root)) {
1125 		error = PTR_ERR(root);
1126 		goto out_free_secdata;
1127 	}
1128 	sb = root->d_sb;
1129 	BUG_ON(!sb);
1130 	WARN_ON(!sb->s_bdi);
1131 	sb->s_flags |= MS_BORN;
1132 
1133 	error = security_sb_kern_mount(sb, flags, secdata);
1134 	if (error)
1135 		goto out_sb;
1136 
1137 	/*
1138 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1139 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1140 	 * this warning for a little while to try and catch filesystems that
1141 	 * violate this rule.
1142 	 */
1143 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1144 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1145 
1146 	up_write(&sb->s_umount);
1147 	free_secdata(secdata);
1148 	return root;
1149 out_sb:
1150 	dput(root);
1151 	deactivate_locked_super(sb);
1152 out_free_secdata:
1153 	free_secdata(secdata);
1154 out:
1155 	return ERR_PTR(error);
1156 }
1157 
1158 /*
1159  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1160  * instead.
1161  */
1162 void __sb_end_write(struct super_block *sb, int level)
1163 {
1164 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1165 }
1166 EXPORT_SYMBOL(__sb_end_write);
1167 
1168 /*
1169  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1170  * instead.
1171  */
1172 int __sb_start_write(struct super_block *sb, int level, bool wait)
1173 {
1174 	bool force_trylock = false;
1175 	int ret = 1;
1176 
1177 #ifdef CONFIG_LOCKDEP
1178 	/*
1179 	 * We want lockdep to tell us about possible deadlocks with freezing
1180 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1181 	 * protection works as getting a read lock but there are subtle
1182 	 * problems. XFS for example gets freeze protection on internal level
1183 	 * twice in some cases, which is OK only because we already hold a
1184 	 * freeze protection also on higher level. Due to these cases we have
1185 	 * to use wait == F (trylock mode) which must not fail.
1186 	 */
1187 	if (wait) {
1188 		int i;
1189 
1190 		for (i = 0; i < level - 1; i++)
1191 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1192 				force_trylock = true;
1193 				break;
1194 			}
1195 	}
1196 #endif
1197 	if (wait && !force_trylock)
1198 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1199 	else
1200 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1201 
1202 	WARN_ON(force_trylock & !ret);
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(__sb_start_write);
1206 
1207 /**
1208  * sb_wait_write - wait until all writers to given file system finish
1209  * @sb: the super for which we wait
1210  * @level: type of writers we wait for (normal vs page fault)
1211  *
1212  * This function waits until there are no writers of given type to given file
1213  * system.
1214  */
1215 static void sb_wait_write(struct super_block *sb, int level)
1216 {
1217 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1218 	/*
1219 	 * We are going to return to userspace and forget about this lock, the
1220 	 * ownership goes to the caller of thaw_super() which does unlock.
1221 	 *
1222 	 * FIXME: we should do this before return from freeze_super() after we
1223 	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1224 	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1225 	 * this leads to lockdep false-positives, so currently we do the early
1226 	 * release right after acquire.
1227 	 */
1228 	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1229 }
1230 
1231 static void sb_freeze_unlock(struct super_block *sb)
1232 {
1233 	int level;
1234 
1235 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1236 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1237 
1238 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1239 		percpu_up_write(sb->s_writers.rw_sem + level);
1240 }
1241 
1242 /**
1243  * freeze_super - lock the filesystem and force it into a consistent state
1244  * @sb: the super to lock
1245  *
1246  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1247  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1248  * -EBUSY.
1249  *
1250  * During this function, sb->s_writers.frozen goes through these values:
1251  *
1252  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1253  *
1254  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1255  * writes should be blocked, though page faults are still allowed. We wait for
1256  * all writes to complete and then proceed to the next stage.
1257  *
1258  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1259  * but internal fs threads can still modify the filesystem (although they
1260  * should not dirty new pages or inodes), writeback can run etc. After waiting
1261  * for all running page faults we sync the filesystem which will clean all
1262  * dirty pages and inodes (no new dirty pages or inodes can be created when
1263  * sync is running).
1264  *
1265  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1266  * modification are blocked (e.g. XFS preallocation truncation on inode
1267  * reclaim). This is usually implemented by blocking new transactions for
1268  * filesystems that have them and need this additional guard. After all
1269  * internal writers are finished we call ->freeze_fs() to finish filesystem
1270  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1271  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1272  *
1273  * sb->s_writers.frozen is protected by sb->s_umount.
1274  */
1275 int freeze_super(struct super_block *sb)
1276 {
1277 	int ret;
1278 
1279 	atomic_inc(&sb->s_active);
1280 	down_write(&sb->s_umount);
1281 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1282 		deactivate_locked_super(sb);
1283 		return -EBUSY;
1284 	}
1285 
1286 	if (!(sb->s_flags & MS_BORN)) {
1287 		up_write(&sb->s_umount);
1288 		return 0;	/* sic - it's "nothing to do" */
1289 	}
1290 
1291 	if (sb->s_flags & MS_RDONLY) {
1292 		/* Nothing to do really... */
1293 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1294 		up_write(&sb->s_umount);
1295 		return 0;
1296 	}
1297 
1298 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1299 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1300 	up_write(&sb->s_umount);
1301 	sb_wait_write(sb, SB_FREEZE_WRITE);
1302 	down_write(&sb->s_umount);
1303 
1304 	/* Now we go and block page faults... */
1305 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1306 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1307 
1308 	/* All writers are done so after syncing there won't be dirty data */
1309 	sync_filesystem(sb);
1310 
1311 	/* Now wait for internal filesystem counter */
1312 	sb->s_writers.frozen = SB_FREEZE_FS;
1313 	sb_wait_write(sb, SB_FREEZE_FS);
1314 
1315 	if (sb->s_op->freeze_fs) {
1316 		ret = sb->s_op->freeze_fs(sb);
1317 		if (ret) {
1318 			printk(KERN_ERR
1319 				"VFS:Filesystem freeze failed\n");
1320 			sb->s_writers.frozen = SB_UNFROZEN;
1321 			sb_freeze_unlock(sb);
1322 			wake_up(&sb->s_writers.wait_unfrozen);
1323 			deactivate_locked_super(sb);
1324 			return ret;
1325 		}
1326 	}
1327 	/*
1328 	 * This is just for debugging purposes so that fs can warn if it
1329 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1330 	 */
1331 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1332 	up_write(&sb->s_umount);
1333 	return 0;
1334 }
1335 EXPORT_SYMBOL(freeze_super);
1336 
1337 /**
1338  * thaw_super -- unlock filesystem
1339  * @sb: the super to thaw
1340  *
1341  * Unlocks the filesystem and marks it writeable again after freeze_super().
1342  */
1343 int thaw_super(struct super_block *sb)
1344 {
1345 	int error;
1346 
1347 	down_write(&sb->s_umount);
1348 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1349 		up_write(&sb->s_umount);
1350 		return -EINVAL;
1351 	}
1352 
1353 	if (sb->s_flags & MS_RDONLY) {
1354 		sb->s_writers.frozen = SB_UNFROZEN;
1355 		goto out;
1356 	}
1357 
1358 	if (sb->s_op->unfreeze_fs) {
1359 		error = sb->s_op->unfreeze_fs(sb);
1360 		if (error) {
1361 			printk(KERN_ERR
1362 				"VFS:Filesystem thaw failed\n");
1363 			up_write(&sb->s_umount);
1364 			return error;
1365 		}
1366 	}
1367 
1368 	sb->s_writers.frozen = SB_UNFROZEN;
1369 	sb_freeze_unlock(sb);
1370 out:
1371 	wake_up(&sb->s_writers.wait_unfrozen);
1372 	deactivate_locked_super(sb);
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(thaw_super);
1376